The University of Sydney
 Math1003 Integral Calculus and Modelling

Assumed Knowledge: Finding the roots of quadratic equations. Euler's formula $e^{i \theta}=$ $\cos \theta+i \sin \theta$.

Objectives:

(11a) To be able to write down the auxiliary (or characteristic) equation associated with a second-order differential equation with constant coefficients.
(11b) To be able to construct the solutions to such differential equations in terms of exponential and trigonometric functions.

Preparatory questions:

1. Write down the auxiliary or characteristic equation for the following second-order differential equations and find its roots:
(i) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-8 y=0$
(ii) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-4 y=0$
(iii) $\frac{d^{2} y}{d t^{2}}-9 y=0$
(iv) $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=0$
(v) $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=0$

Practice Questions:

2. Find the particular solution of Preparatory Question $1(i)$ which satisfies $y(0)=0$ and $y^{\prime}(0)=3$.
3. Find the general solution of Preparatory Question 1 (ii).
4. Find the particular solution of Preparatory Question 1 (iii) which satisfies the initial conditions $y=3$ and $\frac{d y}{d t}=3$ when $t=0$.
5. Find the general solution of Preparatory Question 1 (iv), expressing your answer in terms of real functions.
What is the particular solution satisfying $y(0)=1$ and $y(\pi / 4)=2$?
6. Find the particular solution of Preparatory Question $1(v)$ which satisfies $x(0)=1$ and $x^{\prime}(0)=2$.

More Exercises

7. Find the general solutions of these second-order homogeneous equations. In each case give your answer in terms of real functions.
(i) $2 \frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+3 y=0$.
(ii) $\frac{d^{2} y}{d x^{2}}+3 y=0$.
(iii) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$.
8. Find the general solution of each of these second-order linear homogeneous equations. Hence find the particular solution for the given conditions. In each case give your answer in terms of real functions.
(i) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-20 y=0, \quad y(0)=y^{\prime}(0)=1$
(ii) $\frac{d^{2} y}{d x^{2}}+9 y=0, \quad y(0)=1, \quad y(\pi / 6)=3$.
(iii) $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+7 y=0, \quad y(0)=0, \quad \frac{d y}{d t}=3$ when $t=0$.
(iv) $\frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+4 x=0, \quad x(0)=1, \quad x(1)=3 e^{2}$.

Answers to Preparatory Questions

1. (i) The auxiliary equation is $\lambda^{2}+2 \lambda-8=0$ so that $\lambda=2$ or $\lambda=-4$.
(ii) The auxiliary equation is $\lambda^{2}+2 \lambda-4=0$ so that $\lambda=-1+\sqrt{5}$ or $\lambda=-1-\sqrt{5}$.
(iii) The auxiliary equation is $\lambda^{2}-9=0$ so that $\lambda=3$ or $\lambda=-3$.
(iv) The auxiliary equation is $\lambda^{2}-2 \lambda+5=0$.

The roots of this equation are $\lambda=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i$.
(v) The auxiliary equation is $\lambda^{2}+2 \lambda+1=0$ and this has two equal roots $\lambda=-1$.

