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Material covered

� Homogeneous linear second order differential equations with constant coefficients.
� Inhomogeneous linear second order differential equations with constant coefficients.

Outcomes

After completing this tutorial you should

� be confident in solving homogeneous second order homogeneous and inhomogeneous differential
equations in various contexts.

Summary of essential material

Homogeneous linear second order equations with constant coefficients. Consider a differ-
ential equation of the form

ay′′ + by′ + c′ = 0

with a, b, c ∈ R constants and a 6= 0. To find the general write down the auxiliary equation

aλ2 + bλ+ c = 0

and find its roots (real or complex). Depending on the nature of the roots apply the relevant case:

Case 1: The auxiliary equation has two distinct real roots λ1 6= λ2. Then the general solution is

y(t) = Aeλ1t +Beλ2t

Case 2: The auxiliary equation has one (real) double root λ. Then the general solution is

y(t) = (A+Bt)eλt

Case 3: The auxiliary equation has a pair of complex conjugate roots λ = µ± iω. Then the real form
of the general solution is

y(t) = eµt
(
A cos(ωt) +B sin(ωt)

)
Inhomogeneous linear second order equations with constant coefficients. Consider a dif-
ferential equations of the form

ay′′ + by′ + c′ = f(t)

with a, b, c ∈ R constants and a 6= 0. The function f is called the inhomogeneity. The general solution
is of the form

y(t) = yh(t) + yp(t),

where yh is the general solution of the homogeneous problem ay′′ + by′ + c′ = 0 and yp an arbitrary
solution of the inhomogeneous problem we call a particular solution. To find a particular solution we
often find a solution that has a similar form to the inhomogeneity f . The idea is to determine the
unknown parameters by subsitituion into the differential equations.

Inhomogeneity f(t) Form of particular solution yp(t) (C,D,E, . . . to be determined)

Aeµt Ceµt

A cos(ωt) or B cos(ωt) C cos(ωt) +D sin(ωt) (both terms unless there is symmetry)
At C +Dt
At2 Ct2 +Dt+ E (all terms unless there is symmetry)
polynomial of degree n polynomial of degree n (all terms, unless there is symmetry)
f(t) solves the homoge-
neous equation

Ctf(t)

Copyright c© 2017 The University of Sydney 1

http://www.maths.usyd.edu.au/u/UG/JM/MATH1903/


Questions to do before the tutorial

1. Find the general solution of each of the following.

(a)
d2y

dx2
+ 4

dy

dx
− 5y = 0.

Solution: The auxiliary equation λ2 + 4λ − 5 = 0 has roots λ = −5, 1, and so the
general solution is y = Ae−5x +Bex.

(b)
d2y

dt2
+ 9y = 0.

Solution: The auxiliary equation λ2 + 9 = 0 has complex roots λ = ±3i, and so the
general solution is y = C cos 3t+D sin 3t.

2. Consider the second-order non-homogeneous differential equation
d2y

dx2
− 2

dy

dx
+ y = x2.

(a) Find the general solution of the above differential equation.

Solution: The auxiliary equation λ2 − 2λ+ 1 = 0 has a double root λ = 1, and so the
general solution of the homogeneous equation (also called the complementary equation)
is yh = Aex + Bxex. For a particular solution, try yp = ax2 + bx + c. Substituting this
into the differential equation gives

2a− 2(2ax+ b) + (ax2 + bx+ c) = x2.

Comparing coefficients of like powers gives a = 1, b − 4a = 0 and 2a − 2b + c = 0, and
hence a = 1, b = 4 and c = 6. So a particular solution is yp = x2 +4x+6, and the general
solution is

y = (A+Bx)ex + x2 + 4x+ 6.

(b) Find the particular solution of the above differential equation satisfying the initial con-
ditions y(0) = y′(0) = 4.

Solution: The solution above gives y(0) = A + 6 and y′(0) = A + B + 4. So y(0) = 4
and y′(0) = 4 imply that A = −2 and B = 2, and so the required particular solution is
y = 2(x− 1)ex + x2 + 4x+ 6.

Questions to complete during the tutorial

3. Find the general solution of each of the following differential equations.

(a)
d2x

dt2
− 6

dx

dt
+ 9x = 0.

Solution: The auxiliary equation λ2 − 6λ + 9 = 0 has repeated roots λ = 3, 3, and so
the general solution is x = Ae3t +Bte3t.

(b)
d2y

dx2
− 6

dy

dx
+ 25y = 0.

Solution: The auxiliary equation λ2 − 6λ+ 25 = 0 has complex roots λ = 3± 4i, and
so the general solution is y = e3x(C cos 4x+D sin 4x).

4. Solve the following equations, giving the general solution and then the particular solution y(x)
satisfying the given boundary or initial conditions.

(a) y′′ + 4y′ + 5y = 0, y(0) = 2, y′(0) = 4

Solution: The auxiliary equation λ2 + 4λ+ 5 = 0 has roots −2± i, and so the general
solution is y(x) = e−2x(C cosx+D sinx), which gives y′(x) = e−2x{(D−2C) cosx− (C+
2D) sinx}. Hence y(0) = C and y′(0) = D − 2C, so the initial conditions imply C = 2
and D = 8, and the particular solution is y(x) = 2e−2x(cosx+ 4 sinx).
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(b) y′′ − 2y′ + y = 0, y(2) = 0, y′(2) = 1

Solution: The auxiliary equation λ2 − 2λ + 1 = 0 has one double root λ = 1, and so
the general solution is y(x) = (A + Bx)ex, which gives y′(x) = (A + B + Bx)ex. Hence
y(2) = (A + 2B)e2 and y′(2) = (A + 3B)e2, so the initial conditions imply A = −2e−2

and B = e−2, and the particular solution is y(x) = (x− 2)ex−2.

5. We considered the case of a second order differential equation where the auxiliary equation has
a double root, say λ0. Here we provide an argument why teλ0t is expected to be a solution. The
differential equation in that case is

y′′ − 2λ0y
′ + λ20y = 0.

The idea is to look at a perturbed equation that has two distinct real roots, then obtain the
solution teλ0t as a limit of solutions of the perturbed equation.

(a) Check that eλ0t and e(λ0+h)t are solutions to y′′ − (2λ0 + h)y′ + λ0(λ0 + h)y = 0. Briefly
explain why

e(λ0+h)t − eλ0t

h

is a solution of the same perturbed equation.

Solution: The auxiliary equation of the given differential equation is

0 = λ2 − (2λ0 + h)λ+ λ0(λ0 + h) = (λ− λ0)
(
λ− (λ0 + h)

)
.

Hence the roots are λ0 and λ0 + h and thus eλ0t and e(λ0+h)t are solutions as required.
According to the superposition principle, also

1

h
e(λ0+h)t − 1

h
eλ0t =

e(λ0+h)t − eλ0t

h

is a solution as well.

(b) Let h → 0 in the equation as well as the solution given in part (a) and relate it to the
original unperturbed equation. Check that the limit of solutions as h → 0 is a solution
to the limit equation.

Solution: Applying differentiation with respect to λ from first principles we see that

lim
h→0

e(λ0+h)t − eλ0t

h
=

d

dλ
eλt
∣∣∣
λ=λ0

= teλ0t

If we let h→ 0 in the equation y′′ − (2λ0 + h)y′ + λ0(λ0 + h)y = 0 we obtain the original
equation y′′ − 2λ0y

′ + λ0y = 0. It is not clear that the limit of solutions is a solution
of the limit equation, but we might expect this anyway. Hence we need to check by
differentiation and subsitution. We have, using the chain rule,

y(t) = teλ0t, y′(t) = eλ0t + λ0te
λ0t, y′′(t) = 2λ0e

λ0t + λ20te
λ0t.

We substitute into the equation to obtain

y′′ − 2λ0y
′ + λ0y

= (2λ0e
λ0t + λ20te

λ0t)− 2λ0(e
λ0t + λ0te

λ0t) + λ20te
λ0t

= (2λ0 − 2λ0)e
λ0t + (λ20 − 2λ20 + λ20)te

λ0t

= 0

as expected.
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6. First find the general solution of each of the following non-homogeneous second-order differential
equations, and then the particular solution for the given initial conditions.

(a) y′′ + 3y′ + 2y = 6et, y(0) = 1, y′(0) = 0.

Solution: The auxiliary equation λ2 + 3λ + 2 = 0 has roots λ = −1,−2, and so the
general solution of the homogeneous equation is yh = Ce−t + De−2t. For a particular
solution, try yp = αet. Substituting this into the differential equation gives α(et + 3et +
2et) = 6et, which implies α = 1. So a particular integral is yp = et, and the general
solution is

y = Ce−t +De−2t + et.

The solution above gives y(0) = C + D + 1 and ẏ(0) = −C − 2D + 1. So y(0) = 1
and ẏ(0) = 0 imply that C = −1 and D = 1, and so the required particular solution is
y = −e−t + e−2t + et.

(b) y′′ + 3y′ + 2y = 6e−t, y(0) = 2, y′(0) = 1.

Solution: The auxiliary equation and hence the general solution of the homogeneous
equation are the same as in the last part. In this case, however, the non-homogeneous
term is itself a solution of the homogeneous equation and so we will not be able to produce
a particular solution of the form αe−t. The standard procedure in this case is to include
a factor t. So a suitable trial solution will take the form yp = αte−t. Substitution into
the differential equation gives α(t− 2)e−t + 3α(1− t)e−t + 2αte−t = 6e−t, which implies
α = 6. So a particular solution is yp = 6te−t, and the general solution is

y = (6t+ C)e−t +De−2t.

The solution above gives y(0) = C + D and ẏ(0) = 6 − C − 2D. So y(0) = 2 and
ẏ(0) = 1 imply that C = −1 and D = 3, and so the required particular solution is
y = (6t− 1)e−t + 3e−2t.

7. (a) For ω 6= 5, find the general solution of the non-homogeneous differential equation,

d2y

dt2
+ 25y = 100 sinωt,

and the particular solution subject to the initial conditions y(0) = 0 and ẏ(0) = 0.

Solution: The auxiliary equation λ2+25 = 0 has roots λ = ±5i, and so the general solu-
tion of the homogeneous equation is yh = C cos 5t+D sin 5t. Since the non-homogeneous
term is sinusoidal, we try a particular solution of the form, yp = α sinωt+ β cosωt. This
will work as long as ω 6= ±5, which we assume for the present. Now, we can save our-
selves some trouble by dropping the cosωt term in yp. This is permitted because there
is no first-order (or any odd-order) derivative term in the differential equation and be-
cause only a sinωt term appears on the right-hand side. (If you have any doubt about
this, keep the cosine term in yp and find that its coefficient is zero after a calculation.)
Substituting yp = α sinωt into the differential equation gives −αω2 sinωt + 25α sinωt =
100 sinωt, from which it follows that α = 100/(25 − ω2). Thus, a particular solution is
yp = 100(25− ω2)−1 sinωt, and the general solution is

y = C cos 5t+D sin 5t+
100

25− ω2
sinωt.

We want the particular solution such that y(0) = ẏ(0) = 0. Differentiation of the general
solution gives

ẏ = −5C sin 5t+ 5D cos 5t+
100ω

25− ω2
cosωt.

The initial conditions imply that C = 0 and D = −20ω/(25 − ω2). Hence the required
particular solution is

y =
100 sinωt− 20ω sin 5t

25− ω2
.
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(b) For ω = 5, find a particular solution of the differential equation. Then determine the
particular solution with y(0) = 0 and ẏ(0) = 0.

Solution: In the case ω = 5, a solution of the form yp = α sinωt+ β cosωt is a solution
of the homogeneous equation. The standard trick in this case is to include a factor t,
in which case yp = αt sin 5t + βt cos 5t. As before, we can simplify the problem by a
symmetry argument. Because there is no first-order derivative in the differential equation
and because the forcing term is an odd function, we can get away with restricting yp to be
an odd function. Thus yp = βt cos 5t. Its derivatives are ẏp = β(−5t sin 5t + cos 5t) and
ÿp = β(−25t cos 5t− 10 sin 5t). Substituting into the differential equation and cancelling
terms shows that β = −10. Hence a particular solution is yp = −10t cos 5t, and the
general solution is

y = (C − 10t) cos 5t+D sin 5t.

Its derivative is ẏ = (50t−5C) sin 5t+(5D−10) cos 5t. The initial conditions are satisfied
by C = 0 and D = 2. Hence the required particular solution is

y = 2 sin 5t− 10t cos 5t.

(c) Find the corresponding particular solution of the differential equation for ω = 5 by fixing
t in the result of part (a) and taking the limit as ω approaches its special value.

Solution: If one puts ω = 5 in the result of part (a), the solution becomes a 0/0-type
indeterminate form. L’Hôpital’s rule can be used to take the limit ω → 5. Here, we
must hold t constant while we take derivatives with respect to ω. Thus, in the case of
resonance,

y = lim
ω→5

100 sinωt− 20ω sin 5t

25− ω2
= lim

ω→5

(∂/∂ω)(100 sinωt− 20ω sin 5t)

(∂/∂ω)(25− ω2)

=
100t cosωt− 20 sin 5t

−2ω

∣∣∣∣
ω=5

=
100t cos 5t− 20 sin 5t

−10
= 2 sin 5t− 10t cos 5t.

Without L’Hôpital’s rule we can use differentiation from first principles. We can write

y = lim
ω→5

100 sinωt− 20ω sin 5t

25− ω2

= lim
ω→5

100 sinωt− 100 sin 5t− 20(ω − 5) sin 5t

25− ω2

= − 100

5 + ω

sinωt− sin 5t

ω − 5
+

20

5 + ω

(5− ω) sin 5t

ω − 5

ω→5−−−→ − 100

5 + 5

d

dω
sin(ωt)

∣∣∣
ω=5

+
20

5 + 5
sin 5t

= −10t cos(5t) + 2 sin 5t

which is the same as before. The factor 10t shows that the amplitude grows without
bound.

Extra questions for further practice

8. A rope of length L is suspended at two points A and B and hangs freely in-between in such a
way that it does not move at all. The rope has constant mass density % per unit length, that is,
a section of length ` has mass %`. We assume that the rope is perfectly flexible, that is, there
is no bending force.

The only forces acting on the rope are the tension force T tangent to the rope and the gravita-
tional force in the downwards direction. Denote the unit tangent vector along the rope by u.
The height of the rope above ground is given by a function y(x). Denote acceleration due to
gravity by g.
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x

y

A

B

y

x

y + ∆y

x+ ∆x

T (x)u(x)

T (x+ ∆x)u(x+ ∆x)

−%g∆`j

∆`

Consider a small section of rope of length ∆` between x and x+∆x. That section has mass %∆`.
We denote the unit vectors in the direction of the x-axis and the y-axis by i and j, respectively.

(a) Using the fact that the sum of all forces on ∆` add up to zero, show that

d

dx

(
T (x)u(x)

)
= %g

√
1 + (y′(x))2j.

Solution: The length of the section ∆` is given by ∆` =
√

(∆x)2 + (∆y)2, so its mass
is %
√

(∆x)2 + (∆y)2. Hence the gravitational force on ∆` is given by

−%
√

(∆x)2 + (∆y)2j.

The minus sign comes from the fact that the gravitational force points downwards,
whereas j points upwards. The other forces on ∆` are the tension forces at the right
and left ends. The tension force at the right end is

T (x+ ∆x)u(x+ ∆x)

and that at the left end is
−T (x)u(x).

The minus sign comes from the fact that this is a “reaction force” to the section of the
rope pulling to the left. The total force on ∆` must be zero, so

T (x+ ∆x)u(x+ ∆x)− T (x)u(x)− %
√

(∆x)2 + (∆y)2j = 0.

If we rearrange and divide by ∆x we get

T (x+ ∆x)u(x+ ∆x)− T (x)u(x)

∆x
= %

√
1 +

(∆y

∆x

)2
j.

Letting ∆x → 0, using the definition of a derivative, we get the required differential
equation.

(b) Explain why the unit tangent vector u is given by

u(x) =
1√

1 + (y′(x))2
i +

y′(x)√
1 + (y′(x))2

j.
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Solution: The slope of the tangent at every point is given by y′(x). Hence the vector
i+ y′(x)j points in the direction of u(x). To get the unit vector we need to divide by the
length which is given by

√
1 + (y′(x))2. Hence

u(x) =
1√

1 + (y′(x))2
i +

y′(x)√
1 + (y′(x))2

j.

(c) By considering the component of the differential equation from (a) in the x-direction,
that is, the direction of i, show that

T (x) = H
√

1 + (y′(x))2

for some constant H. Give a physical interpretation of H.

Solution: According to part (b) the horizontal component of u is given by

1√
1 + (y′(x))2

Hence the horizontal component of (a) is given by

d

dx

(
T (x)√

1 + (y′(x))2

)
= 0.

Hence, there exists a constant H so that

T (x)√
1 + (y′(x))2

= H,

and therefore T (x) = H
√

1 + (y′(x))2 as claimed.

The horizontal component of the tension force is

T (x)√
1 + (y′(x))2

.

Using the explicit expression of T the horizontal component of the tension force has the
constant value H.

(d) By considering the component of the differential equation from (a) in the y-direction,
that is, the direction of j, show that

y′′(x) =
%g

H

√
1 + (y′(x))2.

Solution: According to part (b) the vertical component of u is given by

y′(x)√
1 + (y′(x))2

Hence the vertical component of (a) is given by

d

dx

(
T (x)y′(x)√
1 + (y′(x))2

)
= %g

√
1 + (y′(x))2.

Substituting the solution from (c) we get

d

dx

(
Hy′(x)

)
= Hy′′(x) = %g

√
1 + (y′(x))2.

If we divide by H we get the required differential equation.

7



(e) Find the general solution of the differential equation in (d). Note that the differential
equation is a first order differential equation for z(x) = y′(x).

Solution: Rewriting the original differential equation as a differential equation for
z(x) = y′(x) we get

dz

dx
=
%g

H

√
1 + z2.

We first separate variables and write

dz√
1 + z2

=
%g

H
dx

and integrating we get ∫
dz√

1 + z2
=

∫
%g

H
dx =

%gx

H
+ C.

For the integral on the left hand side we use the substitution z = sinh t. Then dz =
cosh t dt. Using that 1 + sinh2 t = cosh t we get

%gx

H
+ C =

∫
dz√

1 + z2
=

∫
cosh t√

1 + sinh2 t
dt =

∫
cosh t

cosh t
dt = t = sinh−1 z.

We do not need a constant as that constant can be merged with C. Alternatively we
could use a table of standard integrals to evaluate the integral. Hence

z = sinh
(%gx
H

+ C
)
.

Next we recall that z = y′, so

y(x) =

∫
z(x) dx =

∫
sinh

(%gx
H

+ C
)
dx =

H

%g
cosh

(%gx
H

+ C
)

+D.

The cosh curve is often called the catenary. The constants C, D and H could be computed
in terms of the length L the mass density % and the coordinates of A and B, but this is
rather tedious to do for the general situation.

9. Find the general solution of the differential equation

d2y

dt2
− 2

dy

dt
+ 5y = 0,

expressing your answer in real form. What is the particular solution satisfying y(0) = 1 and
y(π/4) = 2?

Solution: The auxiliary equation is λ2 − 2λ+ 5 = 0, which has roots λ = 1± 2i, and so the
general solution is

y = et(A cos 2t+B sin 2t).

Hence y(0) = E and y(π/4) = eπ/4F . If y(0) = 1 and y(π/4) = 2 then A = 1 and B = 2e−π/4,
and hence the particular solution is

y = et
(
cos 2t+ 2e−π/4 sin 2t

)
.

10. Solve the following equations, giving the general solution and then the particular solution y(x)
satisfying the given boundary or initial conditions.

(a) 2y′′ − 7y′ + 5y = 0, y(0) = 1, y′(0) = 1

Solution: The auxiliary equation 2λ2 − 7λ + 5 = 0 has roots 5/2 and 1, and so the
general solution is y(x) = Ae5x/2 + Bex, which gives y′(x) = (5A/2)e5x/2 + Bex. Hence
y(0) = A+B and y′(0) = (5A/2) + B, so the initial conditions imply A = 0 and B = 1,
and the particular solution is y(x) = ex.
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(b) y′′ + 4y′ + 3y = 0, y(−2) = 1, y(2) = 1

Solution: The auxiliary equation λ2+4λ+3 = 0 has roots −1 and −3, and so the general
solution is y(x) = Ae−x + Be−3x. Hence y(−2) = Ae2 + Be6 and y(2) = Ae−2 + Be−6,
so the boundary conditions imply Ae2 + Be6 = 1 and Ae−2 + Be−6 = 1. Solving these
simultaneous equations gives

A =
sinh 6

sinh 4
= 7.3915, B = −sinh 2

sinh 4
= −0.1329,

and so the particular solution satisfying the boundary conditions is

y(x) = 7.3915e−x − 0.1329e−3x.

(c) 2y′′ − 2y′ + 5y = 0, y(0) = 0, y(2) = 2

Solution: The auxiliary equation 2λ2 − 2λ + 5 = 0 has roots (1 ± 3i)/2, and so the
general solution is y(x) = ex/2{A cos(3x/2) +B sin(3x/2)}. Hence y(0) = A, and the first
boundary condition implies A = 0. Thus y(2) = Be sin 3, and so the second boundary
condition implies B = 2/(e sin 3) = 5.2137, and hence the particular solution satisfying
the boundary conditions is y(x) = 5.2137ex/2 sin(3x/2).

(d) y′′ − 4y′ + 4y = 0, y(0) = −2, y(1) = 0

Solution: The auxiliary equation λ2 − 4λ + 4 = 0 has one double root m = 2, and
so the general solution is y(x) = (A + Bx)e2x. Hence y(0) = A and the first boundary
condition implies A = −2. Thus y(1) = (−2+B)e2, and so the second boundary condition
implies B = 2, and hence the particular solution satisfying the boundary conditions is
y(x) = 2(x− 1)e2x.

11. Find the particular solution of the differential equation y′′ − 6y′ + 9y = e3x which satisfies the
initial conditions y(0) = 1 and y′(0) = 0.

Solution: The auxiliary equation of the homogeneous problem is λ2−6λ+9 = (λ−3)2 = 0. As
λ = 3 is a double root e3x and xe3x solve the homogeneous equation. Hecne the inhomogeneity
e3t solves the equation. Normally we would find a particular solution of the form Axe3x, but
that is a solution of the homogeneous equation as well. Hence we multiply by another x and
try a particular solution of the form y = Ax2e3x. We note that y′(x) = 2xAe3x + 3x2Ae3x and
y′′(x) = 2Ae3x + 12Axe3x + 9Ax2e3x. Substitution into the equation yields

2Ae3x + 12Axe3x + 9x2Ae3x − 6(2Axe3x + 3Ax2e3x) + 9Ax2e3x = e3x.

If we cancel e3x 6= 0 and collect terms according to powers of x we obtain

2A+ (12A− 12A)x+ (9A− 18A+ 9A)x2 = 2A = 1

Hence A =
1

2
and the general solution is

y =
(
C +Dx+

x2

2

)
e3x.

To make use of the initial conditions note that

y′ =
(

3C + 3Dx+
3x2

2
+D + x

)
e3x.

Hence y(0) = C and y′(0) = 3C + D. So the conditions y(0) = 1 and y′(0) = 0 imply that
C = 1 and D = −3. Hence, the required particular solution is

y =
(

1− 3x+
x2

2

)
e3x.
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