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This talk is based on the joint works with Professors Neal Bez and
Sanghyuk Lee.
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Schrodinger equation.
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This talk is based on the joint works with Professors Neal Bez and
Sanghyuk Lee.

@ Overview the classical pointwise convergence problem for the
Schrodinger equation.

@ Pointwise convergence for infinitely many particles (Main results).

© Endpoint 1d-Strichartz estimate for the orthonormal initial data
(Almost sharp answer to works by Frank-Lewin-Lieb-Seiringer
and Frank-Sabin).
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Classical pointwise convergence convegence

Consider the free Schrédinger equation:

ideu(t, x) + 02u(t,x) = 0, (t,x) € RMTL,
U(O7X) = f(X)’
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Classical pointwise convergence convegence

Consider the free Schrédinger equation:

ideu(t, x) + 02u(t,x) = 0, (t,x) € RMTL,
U(O’X) = f(X)’

whose solution is explicitly given by

e,-tag f(X) _ C/ ei(xf-‘rﬂf\z)?(g) dg (x c R)
R
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Carleson’s problem

Question:
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Carleson’s problem

Question: What is the “largest class” of initial data f for which the
pointwise convergence

t“—% itz fix)=fx), ae.xeR
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Carleson’s problem

Question: What is the “largest class” of initial data f for which the
pointwise convergence

t“—% itz fix)=fx), ae.xeR

holds true for all 7 Or equivalently,

lim / SHIERe) de = fx), ae.xeR
t—0 R

Shohei Nakamura (Osaka University)

Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar



Carleson’s problem

Question: What is the “largest class” of initial data f for which the
pointwise convergence

lim et fix)=fx), ae.xeR

t—0

holds true for all 7 Or equivalently,

t—0

lim / SHIERe) de = fx), ae.xeR
R

~» Mathematically, this is a problem if we can exchange the order:

m/ de 2 /Rllm d.
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Few observations

Question: pointwise convergence

li_r}rg) % fx) = x), ae x€R. (1)
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Few observations

Question: pointwise convergence

li_r}rg) % fx) = x), a.e x€R. (1)

e For all fe S(R), Schwartz space, the pointwise convergence (1) holds
true (. Lebesgue’s convergence thm).
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Few observations

Question: pointwise convergence

li_r}rg) % fx) = x), a.e x€R. (1)

e For all fe S(R), Schwartz space, the pointwise convergence (1) holds
true (. Lebesgue’s convergence thm).

o For all fe Hz (R), inhomogeneous Sobolev space, the pointwise
convergence (1) holds true (*.- Sobolev's embedding).

~» Regularity of initial data? ~~ Reasonable choice of function space:
Sobolev space H*(R), s > 0.
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Few observations

Question: pointwise convergence

li_r}rg) % fx) = x), a.e x€R. (1)

e For all f€ S(R), Schwartz space, the pointwise convergence (1) holds
true (. Lebesgue’s convergence thm).

o For all fe Hz (R), inhomogeneous Sobolev space, the pointwise
convergence (1) holds true (*.- Sobolev's embedding).

~» Regularity of initial data? ~~ Reasonable choice of function space:
Sobolev space H*(R), s > 0.

~> ldentify the smallest s > 0 for which (1) holds for all fe H*(R).
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Few observations

Question: pointwise convergence

li_r}rg) % fx) = x), a.e x€R. (1)

e For all f€ S(R), Schwartz space, the pointwise convergence (1) holds
true (. Lebesgue’s convergence thm).

o For all fe Hz (R), inhomogeneous Sobolev space, the pointwise
convergence (1) holds true (*.- Sobolev's embedding).

~» Regularity of initial data? ~~ Reasonable choice of function space:
Sobolev space H*(R), s > 0.

~> ldentify the smallest s > 0 for which (1) holds for all fe H*(R).
(Small s > 0 means large class of initial data).
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Answer to the Carleson’s problem (1-dim)
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Answer to the Carleson’s problem (1-dim)

Answer ~~
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Answer to the Carleson’s problem (1-dim)

Answer ~~ Carleson and Dahlberg-Kenig: the pointwise convergence (1):

tlm e/t fix) = x), ae.xeR

holds for all fe H*(R)
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Answer to the Carleson’s problem (1-dim)

Answer ~~ Carleson and Dahlberg-Kenig: the pointwise convergence (1):

tlm e/t fix) = x), ae.xeR

holds for all f€ H*(R) if and only if s > 1.
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Variants of the problem
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Variants of the problem

@ For higher dimension d > 2, Bourgain, Du-Guth-Li and Du-Zhang:

1 1 1
3~ m : Necessary, s> - — ———— : Sufficient.

[y

>
= 2 2(d+1)
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Variants of the problem

@ For higher dimension d > 2, Bourgain, Du-Guth-Li and Du-Zhang:

1 1 1
3~ m : Necessary, s> 5~ m : Sufficient.

[y

s>

@ Fractional Schrodinger due to Cho-Ko.
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Variants of the problem

@ For higher dimension d > 2, Bourgain, Du-Guth-Li and Du-Zhang:

1 1 1
3~ m : Necessary, s> 5~ m : Sufficient.

[y

s>

@ Fractional Schrodinger due to Cho-Ko.

@ Pointwise convergence under the subsequence t, — 0 due to
Dimou-Seeger, Sjolin.
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Variants of the problem

@ For higher dimension d > 2, Bourgain, Du-Guth-Li and Du-Zhang:
1 1 1 1
S Z 5 — m . Necessary, s> § — m . Sufficient.

Fractional Schrédinger due to Cho-Ko.

Pointwise convergence under the subsequence t, — 0 due to
Dimou-Seeger, Sjolin.

o Non-tangential limit problem due to Cho-Lee-Vargas, Shiraki.
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Variants of the problem

@ For higher dimension d > 2, Bourgain, Du-Guth-Li and Du-Zhang:
1 1 1 1
S Z 5 — m . Necessary, s> § — m . Sufficient.

Fractional Schrédinger due to Cho-Ko.

Pointwise convergence under the subsequence t, — 0 due to
Dimou-Seeger, Sjolin.

Non-tangential limit problem due to Cho-Lee-Vargas, Shiraki.

Pointwise convergence lim;_,q u(t, x) — f(x), u: solution to the NLS
due to Compaan-Luca-Staffilani.
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Our motivation

. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).
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Our motivation
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Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles?
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Our motivation

. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles? Is it still
possible to ensure the convergence to the initial states?
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. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles? Is it still
possible to ensure the convergence to the initial states?

~~ Pointwise convergence problem for the system of infinitely many
particles.
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. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles? Is it still
possible to ensure the convergence to the initial states?

~~ Pointwise convergence problem for the system of infinitely many
particles.

Analysis for the infinitely many particles (Fermion): Hartree-type equation
by Chen-Hong-Pavlovi¢, Lewin-Sabin.
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particles.

Analysis for the infinitely many particles (Fermion): Hartree-type equation
by Chen-Hong-Pavlovi¢, Lewin-Sabin.

~> Orthonormal system initial data formulation.

@ Take an orthonormal system (fj); in H*(R).
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. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles? Is it still
possible to ensure the convergence to the initial states?

~~ Pointwise convergence problem for the system of infinitely many
particles.

Analysis for the infinitely many particles (Fermion): Hartree-type equation
by Chen-Hong-Pavlovi¢, Lewin-Sabin.

~> Orthonormal system initial data formulation.

@ Take an orthonormal system (fj); in H*(R).

@ Then the behavior of each particle is represented by etox fi(x).
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. 162 . . .
Free solution €% f. behavior of a single quantum particle (e.g. electron).

~» What if we considers the system of infinitely many particles? Is it still
possible to ensure the convergence to the initial states?

~~ Pointwise convergence problem for the system of infinitely many
particles.

Analysis for the infinitely many particles (Fermion): Hartree-type equation
by Chen-Hong-Pavlovi¢, Lewin-Sabin.

~> Orthonormal system initial data formulation.

@ Take an orthonormal system (fj); in H*(R).
@ Then the behavior of each particle is represented by et fi(x).

~+ Analyze the system (&% f(x)); as t — 0.
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How to formulate the pointwise convergence problem?
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How to formulate the pointwise convergence problem?

Dynamics of the system of N-many Fermions interacting with each other
by a potential w: R — C:

iOeur (t,x) = (— 02 + w p(t, X)) u1(t, x)

iOun(t,x) = (— 02 —|— w s p(t, x)) un(t, x)
ui(0,%) = £i(x), p(t;x) = SN, |ui(t.x)2.
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How to formulate the pointwise convergence problem?

Dynamics of the system of N-many Fermions interacting with each other
by a potential w: R — C:

iOeur (t,x) = (— 02 + w p(t, X)) u1(t, x)

iOun(t,x) = (— 02 —|— w s p(t, x)) un(t, x)
ui(0,%) = fi(x), p(t,x) == SN ui(t, %) 2.

J:
As N — oo, operator valued equation:

iDpy = [~0F + w py,7l, (£x) € RV,
’7|t:0 = "0,
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How to formulate the pointwise convergence problem?

Dynamics of the system of N-many Fermions interacting with each other
by a potential w: R — C:

iOeur (t,x) = (— 02 + w p(t, X)) u1(t, x)

iBeun(t,x) = (— 02 + w p(t, x)) un(t, x)
N
UJ(O’X) = G(X)v p(t,x) == Zj:l ‘uj(tﬂ X)|2'
As N — oo, operator valued equation:

/3t’Y = [_8>2< + w 10"/7 7]7 (ta X) € RlJrla (2)
’7|t:0 = "0,
where 70,7 = (t): self-adjoint and bounded operators on L?(R),
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As N — oo, operator valued equation:
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where 70,7 = (t): self-adjoint and bounded operators on L?(R),
py i R — Rog: density function of v, [A, B] = AB — BA: commutator.

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 9



How to formulate the pointwise convergence problem?

Dynamics of the system of N-many Fermions interacting with each other
by a potential w: R — C:

iOeur (t,x) = (— 02 + w p(t, X)) u1(t, x)

iBeun(t,x) = (— 02 + w p(t, x)) un(t, x)
N
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’7|t:0 = 70,

where 70,7 = (t): self-adjoint and bounded operators on L?(R),
py i R — Rog: density function of v, [A, B] = AB — BA: commutator.

~ Solution ~(t) represents the time evolution of the system of Fermion.
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How to formulate the pointwise convergence problem?

Dynamics of the system of N-many Fermions interacting with each other
by a potential w: R — C:

iOeur (t,x) = (— 02 + w p(t, X)) u1(t, x)

iBeun(t,x) = (— 02 + w p(t, x)) un(t, x)
N
UJ(O’X) = G(X)v p(t,x) == Zj:l ‘uj(tﬂ X)|2'
As N — oo, operator valued equation:

/3t’Y = [_8>2< + wx 10"/7’7]7 (ta X) € RlJrla (2)
’7|t:0 = 70,

where 70,7 = (t): self-adjoint and bounded operators on L?(R),
py i R — Rog: density function of v, [A, B] = AB — BA: commutator.

~ Solution ~(t) represents the time evolution of the system of Fermion.
~> Pointwise convergence of y(t) — 79 (t — 0) in appropriate sense??
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Formulate using the density function

For the simplicity, consider the linear situation: w = 0.
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Formulate using the density function

For the simplicity, consider the linear situation: w = 0.
~~ Linear solution of (2) is given by

V(1) = e o [2(R) — [2(R).
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Formulate using the density function

For the simplicity, consider the linear situation: w = 0.
~~ Linear solution of (2) is given by

(1) = e o™ 12(R) - [A(R).
~ For yp = ZJ- vj|f;)(f;| (where Dirac’s notation
1H(fl: L2 > ¢ — (f,¢)f€ L?), (f): orthonormal system in L?(R),
(1) =D wle b))

J
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Formulate using the density function

For the simplicity, consider the linear situation: w = 0.
~~ Linear solution of (2) is given by

v(t)=e ity o et L2( ) = L2(R).

~~ For 70 = 3| f;) (fj| (where Dirac’s notation
1H(fl: L2 > ¢ — (f,¢)f€ L?), (f): orthonormal system in L?(R),
(1) =D wle b))
J
and its functional representation:

(%) = py((x) = Y vl ()P,

Jj
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Formulate using the density function

For the simplicity, consider the linear situation: w = 0.
~~ Linear solution of (2) is given by

v(t)=e ity o et L2( ) = L2(R).

~~ For 70 = 3| f;) (fj| (where Dirac’s notation
1H(fl: L2 > ¢ — (f,¢)f€ L?), (f): orthonormal system in L?(R),
(1) =D wle b))
J
and its functional representation:

(%) = py((x) = Y vl ()P,

Jj
~~ Formulate the problem by using the density function:

lm) py(t,X) = pyo(x) a.e. xe€R.
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Compare to the original Carleson’s problem

Problem: Identify the largest class of g for which

lm) py(t,x) = py, a.e. xER. (3)
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Compare to the original Carleson’s problem

Problem: Identify the largest class of g for which

!Ln?) py(t,x) = py, a.e. xER. (3)
o For yo = |A(f], f€ L2(R), we have

)
pr(t:x) = [€AN) P, g = [AX)I
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Compare to the original Carleson’s problem

Problem: Identify the largest class of g for which
!Ln?) py(t,x) = py, a.e. xER. (3)
o For yo = |A(f], f€ L2(R), we have

)
pr(t:x) = [€AN) P, g = [AX)I

~~ Problem (3) is equivalent to

lim €% f(x)| = |fx)| a.e xR
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Compare to the original Carleson’s problem

Problem: Identify the largest class of g for which
an?) py(t,x) = py, a.e. xER. (3)
o For yo = |A(f], f€ L2(R), we have

)
pr(t:x) = [€AN) P, g = [AX)I

~~ Problem (3) is equivalent to
lim |eit83f(x)| = |flx)| ae.xeR
t—0

which is (up to signature) the original Carleson’s problem.
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Compare to the original Carleson’s problem

Problem: Identify the largest class of g for which
lﬂ) py(t,x) = py, a.e. xER. (3)
o For yo = |A(f], f€ L2(R), we have
02
py(t %) = [ RP, pag = X
~» Problem (3) is equivalent to
lim |eit83f(x)| = |flx)| ae.xeR
t—0
which is (up to signature) the original Carleson’s problem.

~ f o = |H(f], f€ Hi (R), then (3) follows from the classical result.
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Precise formulation

Problem: ldentify the largest class of ~q for which

ll% py(t,x) = py, a.e. xER. (4)

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 1



Precise formulation

Problem: ldentify the largest class of ~q for which

lm) py(t,x) = py, a.e. x€R. (4)

o Moreover, if 7o = > vj|f;) (fi with v € £* and f; € Hz,
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Precise formulation

Problem: ldentify the largest class of ~q for which

lm) py(t,x) = py, a.e. x€R. (4)

o Moreover, if 7o = >, vj|f;) (fi with v € £* and f; € Hz, then one can
easily obtain (4).
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Precise formulation

Problem: ldentify the largest class of ~q for which

lm) py(t,x) = py, a.e. x€R. (4)

o Moreover, if 7o = >, vj|f;) (fi with v € £* and f; € Hz, then one can
easily obtain (4).

@ Recall the inclusion relation of sequence spaces:

P cre, Be(l,x).
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Precise formulation

Problem: ldentify the largest class of ~q for which
lij?) py(t,X) = py, a.e.x€R. (4)
o Moreover, if 7o = > v f;) (i with v; € £* and f; Hz, then one can

easily obtain (4).

@ Recall the inclusion relation of sequence spaces:

P cre, Be(l,x).

o If one can prove (4) for all o = >, vj|fj)(fj| with v € % and for some
B>1,
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Precise formulation

Problem: ldentify the largest class of ~q for which
lij?) py(t,X) = py, a.e.x€R. (4)
o Moreover, if 7o = > v f;) (i with v; € £* and f; Hz, then one can

easily obtain (4).

@ Recall the inclusion relation of sequence spaces:

P cre, Be(l,x).

o If one can prove (4) for all o = >, vj|fj)(fj| with v € % and for some
B > 1, then this is an improvement of the classical result:

Vfe Hi(R), lir%\efwff(x)\:\f(x)\ ae xR
_>
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Precise formulation

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar



Precise formulation

70 = 2 16)(f| with v € £ and o/n system (£); in H:
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Precise formulation

Yo = >yl fi)(fil with v € €8 and o/n system (f,); in Hi < Yo € Cﬂ(H%):
Schatten space.
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Precise formulation

Yo = >yl fi)(fil with v € €8 and o/n system (f,); in Hi < Yo € Cﬂ(H%):
Schatten space.

Problem 1
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Precise formulation

Yo = >yl fi)(fil with v € €8 and o/n system (f,); in Hi < Yo € Cﬂ(H%):
Schatten space.

Problem 1

Identify the largest 3 > 1 for which
li_r:g) py(t,x) = pryo(x) ae. xeR (5)

holds for all vy € Cﬁ(H%).
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Second result (Pointwise convergence)
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Second result (Pointwise convergence)

Theorem 2 (Bez-Lee-N)
The pointwise convergence (5) holds for all vy € C” (H%) as long as f < 2.
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Second result (Pointwise convergence)

Theorem 2 (Bez-Lee-N)
The pointwise convergence (5) holds for all vy € C” (H%) as long as f < 2.

1
e Improvement is up to near C?(H#).
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Second result (Pointwise convergence)

Theorem 2 (Bez-Lee-N)
The pointwise convergence (5) holds for all vy € C” (H%) as long as f < 2.

1
e Improvement is up to near C?(H#).

e No idea if 8 < 2 is sharp for the pointwise convergence (5) or not.

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 1



Maximal-in-time estimate

Standard way to tackle to the pointwise convergence problem
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Maximal-in-time estimate

Standard way to tackle to the pointwise convergence problem
~> Corresponding maximal estimate:

| sup |||, <1 (6)

t€[0,1]

for all f€ H°(R) s.t. |||l =1 and for some function space X.
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Maximal-in-time estimate

Standard way to tackle to the pointwise convergence problem
~> Corresponding maximal estimate:

| sup |||, <1 (6)
t€[0,1]

for all f€ H°(R) s.t. |||l =1 and for some function space X.
For instance, Kenig-Ponce-Vega proved a bit stronger estimate:

I sup 17 gy = €% oy S 1

for all fe Hi(R) s.t. |[f] 4 = 1.
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Maximal-in-time estimate

Standard way to tackle to the pointwise convergence problem
~> Corresponding maximal estimate:

| sup |||, <1 (6)
t€[0,1]

for all f€ H°(R) s.t. |||l =1 and for some function space X.
For instance, Kenig-Ponce-Vega proved a bit stronger estimate:

itd? itd? <
f” L4LSo(RI+L) ~Y 1

Isup 1%, =

for all fe H%(R) s.t. HfHH% = 1. ~~ Implies the sharp pointwise
convergence result.
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Maximal in time estimate for orthonormal system data
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f});
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

1
S vllgs (7)
j

L (RA)
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
e Easy to show (7) with 5 = 1:
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
e Easy to show (7) with § = 1: from triangle ineq + classical est,

(S wle2s)!

Jj

L3Lge
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
e Easy to show (7) with § = 1: from triangle ineq + classical est,

1 .
H 1t8 |)2 < (ZVjHe'ta ||L4L°°)

J

N

L3Lge
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
e Easy to show (7) with § = 1: from triangle ineq + classical est,

H lt8 | )%

L4L5e 7 7
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Maximal in time estimate for orthonormal system data

Now, we have a system of initial data: (f;); ~» Consider the square type

1
function (or density function): (Z yj\e’ta2 i(x)[2)2 for some v = (v));.

Natural to generalize the previous maximal estimate to the one of the form

(S uies?

Jj

1
S Ivllgs (7)
L (RA)

for all orthonormal system (f;); in H4( ), all coefficients v = (v}); and for
some 3 > 1.

e Main problem: Identify the largest 8 > 1 for (7).
e Easy to show (7) with § = 1: from triangle ineq + classical est,

H lt8 | )%

L4L5e 7 7

~» 3 > 1 means non-trivial (and improved) estimate.
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First result (Sharp f3)
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First result (Sharp f3)

We give the weak type estimate of (7).
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First result (Sharp ()

We give the weak type estimate of (7).

Theorem 3 (Bez-Lee-N)

For all families of the orthonormal functions (f;); in Hs (R) and coefficients

v=(v);

1
S Ivlizs (8)
LY Lo (RIH)

(w2

J

holds as long as 3 < 2 and this is sharp in the sense that (8) fails if 5§ > 2.
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First result (Sharp ()

We give the weak type estimate of (7).

Theorem 3 (Bez-Lee-N)

For all families of the orthonormal functions (f;); in Hs (R) and coefficients

v=(v);

1
S Ivlizs (8)
LY Lo (RIH)

it02 £12\ 3
(w2
J
holds as long as 3 < 2 and this is sharp in the sense that (8) fails if 5§ > 2.

. . i+92
@ Improvement of the classical estimate: ||e’t8xﬂ]Li,ooL?o(Rm) < ||ﬂ|H%
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First result (Sharp ()

We give the weak type estimate of (7).

Theorem 3 (Bez-Lee-N)

For all families of the orthonormal functions (f;); in Hs (R) and coefficients

v=(v);

1
S Ivlizs (8)
LY Lo (RIH)

it02 £12\ 3
(w2
J
holds as long as 3 < 2 and this is sharp in the sense that (8) fails if 5§ > 2.

. . i+92
@ Improvement of the classical estimate: ||e’t8xﬂ]Li,ooL?o(Rm) < ||ﬂ|H%

@ This gives the pointwise convergence result for infinitely many
particles.
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How to show?
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How to show?

@ Theorem 2 (Pointwise convergence) is a consequence of Theorem 3
(maximal estimate).
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How to show?

@ Theorem 2 (Pointwise convergence) is a consequence of Theorem 3
(maximal estimate).

@ To show Theorem 3, we employ Kenig-Ponce-Vega's idea:
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How to show?

@ Theorem 2 (Pointwise convergence) is a consequence of Theorem 3
(maximal estimate).

@ To show Theorem 3, we employ Kenig-Ponce-Vega's idea: Reduce the
maximal in time estimate

.62
1€ Aliaree S Il
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@ Theorem 2 (Pointwise convergence) is a consequence of Theorem 3
(maximal estimate).

@ To show Theorem 3, we employ Kenig-Ponce-Vega's idea: Reduce the
maximal in time estimate

.62
1€ Aliaree S Il

to the Strichartz estimate for fractional Schrédinger equation:

1
o
1 lpagee <1115
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@ Theorem 2 (Pointwise convergence) is a consequence of Theorem 3
(maximal estimate).

@ To show Theorem 3, we employ Kenig-Ponce-Vega's idea: Reduce the
maximal in time estimate

.62
1€ Aliaree S Il
to the Strichartz estimate for fractional Schrédinger equation:
1
o, |3
€22 ey S 18] 5

Note: Applying their idea to our setting is not straightforward and need an
extra twist.
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Strichartz estimate for the orthonormal system input

With Kenig-Ponce-Vega's idea in mind, it is natural to investigate the
estimate
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Strichartz estimate for the orthonormal system input

With Kenig-Ponce-Vega's idea in mind, it is natural to investigate the
estimate

1SS e 62) gy < 1 (9)

J

for all families of orthonormal functions (£); in L2(R) and coefficient (v;);
and for some 8 > 1.
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Strichartz estimate for the orthonormal system input

With Kenig-Ponce-Vega's idea in mind, it is natural to investigate the
estimate

13 o 6) ey S 15 (9)
J
for all families of orthonormal functions (£); in L2(R) and coefficient (v;);
and for some 8 > 1.

@ Again, the problem is to make § > 1 as large as possible.
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Strichartz estimate for the orthonormal system input

With Kenig-Ponce-Vega's idea in mind, it is natural to investigate the
estimate

1SS e 62) gy < 1 (9)
J
for all families of orthonormal functions (£); in L2(R) and coefficient (v;);
and for some 8 > 1.
@ Again, the problem is to make § > 1 as large as possible.

@ The case § =1 is equivalent to the classical Strichartz estimate and
(9) with 8 > 1 means an improvement.
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General result

General form: Let (g, r) be the admissible pair i.e. 5= % — % q,r>2.
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General result

General form: Let (g, r) be the admissible pair i.e. % = l —2,q,r>2.
Then what is the largest 5 = 3(q, r) > 1 for which the o/n estlmate

1O e 622 gy oy S (10)

J

holds true?
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General result

General form: Let (g, r) be the admissible pair i.e. = = % — lr q,r>2.

Then what is the largest 5 = 3(q, r) > 1 for which the o/n estimate

1O e 622 gy oy S (10)

J

—+QIN

holds true?

Theorem 4 (Frank-Lewin-Lieb-Seiringer (2014), Frank-Sabin(2015))

Suppose

1
—, 2 < r<oo.
r

Then (10) holds with 3 = 1 and this is sharp.
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Endpoint
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Endpoint

21/r
~> On the endpoint (g, r) = (4, 00), the problem to find the sharp j is

open.
2
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Endpoint

21/r

~> On the endpoint (g, r) = (4, 00), the problem to find the sharp j is
open. Frank-Sabin's argument does NOT work at (g, r) = (4, ).

2
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Third result (Positive answer up to Lorentz exponent)

Problem: Find the sharp 5 > 1 for

: 1 1
1wl )7 s ey < W02 (11)
J
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Third result (Positive answer up to Lorentz exponent)

Problem: Find the sharp 5 > 1 for

: 1 1
1wl )7 s ey < W02 (11)
J

@ No non-trivial result (8 > 1) at (g, r) = (4, 00) are known.

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 2



Third result (Positive answer up to Lorentz exponent)

Problem: Find the sharp 5 > 1 for
. 1 1
1wl )7 s ey < W02 (11)
J

@ No non-trivial result (8 > 1) at (g, r) = (4, 00) are known.

@ Indeed, Frank-Sabin (2016) gave a conjecture that (11) holds true
with 5>1.

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 2



Third result (Positive answer up to Lorentz exponent)

Problem: Find the sharp 5 > 1 for
. 1 1
1wl )7 s ey < W02 (11)
J

@ No non-trivial result (8 > 1) at (g, r) = (4, 00) are known.

@ Indeed, Frank-Sabin (2016) gave a conjecture that (11) holds true
with 5>1.

Theorem 5 (Bez-Lee-N)

For all families of o/n functions (f;); in L?(R) and coefficients (v});,

. 1 3
1S vl 612)2 | s oo gasny S V112 (12)
J

holds as long as 8 < 2 and this is sharp.
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o If 8 < %, then (12) can be upgraded to strong estimate. ldentifying
sharp (3 for the strong type estimate (due to Frank-Sabin) is still open.
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o If 8 < %, then (12) can be upgraded to strong estimate. ldentifying
sharp (3 for the strong type estimate (due to Frank-Sabin) is still open.

@ The argument for Theorem 5 also works to show

. 1 1 1
1O 1€ £2) 2| e e sy < 11
J

for all families of o/n functions (f;); in H%(R).
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o If 8 < %, then (12) can be upgraded to strong estimate. ldentifying
sharp (3 for the strong type estimate (due to Frank-Sabin) is still open.

@ The argument for Theorem 5 also works to show
itlon|2 2\3 3
1wl ) 2 | oo o iy S IV
J

for all families of o/n functions (f;); in H%(R).
~ Using Kenig-Ponce-Vega's idea + «, we obtain Theorem 1
(maximal in time estimate).
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|dea of the proof of Theorem 5 with § < %

Idea:
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Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.
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Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.

Ingredient:
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Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.

Ingredient:
e Duality principle (Frank-Sabin 2015).
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Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.

Ingredient:
e Duality principle (Frank-Sabin 2015).
o For Schatten-4 class C* and Schatten-2 class C?,

1Alles = A" Al2..

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 2



Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.

Ingredient:
e Duality principle (Frank-Sabin 2015).
o For Schatten-4 class C* and Schatten-2 class C?,

1Alles = A" Al2..

@ Schatten-2 class is the Hilbert-Schmit class.
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Idea of the proof of Theorem 5 with 3 < 3

Idea: Focusing on the case 8 = % whose dual is 3/ = 4.

Ingredient:
e Duality principle (Frank-Sabin 2015).
o For Schatten-4 class C* and Schatten-2 class C?,

1Alles = A" Al2..

@ Schatten-2 class is the Hilbert-Schmit class. In particular, if the
integral kernel of A is K(x, y), then

1A = / IK(x, y)|2 dxdy.
RxR
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Further details

Denote Uf(t, x) = €% f{x).
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Further details

Denote Uf(t, x) = €% f{x).

Thanks to the duality principle, the o/n estimate

H(Z jle = £ ) HL4L00(R1+1 NHVHEB

J

with 6 = % is equivalent to
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Further details

Denote Uf(t, x) = €% f{x).

Thanks to the duality principle, the o/n estimate

H(Z jle = £ ) HL4L00(R1+1 NHVHEB

J
with 6 = % is equivalent to

[WUUW| oo S WG ppasay. YW= WL ). (13)
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Further details

Denote Uf(t, x) = €% f{x).

Thanks to the duality principle, the o/n estimate

H(Z jle = £ ) HL4L00(R1+1 NHVHEB

J
with 6 = % is equivalent to
|WuUw| .. < HM|i§L§(R1+1): YW= W(t,x). (13)

For L.H.S, o o
|WUU W[ = ||[WUUF I WRUU W2,
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Further details

Integral kernel of the operator WUU*|W|2UU*W can be written down:
Ki(t, t",x,xX") =
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Further details

Integral kernel of the operator WUU*|W|2UU*W can be written down:
Ki(t, t",x,xX") =

W(t, x) Ko(t—t, x— X)W, X)PKo(t — ', X —X') dt' dX W(t", X"),

R1+1
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Further details

Integral kernel of the operator WUU*|W|2UU*W can be written down:
Ki(t, t",x,xX") =

W(t, x) Ko(t—t, x— X)W, X)PKo(t — ', X —X') dt' dX W(t", X"),

]Rl+1

where Kj is the integral kernel of UU*:

Ko(t—t,x—=X) = / 0540 ge o1 — ¢ ),

R
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Further details

Thanks to the dispersive estimate, we have the pointwise bound of the
integral kernel: |K.(t,t", x,X")| <
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Further details

Thanks to the dispersive estimate, we have the pointwise bound of the
integral kernel: |K.(t,t", x,X")| <

WEI( [ Je= 2 AW I ¢ de) e’ )
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Further details

Thanks to the dispersive estimate, we have the pointwise bound of the
integral kernel: |K.(t,t", x,X")| <

WEI( [ Je= 2 AW I ¢ de) e’ )

Combining this with the fact that C? is Hilbert-Schmit class:
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Further details

Thanks to the dispersive estimate, we have the pointwise bound of the
integral kernel: |K.(t,t", x,X")| <

WEI( [ Je= 2 AW I ¢ de) e’ )

Combining this with the fact that C? is Hilbert-Schmit class:

L.H.S* = HWUU*|V|42UU*WH§2 = / |K.(t, ¥, x, X")|? dtdt’ dxdx”,
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Further details

Thanks to the dispersive estimate, we have the pointwise bound of the
integral kernel: |K.(t,t", x,X")| <

WEI( [ Je= 2 AW I ¢ de) e’ )
Combining this with the fact that C? is Hilbert-Schmit class:
L.H.S* = HWUU*|V|42UU*WH§2 = / |K.(t, ¥, x, X")|? dtdt’ dxdx”,
the estimate are reduced to the multilinear fractional integral:
1 1 1 1 4
/4 |t — tof 2|t — ta| 2t — 3] 2[5 — ta| 72 [ [ w(ty) o
R i=1

where w(t;) = ||[W(t;, )Hig
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Further details (Multilinear fractional integral)

4
_1 _1 _1 _1 —
/4|t1—t2| oo -t Hn — 6 e — a [ we)dE (14)
R i1
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Further details (Multilinear fractional integral)

4
_1 _1 _1 _1 —
/4|t1—t2| oo -t Hn — 6 e — a [ we)dE (14)
R i1

@ There should be several ways to bound this multilinear form.
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Further details (Multilinear fractional integral)

4
_1 _1 _1 _1 —
/4|t1—t2| oo -t Hn — 6 e — a [ we)dE (14)
R i1

@ There should be several ways to bound this multilinear form.
@ As one approach, we may regard this as the (Lorentz) Brascamp-Lieb:

Shohei Nakamura (Osaka University) Maximal estimates for the Schrédinger equatiAsia-Pacific Analysis and PDE Seminar 2



Further details (Multilinear fractional integral)

4
_1 _1 _1 _1 —
/4|t1—t2| oo -t Hn — 6 e — a [ we)dE (14)
R i1

@ There should be several ways to bound this multilinear form.
@ As one approach, we may regard this as the (Lorentz) Brascamp-Lieb:

Let
m1(f) = t1 — to, mo(f) = t1 — t3, m3(E) = to — ta, Ta(E) = t3 — ta,
ms(t) = t1, m6(2) = t2, m7(F) = t3, ma(1) = ta,

and

%Z"'ZWZH_%a Py = =g =w.
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Further details (Multilinear fractional integral)

4
_1 _1 _1 _1 —
/4|t1—t2| oo -t Hn — 6 e — a [ we)dE (14)
R i1

@ There should be several ways to bound this multilinear form.
@ As one approach, we may regard this as the (Lorentz) Brascamp-Lieb:
Let

m1(f) = t1 — to, mo(f) = t1 — t3, m3(E) = to — ta, Ta(E) = t3 — ta,
ms(t) = t1, m6(2) = t2, m7(F) = t3, ma(1) = ta,
and
%Z"'ZWZH_%a Py =---=1g=w.
Then (14) becomes
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@ To upgrade the estimate to 5 < 2, we decomposed operator UU*
dyadically:
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@ To upgrade the estimate to 5 < 2, we decomposed operator UU*
dyadically: for a test function F= F(t,x) € L2(R1*1),

UUPTA(t, %) = / Ko(t— £, x— X)F(¥,X) dt dX’

_Z/ o(t— ¢ x— X)F(L,X) dé d¥’

JjeNg t’|~21
=) Tj[FA(t.)
J€No

and employ the bilinear real interpolation argument.
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In the proof, We simply use the triangle inequality for Schatten norm:

IWUUW]jgor <Y |WT W

J
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In the proof, We simply use the triangle inequality for Schatten norm:

IWUUW]jgor <Y |WT W

J

However, if one can exploit the orthogonality:

IWUUWeor < (3 IWTWZ,)Y, w8 e 200l (15)
J
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In the proof, We simply use the triangle inequality for Schatten norm:

IWUUW]jgor <Y |WT W

J

However, if one can exploit the orthogonality:

IWUUW oo < (3 IWTW0,)YY, B € 2,00],  (15)
J

then one can upgrade our weak type estimate to strong one and give the
complete answer to Frank-Sabin’s conj.
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In the proof, We simply use the triangle inequality for Schatten norm:

IWUUW]jgor <Y |WT W

J

However, if one can exploit the orthogonality:

IWUUW oo < (3 IWTW0,)YY, B € 2,00],  (15)
J

then one can upgrade our weak type estimate to strong one and give the
complete answer to Frank-Sabin's conj. Indeed, one can easily check that
(15) holds for 5’ = 2, cc.
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Further comment
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Further comment

@ We disregard the nonlinear interaction w = 0 because of just
simplicity.
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Further comment

@ We disregard the nonlinear interaction w = 0 because of just
simplicity. In the real world, electrons are interacting with each other
by Coulomb potential.
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Further comment

@ We disregard the nonlinear interaction w = 0 because of just
simplicity. In the real world, electrons are interacting with each other
by Coulomb potential. Compaan-Luca-Staffilani (2019) proved for all
fe Hi(R),

lim u(t,x) = f(x), a.e.x€R,
t—0

where u(t, x) is a solution to

O+ 02u = +|uf?u.
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Further comment

@ We disregard the nonlinear interaction w = 0 because of just
simplicity. In the real world, electrons are interacting with each other
by Coulomb potential. Compaan-Luca-Staffilani (2019) proved for all
fe Hi(R),

lim u(t,x) = f(x), a.e.x€R,
t—0

where u(t, x) is a solution to

O+ 02u = +|uf?u.

~+ Natural to expect lim;—q p+(t, X) = p,(x) for the nonlinear
solution ~.
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Further comment

@ We disregard the nonlinear interaction w = 0 because of just
simplicity. In the real world, electrons are interacting with each other
by Coulomb potential. Compaan-Luca-Staffilani (2019) proved for all
fe Hi(R),

lim u(t,x) = f(x), a.e.x€R,
t—0

where u(t, x) is a solution to
O+ 02u = +|uf?u.

~+ Natural to expect lim;—q p+(t, X) = p,(x) for the nonlinear
solution ~.

@ Higher dimension problem would be challenging.
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Thank you for your attention.
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