The University of Sydney
 School of Mathematics and Statistics

Solutions to Week 5 Exercises and Objectives

MATH1003: Integral Calculus and Modelling
Semester 2, 2015
Web Page: www.sydney.edu.au/science/maths/u/UG/JM/MATH1003/
Lecturers: B. Crossman, R. Marangell, M. Myerscough, S. Stephen
Assumed Knowledge: Simple properties of the functions $\ln x$ and e^{x}, including their derivatives.

Objectives:

(5a) To know and be able to use the properties of the \ln function.
(5b) To know and be able to use the properties of the exp function.
(5c) To know and be able to use the properties of the generalised exponential function a^{x}.
(5d) To be able to perform a logarithmic differentiation.

Exercises:

1. Simplify each of the following expressions:
(a) $e^{\ln 6}$

Solution: $\quad e^{\ln 6}=6$.
(b) $\ln \sqrt{e}$

Solution: $\ln \sqrt{e}=\ln \left(e^{1 / 2}\right)=\frac{1}{2} \ln e=\frac{1}{2}$.
2. Find $d y / d x$ for each of the following:
(a) $y=2^{x}$

Solution: $\quad 2^{x} \ln 2$.
(b) $y=\log _{10} x$

Solution: $\frac{1}{x \ln 10}$.
(c) $y=\log _{10} \sqrt{x}$

Solution: $\log _{10} \sqrt{x}=\frac{1}{2} \log _{10}(x)=\frac{\ln x}{2 \ln 10}$, so $\frac{d y}{d x}=\frac{1}{2 x \ln 10}$.
(d) $y=(\sin x)^{x}$

Solution: First write $(\sin x)^{x}$ as $e^{x \ln (\sin x)}$. Then

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left((\sin x)^{x}\right)=\frac{d}{d x}\left(e^{x \ln (\sin x)}\right) \\
& =e^{x \ln (\sin x)}\left(x \times \frac{1}{\sin x} \times \cos x+\ln (\sin x)\right) \\
& =(\sin x)^{x}(x \cot x+\ln (\sin x)) .
\end{aligned}
$$

3. The hyperbolic sine and hyperbolic cosine functions, $\sinh x$ and $\cosh x$, are defined as $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ and $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
Using properties of the exponential function, show that:
(a) $\frac{d}{d x} \sinh x=\cosh x$

Solution: $\frac{d}{d x} \sinh x=\frac{1}{2} \frac{d}{d x}\left(e^{x}-e^{-x}\right)=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh x$.
(b) $\frac{d}{d x} \cosh x=\sinh x$

Solution: $\frac{d}{d x} \cosh x=\frac{1}{2} \frac{d}{d x}\left(e^{x}+e^{-x}\right)=\frac{1}{2}\left(e^{x}-e^{-x}\right)=\sinh x$.
(c) $\cosh A \cosh B+\sinh A \sinh B=\cosh (A+B)$

Solution:

$\cosh A \cosh B+\sinh A \sinh B$

$$
\begin{aligned}
& =\frac{1}{4}\left(e^{A}+e^{-A}\right)\left(e^{B}+e^{-B}\right)+\frac{1}{4}\left(e^{A}-e^{-A}\right)\left(e^{B}-e^{-B}\right) \\
& =\frac{1}{4}\left(e^{A+B}+e^{A-B}+e^{-A+B}+e^{-(A+B)}+e^{A+B}-e^{A-B}-e^{-A+B}+e^{-(A+B)}\right) \\
& =\frac{1}{2}\left(e^{A+B}+e^{-(A+B)}\right)=\cosh (A+B)
\end{aligned}
$$

(d) $2(\cosh A)^{2}-1=\cosh (2 A)$

Solution:

$$
\begin{aligned}
2\left(\frac{e^{A}+e^{-A}}{2}\right)^{2}-1 & =\frac{1}{2}\left(e^{2 A}+2 e^{A} e^{-A}+e^{-2 A}\right)-1 \\
& =\frac{1}{2}\left(e^{2 A}+e^{-2 A}\right)=\cosh (2 A)
\end{aligned}
$$

4. Consider the function $f(x)=\frac{\ln x}{x}$, which is defined for all $x>0$. Show that this function is strictly increasing on the interval $(0, e)$ and strictly decreasing on the interval (e, ∞), and thus has a global maximum at $x=e$. Hence show that $f(x) \leq \frac{1}{e}$ for all $x>0$. Use this result with $x=\pi$ to show that $\pi^{e}<e^{\pi}$.
Solution: The derivative $f^{\prime}=\frac{1}{x}\left(\frac{1}{x}\right)-\frac{1}{x^{2}} \ln x=\frac{1-\ln x}{x^{2}}$. Since $x^{2}>0$ for $x>0$, the sign of $f^{\prime}(x)$ is determined by the sign of $1-\ln x$. This is positive when $1-\ln x>0$, i.e. $\ln x<1$, and negative when $1-\ln x<0$, i.e. $\ln x>1$. Now $\ln x=1$ when $e^{\ln x}=e^{1}$, i.e. when $x=e$. Therefore, when $0<x<e, f^{\prime}(x)>0$ so the function is increasing, and when $x>e, f^{\prime}(x)<0$ so the function is decreasing. Hence, $f(x)$ has a maximum when $x=e$.
If $f(x)$ has a maximum at $x=e$, then $f(x) \leq \frac{\ln e}{e}=\frac{1}{e}$ since $\ln e=1$.
Now $\pi^{e}=e^{\ln \pi^{e}}=e^{e \ln \pi}$. But if we put $x=\pi$ in the previous result, $\ln \pi / \pi<1 / e$ or $e \ln \pi<\pi$ (an inequality holds because the maximum occurs at $x=e$, not $x=\pi$). Since e^{x} is an increasing function of x, $e^{e \ln \pi}<e^{\pi}$, i.e. $\pi^{e}<e^{\pi}$.
