SMS scnews item created by Stephan Tillmann at Wed 25 Mar 2015 0956
Type: Seminar
Distribution: World
Expiry: 24 Jun 2015
Calendar1: 26 Mar 2015 1200-1300
CalLoc1: Carslaw 535A
Auth: tillmann@p710.pc (assumed)

Geometry & Topology

Deformations of the peripherial map for knot complements

Peter Samuelson (Toronto)


Thursday 26 March 2015 from 12:0013:00 in Carslaw 535A

Please join us for lunch at the Grandstand after the talk!

Abstract: Deformations of the peripherial map for knot complements Abstract: The space \(Rep(M)\) of representations of the fundamental group \(\pi_1(M)\) of a 3-manifold M into \(SL_2(\mathbb{C})\) has played an important role in the study of 3-manifolds. If \(M = S^3 \setminus K\) is the complement of a knot in the 3-sphere, then there is a map \(Rep(M) \to Rep(T^2)\) given by restricting representations to the boundary. There is a natural deformation \(X(s,t)\) of the space \(Rep(T^2)\) depending on two complex parameters which comes from a "double affine Hecke algebra." We will discuss some background and then describe a conjecture that the map \(Rep(M) \to Rep(T^2)\) has a canonical deformation to a map \(Rep(M) \to X(s,t)\). (This is joint work with Yuri Berest.)

ball Calendar (ICS file) download, for import into your favourite calendar application
ball UNCLUTTER for printing
ball AUTHENTICATE to mark the scnews item as read
School members may try to .