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Assumed Knowledge: Simple properties of the functions Inz and e*, including their
derivatives.
Objectives:

(5a) To know and be able to use the properties of the In function.
(5b) To know and be able to use the properties of the exp function.
(5¢) To know and be able to use the properties of the generalised exponential function a®.

(5d) To be able to perform a logarithmic differentiation.

Exercises:

1. Simplify each of the following expressions:
(a) elnﬁ
Solution: ¢™°® = 6.
(b) Iny/e

Solution: In,/e=In(e"/?)=1lne=1.

2. Find dy/dx for each of the following:
(a) y=2°
Solution: 2%1n2.
(b) y=log,yx

Solution: .
z1n 10

(c) y=logyvr

Solution: log,,\/z = %loglo(x)
(@) y= (sina)F

Solution: First write (sinz)® as e*""%) Then

dy d d

~ Inz dy 1
T om0’ Y dr  2zlm10

_ @ . oy ¢ zIn(sin )
o= ((sina)") = — (e )
. 1
_ exln(smx) <.§L’ X — X COS T + ll’l(SiH .T))
S x

= (sinz)®(z cot x + In(sin x)).
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3. The hyperbolic sine and hyperbolic cosine functions, sinh x and cosh z, are defined
as sinhz = 5(69” —e ") and coshz = 5(69” +e7 7).

Using properties of the exponential function, show that:

(a) ——sinhx = coshx

dx

. d : _1 d r _ =T _1 x —T) _
Solution: %smhx—éﬁ (e e )—2(6 +e )—coshx.

(b) — coshx = sinhz

dx
Solution: i coshx = —i (egC + e_x) = l (ex — e_”C) = sinh z.
dx 2dx 2
(c) cosh Acosh B + sinh Asinh B = cosh(A + B)
Solution:

cosh A cosh B + sinh Asinh B
1 1
= Z<€A +e (P +eP) + Z<6A —e M) (P —e )
i(eA—i—B L oAB | ~ATB | ~(A4B) | JA4B _ A-B _ —AYB | e—(A-i—B))

1
= 5(6A+B + e~ B = cosh(A + B).

(d) 2(cosh A)? — 1 = cosh(2A)
Solution:

A —A\ 2
1
2 (%) —1= §<€2A +2ete™ 4 e — 1
1
= 5(62‘4 + e = cosh(2A).

1
4. Consider the function f(x) = E, which is defined for all z > 0. Show that
x

this function is strictly increasing on the interval (0, e) and strictly decreasing on
the interval (e, c0), and thus has a global maximum at x = e. Hence show that

1
f(z) < —for all x > 0. Use this result with 2 = 7 to show that 7¢ < e”.
e

1/1 1 1-1
Solution: The derivative f'= -~ | — —<Ilnz = nr Since 2% > 0 for
x \x x? x?

x > 0, the sign of f’(x) is determined by the sign of 1 — Inz. This is positive when
1 —Inz > 0, ie Inx < 1, and negative when 1 —Inz < 0, i.e. Inz > 1. Now
Inz = 1 when "% = ¢! i.e. when x = e. Therefore, when 0 < z < e, f/(z) > 0 so
the function is increasing, and when x > e, f'(z) < 0 so the function is decreasing.

Hence, f(z) has a maximum when x = e.

1
If f(z) has a maximum at x = e, then f(z) < 1€ _ 2 Gince Ine = 1.
e e

Now 7¢ = el"™ = e¢In™ But if we put x = 7 in the previous result, In /7 < 1/e or
elnm < 7 (an inequality holds because the maximum occurs at x = e, not x = ).
Since €” is an increasing function of z, e®™™ < 7, i.e. ¢ < €.



