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Material covered

0 Homogeneous linear second order differential equations with constant coefficients.
O Inhomogeneous linear second order differential equations with constant coefficients.
Outcomes

After completing this tutorial you should

[0 be confident in solving homogeneous second order homogeneous and inhomogeneous differential
equations in various contexts.
Summary of essential material
Homogeneous linear second order equations with constant coefficients. Consider a differ-
ential equation of the form
ay”—i—by'—l—c’ -0
with a, b, ¢ € R constants and a # 0. To find the general write down the auziliary equation
aX® +bA+c=0
and find its roots (real or complex). Depending on the nature of the roots apply the relevant case:

Case 1: The auxiliary equation has two distinct real roots Ay # As. Then the general solution is

y(t) = AeM! + Be?!

Case 2: The auxiliary equation has one (real) double root A. Then the general solution is
y(t) = (A+ Bt)e™

Case 3: The auxiliary equation has a pair of complex conjugate roots A = p=+iw. Then the real form
of the general solution is
y(t) = e (Acos(wt) + Bsin(wt))

Inhomogeneous linear second order equations with constant coefficients. Consider a dif-
ferential equations of the form

ay” +by' + = f(t)
with a, b, ¢ € R constants and a # 0. The function f is called the inhomogeneity. The general solution
is of the form

y(t) = yn(t) + yp(t),
where yj, is the general solution of the homogeneous problem ay” + by’ + ¢ = 0 and y, an arbitrary
solution of the inhomogeneous problem we call a particular solution. To find a particular solution we
often find a solution that has a similar form to the inhomogeneity f. The idea is to determine the
unknown parameters by subsitituion into the differential equations.

Inhomogeneity f(t) Form of particular solution y,(t) (C,D,E,... to be determined)

Aett Cett

A cos(wt) or B cos(wt) Ccos(wt) + Dsin(wt)  (both terms unless there is symmetry)
At C+ Dt

At? Ct?+Dt+E (all terms unless there is symmetry)
polynomial of degree n. polynomial of degree n  (all terms, unless there is symmetry)
f(t) solves the homoge- Ctf(t)

neous equation
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Questions to do before the tutorial

1. Find the general solution of each of the following.

(a)

(b)

d’y | dy

— +4—= -5y =0.

dz? + dx 4

Solution: The auxiliary equation A\?> + 4\ — 5 = 0 has roots A = —5,1, and so the
general solution is y = Ae™5% + Be”.

ey

dt?
Solution: The auxiliary equation A\? + 9 = 0 has complex roots A = +3i, and so the
general solution is y = C cos 3t + D sin 3t.

+ 9y = 0.

d?y  dy 5

2. Consider the second-order non-homogeneous differential equation —5 — 2— + y = x~°.

(a)

dx? dx
Find the general solution of the above differential equation.
Solution: The auxiliary equation A> — 2\ + 1 = 0 has a double root A = 1, and so the
general solution of the homogeneous equation (also called the complementary equation)
is yn, = Ae®” 4+ Bzxe®. For a particular solution, try y, = ax?® + bx + c. Substituting this
into the differential equation gives

2a — 2(2ax + b) + (ax® + bz + ¢) = 2°.
Comparing coefficients of like powers gives a = 1, b — 4a = 0 and 2a — 2b 4+ ¢ = 0, and
hence a =1, b = 4 and ¢ = 6. So a particular solution is y, = 22 + 4z +6, and the general
solution is
y = (A+ Bx)e® + 2% 4 4z + 6.

Find the particular solution of the above differential equation satisfying the initial con-
ditions y(0) = y'(0) = 4.

Solution: The solution above gives y(0) = A+ 6 and y/(0) = A+ B+ 4. So y(0) =4
and y'(0) = 4 imply that A = —2 and B = 2, and so the required particular solution is
=2(z — 1)e® + 2% + 42 + 6.

Questions to complete during the tutorial

3. Find the general solution of each of the following differential equations.

(a)

d’x dx
Solution: The auxiliary equation A\?> — 6\ + 9 = 0 has repeated roots A = 3,3, and so
the general solution is x = Ae3 + Bte?!.

2
% — 6% + 25y = 0.
Solution: The auxiliary equation A> — 6 + 25 = 0 has complex roots A = 3 % 4i, and
so the general solution is y = €3%(C cos 4z + D sin4x).

4. Solve the following equations, giving the general solution and then the particular solution y(x)
satisfying the given boundary or initial conditions.

(a)

y'+4y +5y =0, y(0)=2,4(0)=4

Solution: The auxiliary equation A% + 4\ + 5 = 0 has roots —2 % i, and so the general
solution is y(z) = e~ 2*(C cos x + D sin ), which gives 3/ (z) = e 2*{(D —2C) cos x — (C +
2D)sinz}. Hence y(0) = C and y'(0) = D — 2C, so the initial conditions imply C' = 2
and D = 8, and the particular solution is y(z) = 2e~2%(cos x + 4sin z).



(b)

y' =2y +y=0, y(2)=0,y(2)=1

Solution: The auxiliary equation A> — 2\ 4+ 1 = 0 has one double root A\ = 1, and so
the general solution is y(x) = (A + Bz)e”, which gives y/(z) = (A + B + Bz)e®. Hence
y(2) = (A +2B)e? and y/(2) = (A + 3B)e?, so the initial conditions imply A = —2e~?2
and B = e~2, and the particular solution is y(z) = (z — 2)e* 2.

5. We considered the case of a second order differential equation where the auxiliary equation has

a double root, say Ag. Here we provide an argument why te

Mot ig expected to be a solution. The

differential equation in that case is

y" — 2oy + )\(Q)y = 0.

The idea is to look at a perturbed equation that has two distinct real roots, then obtain the

solution te

(a)

Aot a5 a limit of solutions of the perturbed equation.

Check that e*! and et are solutions to y” — (2Xo + h)y' + Ao(Ao + h)y = 0. Briefly

explain why
€(>\o+h)t _ 6)\0t

h
is a solution of the same perturbed equation.

Solution: The auxiliary equation of the given differential equation is
0=X2—(2X0 + h)A + M(Ao + ) = (A= Xo) (A — (Ao + h)).

Hence the roots are A\g and \g + h and thus e*? and e(0t?t are solutions as required.
According to the superposition principle, also

(Ao+h)t _ Aot
Looorme _ L oaee _ € e

h h h
is a solution as well.

Let h — 0 in the equation as well as the solution given in part (a) and relate it to the
original unperturbed equation. Check that the limit of solutions as A — 0 is a solution
to the limit equation.

Solution: Applying differentiation with respect to A\ from first principles we see that

) e()\o-i-h)t _ 6)\0t d At At
hm —_———— = ——€ = te 0
h—0 h dA A=Xo

If we let h — 0 in the equation y” — (2Xo + h)y’ + Mo(Ao + h)y = 0 we obtain the original
equation y” — 2X\gy’ + Aoy = 0. It is not clear that the limit of solutions is a solution
of the limit equation, but we might expect this anyway. Hence we need to check by
differentiation and subsitution. We have, using the chain rule,

y(t) = te o, Y (t) = e + Agteo!, Y (t) = 20t + Niteol,
We substitute into the equation to obtain

y" —2Xoy’ + Aoy
= (200! + A2ty — 20 (eM0! + Ngteot) + A2tetot
= (200 — 200)eM! + (A2 — 2)2 4+ A2)te!
=0

as expected.



6. First find the general solution of each of the following non-homogeneous second-order differential
equations, and then the particular solution for the given initial conditions.

(a)

y" +3y +2y =6¢', y(0)=1,y(0)=0.
Solution: The auxiliary equation A2 4+ 3\ + 2 = 0 has roots A\ = —1, —2, and so the
general solution of the homogeneous equation is y;, = Ce™ 4+ De™2!. For a particular
solution, try y, = ae’. Substituting this into the differential equation gives a(e’ + 3e +
2e!) = 6e!, which implies & = 1. So a particular integral is Yp = e!, and the general
solution is

y=Cet+ De 2 + ¢t
The solution above gives y(0) = C + D + 1 and y(0) = —C — 2D + 1. So y(0) = 1
and y(0) = 0 imply that C' = —1 and D = 1, and so the required particular solution is
y=—et4e 2L et,
y" + 3y +2y =6e", y(0) =2, y'(0) = L.
Solution: The auxiliary equation and hence the general solution of the homogeneous
equation are the same as in the last part. In this case, however, the non-homogeneous
term is itself a solution of the homogeneous equation and so we will not be able to produce
a particular solution of the form ae~!. The standard procedure in this case is to include
a factor ¢. So a suitable trial solution will take the form y, = ate™'. Substitution into
the differential equation gives a(t — 2)e™ + 3a(1 — t)e~t + 2ate™ = 6e~!, which implies
a = 6. So a particular solution is y, = 6te—t, and the general solution is

y = (6t + C)e '+ De 2.

The solution above gives y(0) = C + D and y(0) = 6 — C —2D. So y(0) = 2 and
y(0) = 1 imply that C = —1 and D = 3, and so the required particular solution is
y = (6t —1)e~t + 3e 2.

For w # 5, find the general solution of the non-homogeneous differential equation,

d2
Eg + 25y = 100 sin wt,

and the particular solution subject to the initial conditions y(0) = 0 and y(0) = 0.

Solution: The auxiliary equation A\2425 = 0 has roots A = £5i, and so the general solu-
tion of the homogeneous equation is y, = C cos 5t + D sin 5¢. Since the non-homogeneous
term is sinusoidal, we try a particular solution of the form, y, = asinwt + 3 coswt. This
will work as long as w # +5, which we assume for the present. Now, we can save our-
selves some trouble by dropping the coswt term in y,. This is permitted because there
is no first-order (or any odd-order) derivative term in the differential equation and be-
cause only a sinwt term appears on the right-hand side. (If you have any doubt about
this, keep the cosine term in y, and find that its coefficient is zero after a calculation.)
Substituting y, = asinwt into the differential equation gives —aw?sinwt 4+ 25asinwt =
100 sinwt, from which it follows that o = 100/(25 — w?). Thus, a particular solution is
yp = 100(25 — w?) " sinwt, and the general solution is

100
y = C'cos bt + Dsin bt + ———— sin wt.
25 — w?

We want the particular solution such that y(0) = ¢(0) = 0. Differentiation of the general

solution gives

y = —5C'sin b5t + 5D cos bt + cos wt.

100w
25 — w?
The initial conditions imply that C = 0 and D = —20w/(25 — w?). Hence the required

particular solution is
100 sin wt — 20w sin 5¢

25 — w?




(b) For w = 5, find a particular solution of the differential equation. Then determine the
particular solution with y(0) = 0 and y(0) = 0.

Solution: In the case w = 5, a solution of the form y, = asinwt + S coswt is a solution
of the homogeneous equation. The standard trick in this case is to include a factor ¢,
in which case y, = atsinbt 4 Btcosdt. As before, we can simplify the problem by a
symmetry argument. Because there is no first-order derivative in the differential equation
and because the forcing term is an odd function, we can get away with restricting ¥, to be
an odd function. Thus y, = fBtcosbt. Its derivatives are g, = S(—5tsin 5t 4 cos 5t) and
iip = B(—25t cos 5t — 10sin bt). Substituting into the differential equation and cancelling
terms shows that 3 = —10. Hence a particular solution is y, = —10tcos5t, and the
general solution is
y = (C — 10t) cos 5t + D sin 5t.

Its derivative is y = (50t — 5C') sin 5t + (5D — 10) cos 5t. The initial conditions are satisfied
by C'=0 and D = 2. Hence the required particular solution is

y = 2sin 5t — 10t cos 5t.

(c) Find the corresponding particular solution of the differential equation for w = 5 by fixing
t in the result of part (a) and taking the limit as w approaches its special value.

Solution: If one puts w = 5 in the result of part (a), the solution becomes a 0/0-type
indeterminate form. L’Hopital’s rule can be used to take the limit w — 5. Here, we
must hold ¢ constant while we take derivatives with respect to w. Thus, in the case of
resonance,

100 sin wt — 20w sin 5¢ I (0/0w) (100 sin wt — 20w sin 5t)

A 25 — w? brar (0/0w) (25 — w?)
100t — 20si 1 — 20si
_ coswt 0sin 5t _ 00t cos 5t 0sin 5t  9gin5t — 10¢ cos 5.
—2w w5 —10

Without L’Hopital’s rule we can use differentiation from first principles. We can write

100 sin wt — 20w sin 5t

y = lim

w—5 25 — w?
. 100sinwt — 100 sin 5t — 20(w — 5) sin 5¢
= lim
w—5 25 — w?

100 sinwt—sin5t+ 20 (5 —w)sinbt
S+w w—2>5 S+w  w—95
w—5 100 d . 20

270 2 D in(wt
s+5dw | st 5 s
= —10t cos(5t) + 2sin 5t

sin bt

which is the same as before. The factor 10t shows that the amplitude grows without
bound.

Extra questions for further practice

8. A rope of length L is suspended at two points A and B and hangs freely in-between in such a
way that it does not move at all. The rope has constant mass density g per unit length, that is,
a section of length ¢ has mass pf. We assume that the rope is perfectly flexible, that is, there
is no bending force.

The only forces acting on the rope are the tension force T' tangent to the rope and the gravita-
tional force in the downwards direction. Denote the unit tangent vector along the rope by .
The height of the rope above ground is given by a function y(x). Denote acceleration due to

gravity by g.



B
A
T(x+ Az)u(z + Ax)
T(x)u(x)
y+ Ay s
Y
—ogAly
z x4+ Ax z

Consider a small section of rope of length A¢ between x and x+ Ax. That section has mass pA/.
We denote the unit vectors in the direction of the z-axis and the y-axis by ¢ and j, respectively.

(a) Using the fact that the sum of all forces on A¢ add up to zero, show that

d

—(T@)u(2)) = 0gv/1 + (v/(2))*5.

Solution: The length of the section A/ is given by Al = /(Az)? + (Ay)?, so its mass
is 04/ (Ax)? + (Ay)?. Hence the gravitational force on A/ is given by

—oV/ (Ax)? + (Ay)?j.

The minus sign comes from the fact that the gravitational force points downwards,
whereas j points upwards. The other forces on Al are the tension forces at the right
and left ends. The tension force at the right end is

T(x 4+ Az)u(x + Ax)

and that at the left end is
—T(z)u(x).

The minus sign comes from the fact that this is a “reaction force” to the section of the
rope pulling to the left. The total force on A¢ must be zero, so

T(z+ Az)u(x + Az) — T(z)u(z) — 0/ (Az)? + (Ay)?j = 0.

If we rearrange and divide by Az we get

T(x + Az)u(x Z:EAJ:) — T(z)u(x) _ it (%)2‘7_.

Letting Ax — 0, using the definition of a derivative, we get the required differential
equation.

(b) Explain why the unit tangent vector w is given by




Solution: The slope of the tangent at every point is given by ¢'(x). Hence the vector
t+14/(x)7 points in the direction of u(x). To get the unit vector we need to divide by the

length which is given by /1 + (¢/(z))?. Hence
1 : y'(x)

= ey Vire@r

By considering the component of the differential equation from (a) in the z-direction,
that is, the direction of ¢, show that

T(x) = Hy1+ (y(x))?
for some constant H. Give a physical interpretation of H.
Solution: According to part (b) the horizontal component of u is given by
1
1+ (y'(z))?

Hence the horizontal component of (a) is given by

Hence, there exists a constant H so that
T(x)
1+ (y(2))?

and therefore T'(z) = H+/1 + (y/(x))? as claimed.
The horizontal component of the tension force is

= H,

T(x)
L+ (y/(2))?

Using the explicit expression of T' the horizontal component of the tension force has the
constant value H.

By considering the component of the differential equation from (a) in the y-direction,
that is, the direction of j, show that

y'(@) = BT+ (@)

Solution: According to part (b) the vertical component of u is given by
y'(x)
1+ (y(x))?
Hence the vertical component of (a) is given by

d ( T(x)y (x)

do \ T+ (y’(:c))2> — vt En

Substituting the solution from (c) we get

d

o (Hy'(v)) = Hy'"(x) = 0gV/1+ (v (2))2.

If we divide by H we get the required differential equation.

7



9.

10.

(e) Find the general solution of the differential equation in (d). Note that the differential
equation is a first order differential equation for z(z) = ¢/(x).

Solution: Rewriting the original differential equation as a differential equation for

2(x) =y (x) we get
dz _ 99 \/7

We first separate variables and erte

dz o9 I

\/1+z H

and integrating we get

09 0933
dx +C.
/ \/1+72 / H

For the integral on the left hand side we use the substitution z = sinh¢. Then dz =
coshtdt. Using that 1 4 sinh®# = cosht we get

cosht cosht

xT
+o= /
itz ) Vizeri ) coht

We do not need a constant as that constant can be merged with C. Alternatively we
could use a table of standard integrals to evaluate the integral. Hence

gg dt =t = sinh™!

z= sinh(% + C).

Next we recall that z = 9/, so

y(x) = /z(x) dr = /smh(H + C’) dr = ZCOSh(H + C)

The cosh curve is often called the catenary. The constants C, D and H could be computed
in terms of the length L the mass density ¢ and the coordinates of A and B, but this is
rather tedious to do for the general situation.

Find the general solution of the differential equation

d*y dy
2J 977 _
a2 g Tov=0

expressing your answer in real form. What is the particular solution satisfying y(0) = 1 and
y(m/4) =27

Solution: The auxiliary equation is A> — 2\ + 5 = 0, which has roots A = 1 4 2i, and so the
general solution is

y = e'(Acos 2t + Bsin2t).
Hence y(0) = E and y(7/4) = e™*F. If y(0) = 1 and y(7/4) = 2 then A =1 and B = 2~ /%,
and hence the particular solution is

y=céel (cos 2t + 2¢ /4 sin 2t).

Solve the following equations, giving the general solution and then the particular solution y(x)
satisfying the given boundary or initial conditions.

(a) 2y" =7y +5y=0, y(0)=1,4(0)=1
Solution: The auxiliary equation 2\ — 7T\ + 5 = 0 has roots 5/2 and 1, and so the
general solution is y(z) = Ae®®/? + Be®, which gives 3/ (z) = (54/2)e®*/? + Be®. Hence
y(0) = A+ B and 4/(0) = (5A/2) + B, so the initial conditions imply A =0 and B =1,
and the particular solution is y(z) = e*.



(b) ¥ +4y +3y=0, y(-2)=1,y12)=1
Solution: The auxiliary equation A24-4A+3 = 0 has roots —1 and —3, and so the general
solution is y(x) = Ae™® + Be 3%, Hence y(—2) = Ae? + Beb and y(2) = Ae 2 + Be 5,
so the boundary conditions imply Ae? + Be® = 1 and Ae™2 4+ Be % = 1. Solving these
simultaneous equations gives

sinh 6 sinh 2
A= =7.391 B=— = —0.132
sinh 4 7.3915, sinh 4 0.1329,

and so the particular solution satisfying the boundary conditions is

y(x) = 7.3915e~% — 0.1329¢ 37,

(c) 2y =2y +5y=0, y(0)=0,y(2) =2
Solution: The auxiliary equation 2A?> — 2\ + 5 = 0 has roots (1 #+ 37)/2, and so the
general solution is y(z) = €*/2{ A cos(3z/2) + Bsin(3z/2)}. Hence y(0) = A, and the first
boundary condition implies A = 0. Thus y(2) = Besin3, and so the second boundary

condition implies B = 2/(esin3) = 5.2137, and hence the particular solution satisfying
the boundary conditions is y(z) = 5.2137¢%/? sin(3z/2).

(d) ¥ =4y +4y=0, y(0)=-2y(1)=0
Solution: The auxiliary equation A?> — 4\ +4 = 0 has one double root m = 2, and
so the general solution is y(z) = (A + Bz)e?*. Hence y(0) = A and the first boundary
condition implies A = —2. Thus y(1) = (—2+B)e?, and so the second boundary condition

implies B = 2, and hence the particular solution satisfying the boundary conditions is
y(z) = 2(x — 1)e?.

11. Find the particular solution of the differential equation y” — 6y’ + 9y = €3? which satisfies the
initial conditions y(0) = 1 and y'(0) = 0.
Solution: The auxiliary equation of the homogeneous problem is A>—6A+9 = (A—3)? = 0. As
A\ = 3 is a double root €3* and ze3* solve the homogeneous equation. Hecne the inhomogeneity
e3! solves the equation. Normally we would find a particular solution of the form Aze3*, but
that is a solution of the homogeneous equation as well. Hence we multiply by another x and
try a particular solution of the form y = Ax?e3*. We note that ¢/(z) = 22A4e3® + 32243 and
y'(z) = 243" + 12Axe3® + 9Az%e3%. Substitution into the equation yields

2463 + 12A2¢3" 4 922 Ae3” — 6(24xe3” 4+ 3A2%37) + 9A2%e3 = 3.
If we cancel e3* # 0 and collect terms according to powers of 2 we obtain

24+ (124 — 12A)z + (94 — 184 +9A)z> =24 =1

1
Hence A = 5 and the general solution is

2

y= (C+Dw+ %)e&”.

To make use of the initial conditions note that

/ 3.I2 3x
y = (36’+3Dm+7+D+x>e .

Hence y(0) = C and 3/(0) = 3C + D. So the conditions y(0) = 1 and 3/(0) = 0 imply that
C =1 and D = —3. Hence, the required particular solution is

2
y= (1 —3.%'4—%)6396.
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