THE VANISHING DISCOUNT PROBLEM FOR SYSTEMS OF HAMILTON-JACOBI EQUATIONS

Hitoshi Ishii

Tsuda University
(Waseda University)

Asia-Pacific Analysis and PDE seminar. May 18, 2020
Vanishing discount problem

Convex, coercive HJ equations

Ergodic problem

An approach to Theorem 3

Systems of HJ equations

Appendix
Vanishing discount problem

Scalar Case: We consider the Hamilton-Jacobi equation

\[(P_\lambda) \quad \lambda v(x) + H(x, Dv(x)) = 0 \quad \text{in } \mathbb{T}^n.\]

Here

\[
\begin{cases}
 v = v^\lambda \quad \text{the unknown function on } \mathbb{T}^n, \\
 Dv = (v_{x_1}, \ldots, v_{x_n}), \\
 \lambda > 0 \quad \text{a given constant, discount factor,} \\
 H \quad \text{a given function of } (x, p) = (x, Dv(x)).
\end{cases}
\]

Problem: asymptotic behavior of v^λ as $\lambda \to 0$.

p.1
Convex, coercive HJ equations

Hypotheses:

(H0) Continuity: \(H \in C(\mathbb{T}^n \times \mathbb{R}^n) \).

(H1) \(H \) is convex,
\[
p \mapsto H(x, p) \text{ is convex.}
\]

(H2) \(H \) is coercive,
\[
\lim_{|p| \to \infty, x \in \mathbb{T}^n} \min H(x, p) = \infty.
\]

Property of \(H \):
\[
H(x, p) \geq \delta |p| - C \quad (\exists \delta > 0, \exists C > 0).
\]

Example: \(H(x, p) = |p|^m - f(x), \ m \geq 1, \ f \in C(\mathbb{T}^n) \).
Theorem 1 For each $\lambda > 0$ problem (P_λ) has a unique solution v^λ. Furthermore,

$$(\lambda v^\lambda)_{\lambda > 0} \text{ is uniformly bounded},$$

$$(v^\lambda)_{\lambda > 0} \text{ is equi-Lipschitz continuous}.$$

- If $C_0 \geq |H(x, 0)|$, then

$$\lambda(C_0/\lambda) + H(x, 0) \geq 0, \quad \lambda(-C_0/\lambda) + H(x, 0) \leq 0,$$

and, by comparison, $-C_0/\lambda \leq v^\lambda(x) \leq C_0/\lambda$.

- Since $H(x, p) \geq \delta|p| - C$, we have

$$\delta|Dv^\lambda(x)| \leq C + \lambda\|v^\lambda\|_\infty.$$
Notation. Lagrangian of H:

$$L(x, \xi) := \sup_{p \in \mathbb{R}^n} [\xi \cdot p - H(x, p)].$$

Properties: L is convex and lower semicontinuous on $\mathbb{T}^n \times \mathbb{R}^n$.

- $L(x, \xi) \geq -H(x, 0),$
- $L(x, \xi) \geq A|\xi| - H(x, A\xi/|\xi|)$
 $$\geq A|\xi| - \max_{|p| \leq A} H(x, p) \quad \forall A > 0,$$
- $L(x, \xi) \leq \sup_p (|\xi||p| - \delta |p| + C) = C \quad \forall \xi \in B_\delta.$$

Recall here that $H(x, p) \geq \delta |p| - C$.

p.4
Ergodic problem

Formal expansion of the solution of \((P_\lambda)\):

\[
v^\lambda(x) \approx a_0(x)\lambda^{-1} + a_1(x) + a_2(x)\lambda + \cdots.
\]

Plug this into \((P_\lambda)\):

\[
a_0(x) + a_1(x)\lambda + a_2(x)\lambda^2 + \cdots
+ H(x, Da_0(x)\lambda^{-1} + Da_1(x) + Da_2(x)\lambda + \cdots) \approx 0.
\]

We deduce that

\[
Da_0(x) = 0 \quad \text{i.e.} \quad a_0(x) \equiv a_0 \quad \text{(constant)},
\]

\[
a_0 + H(x, Da_1(x)) = 0.
\]

The ergodic problem or additive eigenvalue problem:
The problem of finding a constant $c \in \mathbb{R}$ and a function $u \in C(\mathbb{T}^n)$ satisfying
\[(E) \quad H(x, Du(x)) = c \quad \text{in } \mathbb{T}^n.
\]
A classical result:

Theorem 2 (Lions-Papanicolaou-Varadhan, 1987)

Under (H0), (H2), there exists a solution $(c, u) \in \mathbb{R} \times C(\mathbb{T}^n)$ of (E). Moreover, the constant c is unique.

- The constant c is called the **critical value**, additive eigenvalue, or **ergodic constant**.

Their proof is to show that for some $(c, u) \in \mathbb{R} \times C(\mathbb{T}^n)$,

\[
\begin{align*}
-\lambda v^\lambda(x) & \to c \quad \text{uniformly on } \mathbb{T}^n, \\
v^\lambda(x) + \lambda^{-1}c & \to u(x) \quad \text{uniformly on } \mathbb{T}^n
\end{align*}
\]

along a subsequence.
Main question: does the whole family \(\{v^\lambda + \lambda^{-1}c\}_{\lambda > 0} \) converge to a function as \(\lambda \to 0^+ \)?

- The ergodic problem (E) has multiple solutions. If \(u \) is a solution of (E), then \(u + \text{const} \) is a solution. Consider the case

\[
Du \cdot (Du - D\psi) = 0 \quad \text{in} \quad \mathbb{T}^n, \quad \text{with} \quad \psi \in C^1(\mathbb{T}^n).
\]

We have many solutions:

\[
u = C_1, \quad u = \psi + C_2, \quad u = \min\{C_1, \psi + C_2\}.
\]
● Ergodic problem (E) arises in the ergodic optimal control, the homogenization of HJ equations, and the large-time behavior of solutions of evolutionary HJ equations.

A decisive result on the main question:

Theorem 3 (Davini-Fathi-Iturriaga-Zavidovique, 2016)

Assume (H0)–(H2). Let c be the critical value. Then, for some function $v^0 \in C(\mathbb{T}^n)$, as $\lambda \to 0+$,

$$v^\lambda(x) + \lambda^{-1}c \to v^0(x) \text{ in } C(\mathbb{T}^n).$$

● If H is not convex, the convergence of the whole family does not hold in general. A counterexample by B. Ziliotto (2019).
Related work:
1) A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Coercive, convex HJ equation on \mathbb{T}^n (closed manifold).
2) E. S. Al-Aidarous, E. O. Alzahrani, HI, A. M. M. Younas, Coercive, convex HJ equation on a bounded domain with the Neumann type BC.
3) H. Mitake, H. V. Tran
Viscous HJ equation on \mathbb{T}^n, with coercive and convex Hamiltonian. (2nd-order degenerate elliptic PDEs.)
4) D. Gomes, H. Mitake, H. V. Tran
Coercive, quasi-convex HJ equation on \mathbb{T}^n.
5) HI, H. Mitake, H. V. Tran,
2nd-order fully nonlinear, convex, degenerate elliptic PDEs on \mathbb{T}^n or on a bounded domain with BC.
6) B. Ziliotto,
A counterexample, with non-convex Hamiltonian.
● Use of Mather measures.
An approach to Theorem 3

We review the proof of Theorem 3 (Davini et al.).

\[\mathcal{P} = \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n) \text{ all Borel probability measures on } \mathbb{T}^n \times \mathbb{R}^n. \]

\[\mathcal{P}_1 = \mathcal{P}_1(\mathbb{T}^n \times \mathbb{R}^n) \text{ all } \mu \in \mathcal{P} \text{ such that } \]

\[\langle \mu, |\xi| \rangle := \int_{\mathbb{T}^n \times \mathbb{R}^n} |\xi| \mu(dx d\xi) < \infty. \]

(The function \((x, \xi) \mapsto |\xi|\) is denoted by \(|\xi|\))

Fix \((z, \lambda) \in \mathbb{T}^n \times [0, \infty)\).

\[\mathcal{E}(z, \lambda) \text{ (closed measures)} \]

\[:= \{ \mu \in \mathcal{P}_1 \mid \lambda \psi(z) = \langle \mu, \xi \cdot D\psi + \lambda \psi \rangle \ \forall \psi \in C^1(\mathbb{T}^n) \}. \]

Note that

\[\lambda u(x) + H(x, Du(x)) = \sup_{\xi} (\lambda u(x) + \xi \cdot Du(x) - L(x, \xi)). \]
When $\lambda = 0$, the defining condition reads

$$0 = \langle \mu, \xi \cdot D\psi \rangle \quad \forall \psi \in C^1(\mathbb{T}^n).$$

So, we write $\mathcal{C}(0)$ for $\mathcal{C}(z, 0)$.

Theorem 4 Assume (H0)–(H2). If $\lambda > 0$, then

$$\lambda v^\lambda(z) = \min_{\mu \in \mathcal{C}(z, \lambda)} \langle \mu, L \rangle.$$

- Any minimizer μ of the optimization problem above is called a discounted Mather measure. $\mathcal{M}(z, \lambda) = \mathcal{M}(z, \lambda, L)$.

Theorem 5 Assume (H0)–(H2). Let c be the critical value. Then

$$-c = \min_{\mu \in \mathcal{C}(0)} \langle \mu, L \rangle.$$
Any minimizer μ of the optimization problem
\[
\min_{\mu \in \mathcal{E}(0)} \langle \mu, L \rangle.
\]
is called a Mather measure. $\mathcal{M} = \mathcal{M}(L)$.

We assume henceforth that $c = 0$. (Replace H by $H - c$ if needed.)
The family $(v^\lambda)_{\lambda > 0}$ is equi-Lipschitz and uniformly bounded on \mathbb{T}^n (\Rightarrow relatively compact in $C(\mathbb{T}^n)$ by A^2 theorem).

(Uniform boundedness) Let $v_0 \in C(\mathbb{T}^n)$ be a solution of (E).
Let $C > 0$ be a constant such that $\|v_0\|_\infty \leq C$, and note that $v_0 + C$ (resp. $v_0 - C$) is a supersolution (resp. a subsolution) of (P_λ).

By the comparison theorem, which is valid for (P_λ) with $\lambda > 0$,
\[
v_0 - C \leq v^\lambda \leq v_0 + C \quad \forall \lambda > 0.
\]
all accumulation points of \((v^\lambda)_{\lambda>0}\) in \(C(\mathbb{T}^n)\) as \(\lambda \to 0+\).

By the observation above, \(\mathcal{V} \neq \emptyset\).

To show Theorem 3 (Davini et al.), it is enough to prove that \(#(\mathcal{V}) \leq 1\).

The main part of the proof (Theorem 3):

(Claim 1) \(\langle \mu, v \rangle \leq 0\) \quad \forall v \in \mathcal{V}, \forall \mu \in \mathcal{M}\).

(Claim 2) For \(\forall v, w \in \mathcal{V}, \forall z \in \mathbb{T}^n, \exists \mu \in \mathcal{M}\) s.t.

\[
w(z) \leq v(z) + \langle \mu, w \rangle.
\]

Claims 1 and 2 show that \(v, w \in \mathcal{V} \Rightarrow v = w\). I.e., \(#\mathcal{V} \leq 1\).

Proof (sketch) of Claims 1 and 2

p.13
Davini et al. have obtained two representations of the limit function of \((v^\lambda)\). Here is one of them.

Theorem 6 Assume \((H0)-(H2)\) and that \(c = 0\). Let \(v^0 \in C(\mathbb{T}^n)\) be the limit function of \((v^\lambda)\), that is,

\[
v^0 = \lim_{\lambda \to 0^+} v^\lambda \quad \text{in} \quad C(\mathbb{T}^n).
\]

Then

\[
v^0(x) = \max\{w(x) \mid w \in \mathcal{S}, \langle \mu, w \rangle \leq 0 \forall \mu \in \mathcal{M}\},
\]

where \(\mathcal{S}\) denotes the set of all solutions of \((E)\).
Remarks. Davini et al. have proved Theorem 4 by using techniques from optimal control or dynamical systems (value functions, the Hopf-Lax-Oleinik formula). Mitake-Tran use the adjoint method introduced by L. C. Evans. Mitake-Tran-HI use the convex duality argument similar to those used by Gomes (Duality principles for fully nonlinear elliptic equations, 2005) and Mikami-Thieullen (Duality theorem for the stochastic optimal control problem, 2006). A feature of this approach by Mitake-Tran-HI is that it belongs to functional analysis and is easily adopted to different situations, for instance, 2nd-order elliptic equations, nonlocal equations, systems of PDEs without going into detailed studies of the underlying dynamics. Siconolfi-HI use the convex duality in the form of the Hahn-Banach theorem.
The measures $\mu \in \bigcup_{z,\lambda} \mathcal{M}(z, \lambda, L)$ are supported in a common compact subset of $\mathbb{T}^n \times \mathbb{R}^n$. This is a consequence of the fact that $\sup_{\lambda > 0} \|Dv^\lambda\|_\infty < \infty$ (equi-Lipschitz). The set $\bigcup_{z,\lambda} \mathcal{M}(z, \lambda, L)$ is relatively compact in the topology of the weak convergence in the sense of measures.
Systems of HJ equations

Some recent results with Liang Jin.

The problem is now the \(m \)-system

\[
\begin{align*}
\lambda v_1^\lambda + H_1(x, Dv_1^\lambda, v^\lambda) &= 0 \quad \text{in } \mathbb{T}^n, \\
\vdots & \\
\lambda v_m^\lambda + H_m(x, Dv_m^\lambda, v^\lambda) &= 0 \quad \text{in } \mathbb{T}^n.
\end{align*}
\]

We write for the system above simply

\[(P_\lambda) \quad \lambda v^\lambda + H(x, Dv^\lambda, v^\lambda) = 0 \quad \text{in } \mathbb{T}^n,
\]

where \(v^\lambda = (v_i^\lambda) \) and \(H = (H_i) \).

Assume

(1) \(H_i \in C(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{R}^m) \).

(2) \(H_i \) is coercive, that is,

\[
\lim_{|p| \to \infty} H_i(x, p, u) = \infty \quad \text{uniformly for } (x, u) \in \mathbb{T}^n \times B_R^m, \ \forall R > 0.
\]
(3) \((p, u) \mapsto H_i(x, p, u)\) is convex for any \(x \in \mathbb{T}^n\).

(4) \(H = (H_i)\) is monotone, that is, for \(u, v \in \mathbb{R}^m\),

\[(u-v)_k = \max_i (u-v)_i \geq 0 \implies H_k(x, p, u) \geq H_k(x, p, v).\]

(5) \(H(x, Du, u) = 0\) has a solution \(u \in C(\mathbb{T}^n)^m\).

Theorem 7 Assume (1)-(5) above. Then, as \(\lambda \to 0^+\), we have

\[v^\lambda \to v^0 \text{ in } C(\mathbb{T}^n)^m\]

for some \(v^0 \in C(\mathbb{T}^n)^m\).

Davini-Zavidovique (2019) have studied the case where the coupling is linear and the coupling coefficients are constants.
Examples (coupling)

(E1) \[
\begin{align*}
\lambda u_1 + |D u_1| + u_1 - u_2 &= f_1(x), \\
\lambda u_2 + |D u_2|^2 + u_2 - u_1 &= f_2(x).
\end{align*}
\]

(E2) \[
\begin{align*}
\lambda u_1 + |D u_1| + (u_1 - u_2)^+ &= f_1(x), \\
\lambda u_2 + |D u_2| + (u_2 - u_1)^+ &= f_2(x).
\end{align*}
\]

(E3) \[
\begin{align*}
\lambda u_1 + |D u_1| + u_1 &= f_1(x), \\
\lambda u_2 + |D u_2|^2 + u_2 &= f_2(x).
\end{align*}
\]
Some ideas for the proof.

- Set $\mathbb{I} = \{1, \ldots, m\}$ and

$$L_i(x, \xi, \eta) = \sup_{(p,u)} [\xi \cdot p + \eta \cdot u - H_i(x, p, u)],$$

$$Y_i = \{\eta \in \mathbb{R}^m \mid \sum_{j \in \mathbb{I}} \eta_j \geq 0, \, \eta_j \leq 0 \text{ for } j \neq i\}.$$

Theorem 8 Assume (1)–(3). Then,

H monotone $\iff L_i(x, \xi, \eta) = \infty$ for $\eta \in \mathbb{R}^m \setminus Y_i$
• When $\lambda > 0$, we set $T^\lambda(\eta) = 1 + \lambda^{-1} \sum_j \eta_j$ for $\eta \in \mathbb{R}^m$.

Note that

$$T^\lambda(\eta) \geq 1 \quad \forall \eta \in Y_i, \; i \in \mathbb{I},$$

$$H^\lambda_{\phi+\lambda}T^\lambda_1(x, D(u + 1), u + 1) = H^\lambda_\phi(x, Du, u),$$

where $1 = (1, \ldots, 1) \in \mathbb{R}^m$ and

$$H^\lambda_\phi(x, pu) = \left(\lambda u_i + \sup_{(\xi, \eta)} (\xi \cdot + \eta \cdot u - \phi_i(x, \xi, \eta))\right)_{i \in \mathbb{I}}.$$

$\mathcal{P}(\lambda)$ the set of collections $\mu = (\mu_i)_{i \in \mathbb{I}}$ of nonnegative Borel measures μ_i on $\mathbb{T}^n \times \mathbb{R}^n \times Y_i$ such that

$$\langle \mu_i, |\xi| + |\eta| \rangle < \infty \quad \forall i \in \mathbb{I} \quad \text{and} \quad \sum_{i \in \mathbb{I}} \langle \mu_i, T^\lambda \rangle = 1.$$

$\mathcal{P}(0)$ the set of collections $\mu = (\mu_i)$ of nonnegative Borel measures μ_i on $\mathbb{T}^n \times \mathbb{R}^n \times Y_i$ such that

$$\langle \mu_i, |\xi| + |\eta| \rangle < \infty \quad \text{and} \quad \sum_{i \in \mathbb{I}} \langle \mu_i, 1 \rangle \leq 1.$$
Fix \((z, k, \lambda) \in \mathbb{T}^n \times I \times [0, \infty)\).

\(\mathcal{C}(z, k, \lambda)\), closed measures all \(\mu = (\mu_i) \in \mathcal{P}(\lambda)\) such that

\[
\lambda \psi_k(z) = \sum_{i \in I} \langle \mu_i, \xi \cdot D\psi_i + \eta \cdot \psi + \lambda \psi_i \rangle \quad \forall \psi \in C^1(\mathbb{T}^n)^m.
\]

Theorem 9 Assume (1)–(4). Then, if \(\lambda > 0\),

\[
\lambda v^\lambda_k(z) = \min_{\mu \in \mathcal{C}(z, k, \lambda)} \sum_{i \in I} \langle \mu_i, L_i \rangle.
\]

Discounted Mather measures \(\mathcal{M}(z, k, \lambda)\).

Proof (sketch). We have \(\|(v^\lambda, Dv^\lambda)\|_\infty < \infty\), We may assume that for some \(R > 0\),

\[
\begin{cases}
L_i(x, \xi, \eta) = +\infty & \text{if } (\xi, \eta) \notin K_i, \\
L_i \in C(\mathbb{T}^n \times K_i),
\end{cases}
\]

where

\[
K_i = \overline{B}_R^n \times (\overline{B}_R^m \cap Y_i), \quad i \in \mathbb{I}.
\]
\(\mathcal{F}(\lambda) \) all pairs \(u = (u_i)_{i \in I} \in C(\mathbb{T}^n)^m \) and
\(\phi = (\phi_i)_{i \in I} \in \prod_{i \in I} C(\mathbb{T}^n \times K_i) \) such that

\[
\lambda u(x) + H_\phi(x, Du(x), u(x)) \leq 0 \quad \text{in } \mathbb{T}^n,
\]

where \(H_\phi = (H_{\phi,i})_{i \in I} \) and

\[
H_{\phi,i}(x, p, v) = \max_{(\xi, \eta) \in K_i} [p \cdot \xi + v \cdot \eta - \phi_i(x, \xi, \eta)].
\]

Our claim now is: Theorem 9 holds when we replace \(\mathcal{C}(z, k, \lambda) \) by \(\mathcal{C}_K(z, k, \lambda) := \{ \mu = (\mu_i) \in \mathcal{C}(z, k, \lambda) \mid \text{supp } \mu_i \subset \mathbb{T}^n \times K_i \} \).

Similarly, \(\mathcal{P}_K(\lambda) \) for \(\lambda \geq 0 \).
Set

\[\mathcal{G}(z, k, \lambda) = \{ \phi - \lambda u_k(z) T^\lambda \mathbf{1} \mid (u, \phi) \in \mathcal{F}(\lambda) \}, \]

where \(\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^m \).

This is a closed convex cone in \(\prod_{i \in \mathbb{I}} C(\mathbb{T}^n \times K_i) \) with vertex at the origin.

Theorem 10 Let \((z, k, \lambda) \in \mathbb{T}^n \times \mathbb{I} \times (0, \infty) \) and \(\mu \in \mathcal{P}_K(\lambda) \). Then, \(\mu \in \mathcal{C}_K(z, k, \lambda) \) if and only if

\[\sum_{i \in \mathbb{I}} \langle \mu_i, g_i \rangle \geq 0 \quad \forall g = (g_i) \in \mathcal{G}(z, k, \lambda). \]
Proof (pictorial) \((\exists \nu \in \mathcal{M}(z, k, \lambda))\)

\[G(z, k, \lambda) \]

\[t(L - \lambda \nu_k(z)T^\lambda 1), \ t \geq 0 \]

\[\prod_{i \in I} C(\mathbb{T}^n \times K_i) \]

p.25
Thank you for your attention!
Appendix
Theorem 11 Let $\chi, u \in C(\mathbb{T}^n)$. Let $(z, \lambda) \in \mathbb{T}^n \times [0, \infty)$. Assume (H0)–(H2) and that u is a subsolution of $\lambda u + H(x, Du) = \chi$ in \mathbb{T}^n. Then

$$\lambda u(z) \leq \langle \mu, L + \chi \rangle \quad \forall \mu \in \mathcal{C}(z, \lambda).$$

Proof (sketch). Assume that $u \in C^1$. Then

$$\lambda u(x) + \xi \cdot Du(x) \leq L(x, \xi) + \chi(x),$$

which implies

$$\lambda u(z) = \langle \mu, \lambda u + \xi \cdot Du \rangle \quad (\because \mu \in \mathcal{C}(z, \lambda))$$

$$\leq \langle \mu, L + \chi \rangle \quad \forall \mu \in \mathcal{C}(z, \lambda). \quad \square$$
Claim 1: Let $v \in \mathcal{V}$ and $\mu \in \mathcal{M}$. If we set $\chi := -\lambda v^\lambda$, then

$$H(x, Dv^\lambda) = \chi \quad \text{in } \mathbb{T}^n,$$

and, by Theorem 11,

$$0 \leq \langle \mu, L + \chi \rangle = \langle \mu, L - \lambda v^\lambda \rangle$$

$$= \langle \mu, L \rangle - \langle \mu, \lambda v^\lambda \rangle = -\lambda \langle \mu, v^\lambda \rangle,$$

$$= 0$$

and

$$\langle \mu, v^\lambda \rangle \leq 0.$$

In the limit as $\lambda \to 0+$, we get Claim 1.
Claim 2: Fix any \(v, w \in \mathcal{V} \) and \(z \in \mathbb{T}^n \). Choose a sequence \(\lambda_j \to 0^+ \) such that

\[
v^{\lambda_j} \to v \quad \text{in} \quad C(\mathbb{T}^n).
\]

By Theorem 4, we may choose a discounted Mather measure \(\mu_j \in \mathcal{M}(z, \lambda_j) \). Observe that

\[
\lambda_j w + H(x, Dw) = \lambda_j w,
\]

and, by Theorem 11,

\[
\lambda_j w(z) \leq \langle \mu_j, L + \lambda_j w \rangle = \langle \mu_j, L \rangle + \lambda_j \langle \mu_j, w \rangle = \lambda_j v^{\lambda_j}(z)
\]

\[
= \lambda_j v^{\lambda_j}(z) + \lambda_j \langle \mu_j, w \rangle.
\]
Dividing the above by λ_j and taking the limit along a subsequence of (λ_j), we get

$$w(z) \leq v(z) + \langle \mu, w \rangle$$

for some $\mu \in \mathcal{M}$ and, hence, $w(z) \leq v(z)$.
Since \((v^\lambda, L) \in \mathcal{F}(\lambda)\), we have
\(L - \lambda v_k^\lambda(z)T^\lambda 1 \in \mathcal{G}(z, k, \lambda)\) and, for all \(\mu \in \mathcal{C}(z, k, \lambda)\),

\[
0 \leq \sum_{i \in \mathcal{I}} \langle \mu_i, L_i - \lambda v_k^\lambda(z)T^\lambda \rangle = -\lambda v_k^\lambda(z) + \sum_{i \in \mathcal{I}} \langle \mu_i, L_i \rangle.
\]

\(\exists \nu \in \mathcal{C}(z, k, \lambda)\) minimizer: Note that if \(\|\phi\|_\infty < 1\), then
\((v^\lambda, L + 1 + \phi) \in \mathcal{F}(\lambda)\). This implies that \(\text{int} \mathcal{G}(z, k, \lambda) \neq \emptyset\).

We may show that
\(L - \lambda v_k^\lambda(z)T^\lambda 1 \in \partial \mathcal{G}(z, k, \lambda)\) By the Hahn-Banach theorem,
\(\exists \nu \in (\prod_{i \in \mathcal{I}} C(K_i))^*\) such that \(\nu \neq 0\) and

\[
\langle \nu, L - \lambda v_k^\lambda(z)T^\lambda 1 \rangle \leq \langle \nu, g \rangle \ \forall g \in \mathcal{G}(z, k, \lambda).
\]

Since \(t(L - \lambda v_k^\lambda(z)T^\lambda 1) \in \mathcal{G}(z, k, \lambda)\), we see that

\[
\langle \nu, L - \lambda v_k^\lambda(z)T^\lambda 1 \rangle = 0.
\]

For \(\phi = (\phi_i)\), if \(\phi_i \geq 0 \ \forall i \in \mathcal{I}\), then
\((v^\lambda, L + \phi) \in \mathcal{F}(\lambda)\). This, with the Riesz theorem, implies that \(\nu_i \geq 0\) and are Radon measures.