Questions:

1. Let k be a field, A an associative k-algebra and V an A-module. We say that V is \textbf{cyclic} if there is some $v \in V$ such that $Av = V$.

 (a) Show that if V is simple then V is cyclic, but that a nonzero cyclic module need not be simple.

 \textbf{Solution:} For any $v \in V$, Av is an A-submodule of V. So if V is simple, meaning that it is nonzero and its only A-submodules are $\{0\}$ and V, then we must have $Av = V$ for all nonzero elements $v \in V$, not just for one element. (Conversely, if V is nonzero and $Av = V$ for all nonzero elements $v \in V$, then any nonzero A-submodule of V must be the whole of V, so V is simple.)

 For an example of a nonzero cyclic non-simple module, take $A = k[x]$, $V = k^2$ with x acting by the matrix $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. With $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, we have $xv = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so Av contains both elements of the standard basis of V and hence equals the whole of V. Thus V is cyclic. But $k[0]$ is a nontrivial submodule, so V is not simple.

 (b) Give an example to show that an indecomposable module need not be cyclic.

 \textbf{Solution:} Take $A = k[x, y]$, $V = k^3$ with x acting by the matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and y acting by the matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$; it is easy to see that these two matrices commute. For any $v \in V$, Av is contained in the span of v and $k\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, so it can never equal the whole of V. Thus V is not cyclic. To show that V is indecomposable, we assume that $V = V_1 \oplus V_2$ is a decomposition into nonzero A-submodules, and seek a contradiction. Since $\dim V = 3$, either V_1 or V_2 must be one-dimensional; without loss of generality, say $V_1 = kv_1$ for some nonzero $v_1 \in V$. Then the fact that V_1 is an A-submodule implies that $xv_1 \in kv_1$ and $yv_1 \in kv_1$, so v_1 is an eigenvector for both matrices. These matrices have 0 as their only eigenvalue, and the intersection of their 0-eigenspaces is $k\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, so $V_1 = k\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Now for any $v \in V_2$ we have $xv \in V_1$ by the form of the matrix for x, and $xv \in V_2$ because V_2 is an A-submodule; since $V_1 \cap V_2 = \{0\}$, this forces $xv = 0$, and similarly $yv = 0$. Thus v belongs to the intersection of the 0-eigenspaces, which is V_1 as we have seen, and we get the contradictory conclusion that $V_2 \subseteq V_1$.

 (c) In this part, take $A = k[x]$. Let V be an n-dimensional $k[x]$-module, and let $X \in \text{End}(V)$ be the linear transformation by which x acts. Show that if V is cyclic, the minimal polynomial of X equals its characteristic polynomial.
Solution: Let $m(x) \in k[x]$ be the minimal polynomial of X; by definition, this is the unique monic polynomial which satisfies the properties that $m(X) = 0$ and $m(x) \mid p(x)$ for any $p(x) \in k[x]$ such that $p(X) = 0$. In other words, $m(x)$ generates the kernel of the representation $\rho : k[x] \to \text{End}(V)$ defined by $\rho(x) = X$: this kernel is an ideal of the principal ideal domain $k[x]$, so it has to have a single generator (and the kernel is nonzero because $\text{End}(V)$ is finite-dimensional whereas $k[x]$ is infinite-dimensional, so $m(x)$ is nonzero and can thus be chosen to be monic).

Let $\chi(x) \in k[x]$ be the characteristic polynomial of X; by definition, this equals $\det(x \text{id}_V - X)$, so it is monic of degree n. By the Cayley–Hamilton theorem, $\chi(X) = 0$, so $m(x) \mid \chi(x)$.

For any $v \in V$, we can consider the $k[x]$-module homomorphism, where $k[x]$ is regarded as a $k[x]$-module via the regular representation. So its kernel is a $k[x]$-submodule of $k[x]$, i.e. an ideal (there is no need to say left ideal, since $k[x]$ is commutative), which again must have a single generator, say $m_v(x)$. Since $m(X) = 0$, we have $m(x)v = 0$ for all $v \in V$, so $m(x)$ is a multiple of $m_v(x)$ for all $v \in V$.

If V is cyclic, there is some $v \in V$ such that the image of φ_v is all of V. By the fundamental theorem, this implies $\dim k[x]/k[x]m_v(x) = n$. But $\dim k[x]/k[x]m_v(x)$ equals the degree of $m_v(x)$, so $m_v(x)$ has degree n. Hence $m(x)$, which is a multiple of $m_v(x)$, has degree at least n. Then the divisibility $m(x) \mid \chi(x)$ must be an equality $m(x) = \chi(x)$, as required.

The converse of this result is also true: if $m(x) = \chi(x)$, then there exists some $v \in V$ such that $k[x]v = V$. This requires a bit more theory to prove (specifically, the theory of rational canonical forms).

Recall that if k is algebraically closed, we can find a basis of V relative to which the matrix of X is in Jordan canonical form. The condition that $m(x) = \chi(x)$ is then equivalent to the condition that there is a single Jordan block for each eigenvalue. For example, in the special case that X is diagonalizable, the condition is that X has n distinct eigenvalues.

2. Let k be a field and let A be the associative algebra generated over k by elements x, y with the defining relation $xy - yx = y$. In other words, $A \cong k(x, y)/I$ where I is the two-sided ideal of $k(x, y)$ generated by $xy - yx - y$.

(a) Take $k = \mathbb{C}$. Let V be a finite-dimensional A-module on which x, y act via the linear transformations X, Y. Recall that V is the direct sum of the generalized eigenspaces $V_{\lambda, \text{gen}}^X$ of X as λ runs over \mathbb{C}. Show that

$$V_{\lambda}^Y \subseteq V_{\lambda+1}^X$$

for all $\lambda \in \mathbb{C}$.

Solution: The given relation $xy - yx - y$ implies that $(x - (\lambda + 1))y = y(x - \lambda)$. Applying this repeatedly we deduce that $(x - (\lambda + 1))^m y = y(x - \lambda)^m$ for all $m \in \mathbb{N}$. If $v \in V_{\lambda, \text{gen}}^X$ then $(x - \lambda)^m v = 0$ for some m, so

$$(x - (\lambda + 1))^m y v = y(x - \lambda)^m v = 0,$$

meaning that $yv \in V_{\lambda+1}^X$ as required.
(b) Hence or otherwise show that, when \(k = \mathbb{C} \), any simple finite-dimensional \(A \)-module must be one-dimensional.

Solution: Let \(V \) be a nonzero finite-dimensional \(A \)-module and define \(X, Y \in \text{End}(V) \) as in the previous part. Since \(X \) has only finitely many eigenvalues, there is some eigenvalue \(\lambda \) of \(X \) such that \(\lambda + 1 \) is not an eigenvalue. Let \(v \) be a \(\lambda \)-eigenvector of \(X \); thus \(xv = \lambda v \). By the previous part we have \(yv \in V_{\lambda+1}^{X,\text{gen}} \) which is zero, so \(yv = 0 \). Thus \(\mathbb{C}v \) is preserved by both \(X \) and \(Y \), hence it is an \(A \)-submodule. If \(V \) is simple, we can conclude that \(V = \mathbb{C}v \), so \(V \) is one-dimensional.

(c) Show by example that the conclusion of the previous part need not hold if \(k \) is an arbitrary field.

Solution: If we suppose that \(k \) has characteristic 2, then we have a two-dimensional \(A \)-module \(k^2 \) where \(x, y \) act as multiplication by the following matrices:

\[
x : \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad y : \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

It is easy to check that the relation \(xy - yx = y \) is respected, using the fact that \(-1 = 1 \). This is a simple module because any one-dimensional submodule would have to be spanned by a common eigenvector of these two matrices, and it is clear that the eigenspaces for the first matrix are interchanged by the second.

3. Take \(k = \mathbb{C} \) and let \(n \) be a positive integer. Let \(A \) be the **Clifford algebra** over \(\mathbb{C} \) generated by \(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \) with the following defining relations, for all \(i, j \):

\[
x_i x_j + x_j x_i = 0,
\]

\[
y_i y_j + y_j y_i = 0,
\]

\[
x_i y_j + y_j x_i = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise}. \end{cases}
\]

You can take for granted the fact that \(A \) is spanned by the \(2^{2n} \) elements

\[
x_1^{a_1} \cdots x_n^{a_n} y_1^{b_1} \cdots y_n^{b_n}, \quad \text{where } a_i, b_i \in \{0, 1\} \text{ for each } i.
\]

This is fairly obvious, since you can use the defining relations to reorder the terms in any monomial in the generators, and the relations entail that \(x_i^2 = y_i^2 = 0 \) for all \(i \). It will follow from this exercise that these \(2^{2n} \) elements in fact form a basis for \(A \), which is less clear in advance.

Let \(V \) be a \(2^n \)-dimensional vector space over \(\mathbb{C} \) with basis \(\{v_K \mid K \subseteq \{1, \ldots, n\}\} \) indexed by the subsets of \(\{1, \ldots, n\}\). Define linear transformations \(X_i, Y_i \) of \(V \) for all \(i \in \{1, \ldots, n\} \) by the following rules:

\[
X_i(v_K) = \begin{cases} 0, & \text{if } i \in K, \\ (-1)^{a(i,K)} v_{K \cup \{i\}}, & \text{if } i \notin K, \end{cases}
\]

\[
Y_i(v_K) = \begin{cases} (-1)^{a(i,K)} v_{K \setminus \{i\}}, & \text{if } i \in K, \\ 0, & \text{if } i \notin K, \end{cases}
\]
where \(a(i, K) \) denotes the number of elements of \(K \) which are less than \(i \).

You can take for granted the easy fact that these linear transformations satisfy the defining relations of the Clifford algebra, i.e. \(X_i X_j + X_j X_i = 0 \) and so forth. Hence there is an algebra homomorphism \(\rho : A \to \text{End}(V) \) sending \(x_i \) to \(X_i \) and \(y_i \) to \(Y_i \), which makes \(V \) into an \(A \)-module. Let \(B \) denote the subalgebra of \(A \) generated by the elements \(x_i y_i \) for all \(i \); then we can also consider \(V \) as a \(B \)-module.

(a) Show that \(V \) is the direct sum of pairwise non-isomorphic simple \(B \)-modules.

Solution: By definition, \(V \) is the direct sum of the one-dimensional subspaces \(\mathbb{C}v_K \) as \(K \) runs over all subsets of \(\{1, \ldots, n\} \). Note that for all \(i \) and \(K \) we have

\[
X_i Y_i(v_K) = \begin{cases} v_K, & \text{if } i \in K, \\ 0, & \text{if } i \notin K. \end{cases}
\]

So each one-dimensional subspace \(\mathbb{C}v_K \) is stable under the action of \(x_i y_i \) for all \(i \), and is hence a \(B \)-submodule of \(V \), and obviously simple as a \(B \)-module.

Moreover, these \(B \)-modules \(\mathbb{C}v_K \) are pairwise non-isomorphic, because if we have a \(B \)-module isomorphism \(\mathbb{C}v_K \cong \mathbb{C}v_{K'} \) then for all \(i \) the scalar by which \(x_i y_i \) acts on \(\mathbb{C}v_K \) must equal the scalar by which it acts on \(\mathbb{C}v_{K'} \), which forces the conditions \(i \in K \) and \(i \in K' \) to be equivalent, i.e. \(K = K' \).

(b) Show that \(V \) is a simple \(A \)-module.

Solution: Suppose that \(U \) is an \(A \)-submodule of \(V \). Then \(U \) is also a \(B \)-submodule of \(V \). As seen in the previous part, \(V \) is the direct sum of the one-dimensional simple \(B \)-submodules \(\mathbb{C}v_K \), which are pairwise non-isomorphic. By the description of submodules of a semisimple module given in lectures, this implies that \(U \) is the sum of some subset of the subspaces \(\mathbb{C}v_K \), i.e. \(U \) is spanned by a subset of the basis \(\{v_K\} \) of \(V \).

Suppose that \(U \neq \{0\} \). Then \(U \) must contain at least one of the basis vectors \(v_K \). It is clear from the definition of \(X_i \) and \(Y_i \) that, using a suitable composition of these linear transformations, we can map \(v_K \) to any one of the other basis vectors \(v_{K'} \), up to sign (we use the \(X_i \)'s to add elements to \(K \) and the \(Y_i \)'s to remove elements, until we reach \(K' \)). So \(U \), being stable under all the \(X_i \) and \(Y_i \), must contain all of the basis vectors and hence equals \(V \). This shows that \(V \) is a simple \(A \)-module.

(c) Deduce that \(\rho : A \to \text{End}(V) \) is an isomorphism of algebras.

Solution: Since \(V \) is a simple \(A \)-module and \(\mathbb{C} \) is algebraically closed, the Density Theorem implies that \(\rho : A \to \text{End}(V) \) is surjective. Hence \(\dim A \geq \dim \text{End}(V) = (2^n)^2 = 2^{2n} \), but from the given spanning set we know that \(\dim A \leq 2^{2n} \), so in fact \(\dim A = 2^{2n} = \dim \text{End}(V) \). A surjective linear map between vector spaces of the same finite dimension must be bijective, so \(\rho \) is an algebra isomorphism.

The conclusion is that \(A \cong \text{End}(V) \cong \text{Mat}_{2^n} (\mathbb{C}) \).