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I want to thank Enrico for the kind invitation to speak in the Asia-Pacific
seminar. I have never been to Australia (I had to sadly cancel at the last
moment an invitation from Neil Trudinger because one of our kids was
about to be born), and my first (and last) trip to Asia was a beautiful five
week visit to China back in September 1978 (Beijing→ Guangzhou→
Hangzhou→ Shanghai → Nanjing→Beijing)! So it is very nice to be
“visiting” the Asia-Pacific region again after such a long time.

Sunset in Perth
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Preface

In this talk I present recent joint works with Giulio Tralli which revolve
around the heat equation in a class of geometric ambients which, besides
their mathematical relevance, are of considerable interest in the applied
sciences: quantum mechanics; physics of semi-flexible polymers;
non-holonomic mechanics (e.g. control of the motion of the arms of a
robot); physiology of neurovision; formation of crystalline structures...

These geometric ambients model physical systems with constrained
dynamics, in which motion is only possible in a prescribed set of directions
in the tangent space (sub-Riemannian 1, versus Riemannian geometry).

The key redeeming feature is that the missing directions in the tangent
space are recovered by taking a sufficiently large number of commutators
of the vector fields which describe the PDEs of interest.

1E. Cartan, 1928 “Sur la represéntation géométrique des systèmes matériels non
holonomes”, Proc. Int. Congr. Math., Bologna, 4: 253-261
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The relevant framework for these PDEs are non-Abelian Lie groups G
(Riemannian manifolds with a smooth non-commutative group law) whose
Lie algebra (the tangent space at the group identity) possesses a special
layered structure suggested by the physical problem at hand.

The most important of these Lie groups is the ubiquitous
2n + 1-dimensional Heisenberg group Hn, first introduced by H. Weyl in
his group representation theory approach to quantum mechanics 2.

Hn is equipped with a conformally invariant PDO, the so-called horizontal

Laplacian L . Given s ∈ (0, 1), I will indicate by L s def
= (−L )s the

fractional powers of this operator. A natural question is whether these
nonlocal operators retain the geometric properties of −L .

Unfortunately, unlike what happens for (−∆)s , the pseudodifferential
operators L s do not preserve the conformal invariances of the local
operator L !

2P. Woit, Quantum theory, groups and representations. An introduction. Springer,
Cham, 2017. xxii+668 pp.
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My focus in this talk will instead be on a class of nonlocal operators that
are conformally invariant in Hn, or more in general in Lie groups of
Heisenberg type. These nonlocal operators, which I will denote by Ls to
distinguish them from L s , come from CR (Cauchy-Riemann) geometry 3.

The objective of my talk is to present a new approach, based on the heat
equation and some of its variants, to:

(1) prove the invertibility of the fractional powers Ls ;

(2) find explicit formulas for the fundamental solutions of Ls ;

(3) prove some intertwining formulas for Ls which are connected to the
conformal fractional CR Yamabe problem

Lsu = u
Q+2s
Q−2s .

(the meaning of the word “intertwining” and of the “dimension” Q
will be clarified later in my talk).

3C. Fefferman & C. R. Graham, Conformal invariants. In “The mathematical
heritage of Élie Cartan (Lyon, 1984)”, Astérisque (1985), 95-116
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...I dragged up from the dark abyss things of strange
aspect and strange beauty...(Rabindranath Tagore)

I will start with discussing a model question which, as I will show,
encompasses parts (1)-(3) of the plan of my talk. In Rn with n ≥ 2, for
0 < s < 1 consider the pseudodifferential operator which in Fourier

transform is given by ̂(−∆)s f (ξ) = (2π|ξ|)2s f̂ (ξ) 4. Then, for every
x ∈ Rn, and y > 0 the following nonlocal equation holds:

(−∆)s
(

(|x |2 + y2)−
n−2s

2

)
=

Γ
(
n
2 + s

)
Γ
(
n
2 − s

) (2y)2s (|x |2 + y2)−
n+2s

2 . (0.1)

4This is equivalent to M. Riesz’ 1938 definition of the fractional Laplacian

(−∆)s f (x) = −
s22sΓ( n

2
+ s)

π
n
2 Γ(1− s)

PV

∫
Rn

f (x)− f (y)

|x − y |n+2s
dy
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A direct proof of (0.1) is by Fourier transform and ultimately hinges on
some integral formulas involving special functions 5. Such proof is
(implicitly) known at least since the celebrated 1983 work of E. Lieb
concerning the best constants in the Hardy-Littlewood-Sobolev
inequalities.

Observe that a notable consequence of (0.1) is that it provides a family of
positive solutions to the nonlocal Yamabe equation in Rn

(−∆)s f = f
n+2s
n−2s . (0.2)

5if you are interested you can check Section 8 of my survey article Fractional
thoughts. New developments in the analysis of nonlocal operators, 1-135, Contemp.
Math., 723, Amer. Math. Soc., Providence, RI, 2019
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To introduce the main theme of my talk let me present an alternative heat
equation proof of the intertwining formula (0.1) which does not use the
Fourier transform and/or any formula from special functions. Instead of
looking at (−∆)s , consider the fractional heat operator (∂t −∆)s and its
extension problem: given a function f ∈ C∞0 (Rn

x × Rt), find
U ∈ C∞(Rn

x × Rt × R+
y ) such that{

P(s)U
def
= ∂2U

∂y2 + 1−2s
y

∂U
∂y + ∆xU − ∂U

∂t = 0,

U(x , t, 0) = f (x , t).
(0.3)

The “Dirichlet problem” (0.3) was first introduced when s = 1/2 in a
beautiful (but not so well-known) 1968 pioneering paper by F. Jones, who
first constructed an explicit Poisson kernel 6.

I now make the claim that the conformal invariances of (0.1) are
embedded in the fundamental solution q(s)(x , y , t) of the parabolic
operator P(s) in (0.3).

6more recently, Nyström and Sande (2016) and Stinga and Torrea (2017)
independently generalised Jones’ results to the case 0 < s < 1
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To see this, note that if w ∈ R2(1−s) and y = |w |, then P(s) represents
the action on cylindrically symmetric functions U(x ,w , t) = U(x , y , t) of
the heat operator ∆x + ∆w − ∂t in the space with fractal dimension
Rn+2(1−s) ×R+

t . Its fundamental solution (with pole at the origin) is given
by

q(s)(x , y , t) =
1

(4πt)
n
2

+1−s e
− |x|

2+y2

4t =
1

(4πt)1−s e
− y2

4t p(x , 0, t). (0.4)

If we denote by q(−s)(x , y , t) the heat kernel obtained by replacing s into
−s in (0.4), then by Bochner’s subordination the two functions

E (±s)(x , y)
def
=

∫ ∞
0

q(±s)(x , y , t)dt (0.5)

are the fundamental solutions of the time-independent differential
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Then, in view of (0.5), (0.6) the problem of proving (0.1) is reduced to
that of establishing the equivalent dimension-free intertwining relation

(−∆)s
(
E (s)(·, y)

)
(x)

?
= (2πy)2s E (−s)(x , y). (0.7)

To prove (0.7) we once again bring to the center stage the heat semigroup
Pt = e−t∆. Instead of the Fourier transform definition of (−∆)s we apply
to the function f = E (s)(·, y) the (equivalent) one given by the following
beautiful formula of Balakrishnan (1959)

(−∆)s f (x) = − s

Γ(1− s)

∫ ∞
0

1

t1+s
(Pt f (x)− f (x))dt (0.8)

= − 1

Γ(1− s)

∫ ∞
0

t−s∂tPt f (x)dt.

Now, the Chapman-Kolmogorov equation (semigroup property) gives

Pt(E
(s)(·, y))(x) =

∫ ∞
0

1

(4πτ)1−s e
− y2

4τ p(x , 0, t + τ)dτ.
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Substituting in (0.8), making the change of variable

(u, v) = (t + τ,
τ

t
),

and integrating by parts, we obtain with elementary computations

(−∆)s(E (s)(·, y))(x)

= −(4π)−(1−s)

Γ(1− s)

∫ ∞
0

∫ ∞
0

(τ
t

)s
e−

y2

4τ ∂tp(x , 0, t + τ)
dτ

τ

dt

t

= −(4π)−(1−s)

Γ(1− s)

∫ ∞
0

v s−1 1

1 + v

∫ ∞
0

e−
y2

4u
1+v
v ∂up(x , 0, u)dudv

=
(4π)−(1−s)

Γ(1− s)

∫ ∞
0

v s−1 1

1 + v

∫ ∞
0

∂u

(
e−

y2

4u
1+v
v

)
p(x , 0, u)dudv

=
(4π)−(1−s)

Γ(1− s)

∫ ∞
0

v s−1 1

1 + v

∫ ∞
0

1 + v

4v

y2

u2
e−

y2

4u
1+v
v p(x , 0, u)dudv

=
(4π)−(1−s)y2

4Γ(1− s)

∫ ∞
0

1

u2
e−

y2

4u p(x , 0, u)

(∫ ∞
0

v s−1e−
y2

4uv
dv

v

)
du.
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1
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e−
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4u p(x , 0, u)
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4uv
dv

v

)
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Noting that ∫ ∞
0

v s−1e−
y2

4uv
dv

v
= Γ(1− s)

y2s−2

4s−1us−1
,

we immediately reach the conclusion

(−∆)s
(
E (s)(·, y)

)
(x) = (2πy)2s E (−s)(x , y),

which, as I have said, proves the intertwining formula (0.7), and therefore
(0.1)!

One of the objectives of my talk is to present a version of (0.1) in which
(−∆)s is replaced by the conformal fractional horizontal Laplacian Ls in a
Lie group of Heisenberg type G ... It’s time to introduce the relevant
geometric framework...
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The Heisenberg group Hn

This group arises in the description of n-dimensional quantum mechanical

systems. Consider the 2n × 2n symplectic matrix J =

(
On In
−In On

)
. In

R2n+1 introduce the non-Abelian group law (think of R2n+1 = R2n
z ⊕ Rσ,

with coordinates (z , σ), where z = (x , y)):

(z , σ) ◦ (z ′, σ′) = (z + z ′, σ + σ′ +
1

2
〈z , Jz ′〉). (0.9)

Hn denotes the Lie group (R2n+1, ◦)
g = (z , σ), g ′ = (z ′, σ′), etc. are generic points in Hn

the identity element with respect to ◦ is e = (0, 0), g−1 = (−z ,−σ)

Lg : Hn → Hn denotes the left-translation Lg (g ′) = g ◦ g ′

the Heisenberg algebra hn is generated by the 2n + 1 vector fields:
Xj(g) = ∂xj −

yj
2 ∂σ,...,Xn+j(g) = ∂yj +

xj
2 ∂σ, T = ∂σ.
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The vector fields X1, ...,X2n do not span the whole tangent space
TeHn ∼= R2n+1! However, they satisfy the commutation relation 7

(?) [Xi ,Xn+j ] = δijT , i , j = 1, ..., n.

The horizontal Laplacian on Hn is the second order pdo

L =
2n∑
j=1

X 2
j = ∆z +

|z |2

4
∂σσ + ∂σ

n∑
j=1

(xj∂yj − yj∂xj ).

This operator fails to be elliptic at every point g = (z , σ) ∈ Hn, but
because of (?) and a celebrated 1967 theorem by Hörmander, the operator
L is hypoelliptic. By assigning the formal degree j to the corresponding
layer of the Lie algebra spanned by commutators of order j , in view of (?)
we can equip Hn with the non-isotropic dilations δλ(z , σ) = (λz , λ2σ).
Similarly to what happens to ∆ with the isotropic Euclidean dilations, one
has L ◦ δλ = λ2δλ ◦L .

7when n = 1 this is Heisenberg’s quantum mechanics commutation for position and
momentum
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L is hypoelliptic. By assigning the formal degree j to the corresponding
layer of the Lie algebra spanned by commutators of order j , in view of (?)
we can equip Hn with the non-isotropic dilations δλ(z , σ) = (λz , λ2σ).
Similarly to what happens to ∆ with the isotropic Euclidean dilations, one
has L ◦ δλ = λ2δλ ◦L .

7when n = 1 this is Heisenberg’s quantum mechanics commutation for position and
momentum

Nicola Garofalo (University of Padova) A heat equation approach, etc. Jul/19/2021 14 / 46
14 / 46



The vector fields X1, ...,X2n do not span the whole tangent space
TeHn ∼= R2n+1! However, they satisfy the commutation relation 7

(?) [Xi ,Xn+j ] = δijT , i , j = 1, ..., n.

The horizontal Laplacian on Hn is the second order pdo

L =
2n∑
j=1

X 2
j = ∆z +

|z |2

4
∂σσ + ∂σ

n∑
j=1

(xj∂yj − yj∂xj ).

This operator fails to be elliptic at every point g = (z , σ) ∈ Hn, but
because of (?) and a celebrated 1967 theorem by Hörmander, the operator
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...A beautiful, classical formula...

It is immediate to verify that, if Q = 2n + 2, then Lebesgue measure
interacts with the group dilations according to the law

d(δλ(z , σ)) = λQdzdσ. Thus, the anisotropic dilations determine a
natural “dimension” associated with Hn. The relevance of such
homogeneous dimension is underscored by the following remarkable 1973
result of Folland. In what follows, N(z , σ) = (|z |4 + 16σ2)1/4 is the
so-called Koranyi gauge on Hn.

Theorem. There exists a suitable explicit constant C (n) > 0 such that

E (z , σ) = C (n)N(z , σ)2−Q

is the fundamental solution with pole at the group identity of the
horizontal Laplacian −L in Hn.

One notable aspect of Folland’s result is the resemblance with the
fundamental solution of −∆ which for n ≥ 3 is given by c(n)|x |2−n.
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I will come back to Folland’s result at the very end of my talk and show
that, by running the heat flow on Hn, we can actually “discover” the
magic gauge function N(z , σ) and recover Folland’s theorem as the
limiting case s ↗ 1 of a family of fractional theorems!

Returning to the Heisenberg group Hn we see that its essential feature is
that its Lie algebra is decomposed into two layers: hn = V1 ⊕ V2. The
so-called horizontal layer V1 = R2n

z × {0}σ, and the vertical layer
V2 = {0}z × Rσ. These two layers satisfy the properties: [V1,V1] = V2

(bracket generating), [V1,V2] = {0} (nilpotency). Because of this splitting
of the Lie algebra in two layers, Hn is called a Carnot group of step two. If
the Lie algebra g splits in r layers we talk of a Carnot group of step r G.
This means that g = V1 ⊕ ...⊕ Vr , with [V1,Vi ] = Vi+1, i = 1, ..., r − 1,
and [V1,Vr ] = {0}. The bracket generating layer V1 of g is called the
horizontal layer 8.

8A horizontal Laplacian on G is the second order hypoelliptic operator defined by
L =

∑m
j=1 X

2
j , where Xj(g) = dLg (ej), and {e1, ..., em} is an orthonormal basis of V1
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To introduce our first result consider now a general Carnot group G with a
fixed horizontal Laplacian L , and let

Ptu(g) = e−tL u(g) =

∫
G
p(g , g ′, t)u(g ′)dg ′

be the heat semigroup constructed by Folland. I recall that such
semigroup is stochastically complete, i.e., Pt1 = 1.

The semigroup Pt is all that is needed to study the (non-conformal)

fractional powers L s def
= (−L )s , for 0 < s < 1. One very effective way to

specify the action of this nonlocal operator on a function u ∈ C∞0 (G) is by
resorting again to Balakrishnan’s formula:

L su(g) = − s

Γ(1− s)

∫ ∞
0

1

t1+s
(Ptu(g)− u(g))dt.
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With such formula in hands it is classical how to invert the
pseudo-differential operators L s using the heat equation based Riesz
potentials

I (2s)u(g) =
1

Γ(s)

∫ ∞
0

ts−1Ptu(g)dt, 0 < s < 1.

It is in fact relatively easy to prove the following basic result:

I (2s) ◦L s = L s ◦I (2s) = I . (0.10)

A direct important consequence of the inversion formula (0.10) is that the
kernel

E (s)(g)
def
=

1

Γ(s)

∫ ∞
0

ts−1p(g , t)dt (0.11)

of the operator I (2s) constitutes the fundamental solution of the nonlocal
operator L s with pole at the group identity.
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When the Lie group G = Rn is Abelian, then L = ∆ and (0.11) gives the
classical formula of M. Riesz

E (s)(x) =
Γ(n2 − s)

22sπ
n
2 Γ(s)

|x |2s−n. (0.12)

This result, and Folland’s theorem in the local case s = 1, might lead to
believe that in the Heisenberg group Hn the fundamental solution (0.11)
of the nonlocal operator L s is given by the formula

E (s)(g) = C (n, s)N(z , σ)2s−Q , (0.13)

where as before N(z , σ) is the Koranyi gauge. This guess is however
completely wrong! The distribution defined by the right-hand side of
(0.11) is not a function of the gauge N(z , σ), except in the limiting (local)
case when s ↗ 1!

As I have mentioned in the Preface, there is another pseudodifferential
operator Ls , very different from L s , and whose fundamental solution
E(s)(g) does instead satisfy a formula such as (0.13)!...This is where our
story begins...
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A small glimpse of things to come...fundamental solutions

∆ = Euclidean Laplacian in Rn

−∆ (−∆)s

c(n)|x |2−n c(n, s)|x |2s−n
conformal conformal

Hn = Heisenberg group
L = horizontal Laplacian in Hn

N(z , σ) = (|z |4 + 16σ2)1/4 = Koranyi gauge
Q = 2n + 2 homogeneous dimension

−L L s Ls

C (n)N(z , σ)2−Q no gauge symmetry C (n, s)N(z , σ)2s−Q

conformal not conformal conformal
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Unlike the operator L s , the definition of the conformal fractional powers
Ls is all but “explicit” and fairly difficult to handle. In their 2013 Annals
paper Branson, Fontana and Morpurgo first introduced in the Heisenberg
group Hn the pseudodifferential operator of order 2s given by the spectral
formula

Ls = 2s |T |s
Γ(−1

2L |T |−1 + 1+s
2 )

Γ(−1
2L |T |−1 + 1−s

2 )
, 0 < s < 1, (0.14)

where T = ∂σ is the differentiation in the vertical direction. Notice that,
using the property Γ(x + 1) = xΓ(x), we formally see that when s = 1,
then L1 = −L ! The pseudodifferential operator (0.14) is the CR
counterpart of the conformal fractional powers of the Laplacian on the
sphere Sn introduced by Branson in 1995 9.

Since my talk is about the heat equation I will not use (0.14) as
definition of Ls !

9T. P. Branson, Sharp inequalities, the functional determinant, and the
complementary series. Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671-3742.
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In their cited work Frank, Gonzalez, Monticelli and Tan have introduced
the following CR extension problem for the fractional powers Ls : given
f ∈ C∞0 (Hn), find a function F ∈ C∞(Hn × (0,∞)) such that{

∂2F
∂y2 + 1−2s

y
∂F
∂y + y2

4
∂2F
∂σ2 + L F = 0,

F ((z , σ), 0) = f (z , σ),
(0.15)

where L is the horizontal Laplacian in Hn. Without the term y2

4
∂2F
∂σ2 the

problem (0.15) would be the counterpart of the Caffarelli-Silvestre
extension problem for L s which I have recalled above. The additional
term makes the above problem completely different from the
Caffarelli-Silvestre type extension, but it introduces geometric meaning!
For instance, Frank et al. proved the following fundamental weighted
Dirichlet-to-Neumann relation for (0.15)

Ls f (z , σ) = −22s−1Γ(1− s)

Γ(1 + s)
lim

y→0+
y1−2s ∂F

∂y
((z , σ), y).
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Hyperbolic geometry and scattering

One way to understand the problem (0.15) is to consider the Heisenberg
group Hn as the boundary of the complex hyperbolic space

Hn(C) = {((z , σ), y) | (x1, . . . , xn, y1, . . . , yn, σ) ∈ Hn, y > 0}

endowed with the Riemannian metric gHn(C) with respect to which the
2n + 2 vector fields

Vi = yXi , i = 1, ..., 2n, V0 = −y2

2
∂σ and W0 = y∂y

form an orthonormal frame of the tangent space. A computation of the
connection shows that the Laplace-Beltrami operator is given by

∆Hn(C) =
2n∑
j=0

(
V 2
j −∇Vj

Vj

)
= y2

(
L +

y2

4
∂σσ + ∂yy −

Q − 1

y
∂y

)
,

where L is the horizontal Laplacian on the Heisenberg group Hn.
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One now has the following fact: consider a function U(z , σ, y) that lives in
Hn × R+

y , and define a function u(z , σ, y) in Hn(C) by the formula

u(z , σ, y) = y
Q
2
−s U(z , σ, y).

Then, one has for the scattering eigenvalue problem in Hn(C)

∆Hn(C)u +

(
Q

2
− s

)(
Q

2
+ s

)
u

= y
Q
2
−s+2

{
LU +

y2

4
∂σσU + ∂yy +

1− 2s

y
∂yU

}
.

Thus, u solves the eigenvalue problem in the complex hyperbolic space
Hn(C) ⇐⇒ U is a solution of the extension problem of Frank et al. in
Hn × R+

y !
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In 2016-17 Roncal and Thangavelu used a parabolic version of the
extension problem of Frank et al., which I will discuss below, combined
with non-commutative harmonic analysis and group representation theory,
to establish some beautiful sharp Hardy inequalities on the Heisenberg
group, or more in general groups of Heisenberg type.

Our works “Feeling the heat in a group of Heisenberg type” and “A heat
equation approach to intertwining” were inspired by some of the ideas of
Roncal and Thangavelu. Instead of non-commutative harmonic analysis
and group representation theory we combine in a systematic way the
parabolic extension problem with some ideas in our recent works on a
(quite different) class of nonlocal hypoelliptic equations arising in the
kinetic theory of gases.
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Henceforth, I will place my discussion in a Lie group of Heisenberg type G.
This class constitutes a nontrivial geometric extension of the Heisenberg
group Hn, except that now the vertical layer V2 of the Lie algebra
g = V1 ⊕ V2 can have arbitrary dimension. I henceforth denote
m = dimV1, k = dimV2, and will routinely identify g ∼= Rm × Rk (when
the center of the Lie algebra has dimension k = 1, then we obtain back
Hn). The generic point g ∈ G will be identified with its coordinates
(z , σ) ∈ Rm × Rk . 10. As before, the group anisotropic dilations are
δλ(g) = (λz , λ2σ). The homogeneous dimension of G associated with
such dilations is now the number Q = m + 2k .

10A Carnot group of step two is called of Heisenberg type if the Kaplan mapping
J : V2 → End(V1), defined by

〈J(σ)z , ζ〉 = 〈[z , ζ], σ〉 = −〈J(σ)ζ, z〉, z , ζ ∈ V1, σ ∈ V2,

satisfies J(σ)2 = −|σ|2 IV1 for every σ ∈ V2. This assumption induces a complex
structure on G.
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The Hulanicki-Gaveau-Cygan heat kernel

In a group of Heisenberg type G consider the heat operator ∂t −L . The
fundamental solution of this operator with pole at the group identity is
given by

p(z , σ, t) =
2k

(4πt)
m
2

+k

∫
Rk

e−
i
t
〈σ,λ〉

(
|λ|

sinh |λ|

)m
2

e
− |z|

2

4t
|λ|

tanh |λ| dλ,

where as before I have identified a point g ∈ G with its logarithmic (Lie
algebra) coordinates (z , σ) ∈ Rm × Rk . This formula was independently
obtained by Hulanicki and Gaveau for the Heisenberg group, and was
subsequently generalised by Cygan to all groups of step two 11.

We are going to build on variants of this formula to define Ls .

11for new self-contained PDE approach, see N. Garofalo & G. Tralli, Mehler met
Ornstein and Uhlenbeck: the geometry of Carnot groups of step two and their heat
kernels. Preprint 2020 (ArXiv: 2007.10862)
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The conformal parabolic extension problem

From the point of view of conformal geometry, the true counterpart of the
parabolic extension problem for (∂t −∆)s described in the opening of my
talk is as follows. Let G be a group of Heisenberg type with a given
horizontal Laplacian L . Given a function u ∈ C∞0 (G× Rt), find a
function U ∈ C∞(G× Rt × R+

y ) such that{
P(s)U

def
= ∂2U

∂y2 + 1−2s
y

∂U
∂y + y2

4 ∆σU + LU − ∂U
∂t = 0, in G× Rt × R+

y ,

U(g , t, 0) = f (g , t),

The big fact is that the fundamental solution of the operator P(s) can be
computed “explicitly”. The reason for this is that P(s) must be considered
as a parabolic Baouendi-Grushin operator in the space with fractal
dimension Rm+2(1−s) × Rk × (0,∞).
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To explain this comment let me make the crucial observation that, in a
group of Heisenberg type G, the relevant heat equation associated with
the above parabolic extension problem is

∆wU +
|w |2

4
∆σU + LU − ∂tU = 0, (0.16)

where now (z , σ) ∈ G, t > 0. Here, as before, I am thinking of the
variable w as running in the space with fractal dimension R2(1−s). The
link between the PDE (0.16) and the one in the extension problem is seen
by observing that, if y = |w |, then on a function f (w) = ψ(y) we have
∆w f = ∂yyψ + 1−2s

y ∂yψ. Now, in a group of Heisenberg type the
horizontal Laplacian is given by

L = ∆z +
|z |2

4
∆σ +

k∑
`=1

Θ`∂σ` ,

where Θ` =
∑m

s=1〈J(ε`)z , es〉∂zs and J : V2 → End(V1) is the Kaplan
mapping.
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If one looks for solutions U which are spherically symmetric in the
horizontal variable z ∈ Rm, then a calculation shows that Θ`U = 0 for
every ` = 1, ..., k, and the extension PDE (0.16) becomes

∆wU + ∆zU +
|w |2 + |z |2

4
∆σU − ∂tU = 0.

Remarkably, this is a parabolic Baouendi-Grushin equation in
Rm+2(1−s) × Rk × (0,∞) whose fundamental solution we can explicitly
compute as a Fourier integral along the group center 12:

q(s)((z , σ), t, y)=
2k

(4πt)
m
2

+k+1−s

∫
Rk

e−
i
t
〈σ,λ〉

(
|λ|

sinh |λ|

)m
2

+1−s
(0.17)

×e−
|z|2+y2

4t
|λ|

tanh |λ| dλ.

12see N. Garofalo & G. Tralli, Mehler met Ornstein and Uhlenbeck: the geometry of
Carnot groups of step two and their heat kernels. ArXiv 2007.10862
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This function (0.17) plays a pervasive role in this talk. Similarly to the
case of the standard heat equation, I now make the claim that the
conformal invariances of the operator Ls are embedded in the function
(0.17). To see this, consider the companion function q(−s), which is
obtained by changing s into −s. Such function is the fundamental solution
of the intertwined operator

P(−s)
def
=

∂2

∂y2
+

1 + 2s

y

∂

∂y
+

y2

4
∆σ + L − ∂

∂t
,

and the two operators P(±s) are linked by the Bessel intertwining relations{
P(s)

(
y2sq(−s)

)
= y2sP(−s) q(−s) = 0,

P(−s)

(
y−2sq(s)

)
= y−2sP(s) q(s) = 0.
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of the intertwined operator

P(−s)
def
=

∂2

∂y2
+

1 + 2s

y

∂

∂y
+

y2

4
∆σ + L − ∂

∂t
,

and the two operators P(±s) are linked by the Bessel intertwining relations{
P(s)

(
y2sq(−s)

)
= y2sP(−s) q(−s) = 0,

P(−s)

(
y−2sq(s)

)
= y−2sP(s) q(s) = 0.
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To unravel the conformal geometry in the parabolic extension problem we
note that, from Bochner’s subordination principle, we know that

e(s)((z , σ, y)
def
=

∫ ∞
0

q(s)((z , σ), t, y)dt (0.18)

is a fundamental solution with pole at the origin of the time-independent
part of P(s), i.e., the above discussed CR extension operator

L(s) =
∂2

∂y2
+

1− 2s

y

∂

∂y
+

y2

4
∆σ + L .

This observation leads us to state our first main result. We introduce the
constant

C(s)(m, k) =
2

m
2

+2k−3s−1Γ( 1
2 (m2 + 1− s))Γ( 1

2 (m2 + k − s))

π
m+k+1

2 Γ(s)
. (0.19)
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We have the following

Theorem

Let 0 < s ≤ 1. In any group of Heisenberg type G, the distribution
e(s)((z , σ, y) defined by (0.18), in the thick space G× R+

y , is given by

e(s)((z , σ), y) =
Γ(s)

(4π)1−s C(s)(m, k) ((|z |2 + y2)2 + 16|σ|2)−
1
4

(m+2k−2s),

where in C(s)(m, k) is given as in (0.19). An equation similar to this holds
if we replace s with −s, provided that Γ(s) is replaced by |Γ(−s)|.

I emphasise that this theorem represents the CR counterpart of the above
mentioned simple formula∫ ∞

0
q(±s)(x , y , t)dt =

Γ(n∓2s
2 )

π
n
2
∓s (|x |2 + y2)−

n∓2s
2 . (0.20)

Its proof, however, is not “simple”.
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With the previous theorem in hands, our second main result is the
following CR counterpart of the dimension-free identity (0.7).

Theorem (Geometric intertwining)

Let G be a group of Heisenberg type and let s ∈ (0, 1). For every g ∈ G
and y > 0 one has

Ls(e(s)(·, y))(g) = (2πy)2se(−s)(g , y). (0.21)

Before I discuss (0.21), let me stress that the combination of the latter
two theorems =⇒ the following result.
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Theorem

Let G be a Lie group of Heisenberg type. For every (z , σ) ∈ G and y > 0
one has

Ls

(
((|z |2 + y2)2 + 16|σ|2)−

Q−2s
4

)
(0.22)

=
Γ
(
m+2+2s

4

)
Γ
(
Q+2s

4

)
Γ
(
m+2−2s

4

)
Γ
(
Q−2s

4

)(4y)2s((|z |2 + y2)2 + 16|σ|2)−
Q+2s

4 .

The nonlinear, nonlocal equation (0.22) represents the sub-Riemannian
counterpart of (0.1). The operator (−∆)s has been replaced by the
conformal fractional horizontal Laplacian Ls . A remarkable byproduct of
the equation (0.22) is that it immediately provides explicit global solutions
to the nonlocal CR Yamabe equation

Lsu = u
Q+2s
Q−2s .
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Few words for the non-experts...

If one looks at the functions in (0.22) it should be clear that they are very
different from the corresponding ones found by Aubin, Talenti and Lieb in
the Euclidean case. For instance, they are not functions of the gauge
N(z , σ) = (|z |4 + 16|σ|2)1/4, whereas their Euclidean counterparts are
spherically symmetric! A glimpse into such discrepancy can be achieved by
considering that in Hn there is a “stereographic projection”, called the
Cayley transform. Via such projection, the Heisenberg group Hn ∼= Cn ×R
with coordinates (z , σ) has a conformal identification with the boundary of
the unit ball in Cn+1, the sphere S2n+1 with its standard CR structure.
Analogously to the term (|x |2 + 1)−1 in the stereographic projection, the
function |i + (4σ + i |z |2)|−2 = ((|z |2 + 1)2 + 16σ2)−1 appears as the
conformal factor in the Cayley transform, and in fact appropriate powers of
such factor played a central role in the works of Jerison and Lee on the CR
Yamabe problem, and Frank and Lieb on the best constant in the Sobolev
embedding. It is not by chance that powers of the same conformal factor
also appear in (0.22).
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Similarly to the classical case discussed in the opening, to prove (0.21) we
do not adopt the spectral definition (0.14) of Ls . Instead, we use the
following equivalent notion which closely resembles Balakrishnan’s formula:

Lsu(g)
def
= − s

Γ(1− s)

∫ ∞
0

1

t1+s

[
P(−s),tu(g)− u(g)

]
dt. (0.23)

The linear operator P(−s),t in (0.23) needs an explanation, but let me say
right-away that the equivalence between the original definition (0.14) of
Ls of Branson-Fontana-Morpurgo and that in (0.23) was established by
Roncal and Thangavelu.

With the fundamental solution q(s) of the extension operator P(s), and its
companion q(−s), we define{

K(s)((z , σ), t) = (4πt)1−sq(s)((z , σ), t, 0),

K(−s)((z , σ), t) = (4πt)1+sq(−s)((z , σ), t, 0).

Nicola Garofalo (University of Padova) A heat equation approach, etc. Jul/19/2021 37 / 46
37 / 46



Similarly to the classical case discussed in the opening, to prove (0.21) we
do not adopt the spectral definition (0.14) of Ls .

Instead, we use the
following equivalent notion which closely resembles Balakrishnan’s formula:

Lsu(g)
def
= − s

Γ(1− s)

∫ ∞
0

1

t1+s

[
P(−s),tu(g)− u(g)

]
dt. (0.23)

The linear operator P(−s),t in (0.23) needs an explanation, but let me say
right-away that the equivalence between the original definition (0.14) of
Ls of Branson-Fontana-Morpurgo and that in (0.23) was established by
Roncal and Thangavelu.

With the fundamental solution q(s) of the extension operator P(s), and its
companion q(−s), we define{

K(s)((z , σ), t) = (4πt)1−sq(s)((z , σ), t, 0),

K(−s)((z , σ), t) = (4πt)1+sq(−s)((z , σ), t, 0).
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It is immediate to recognise from the formula (0.17) for q(s)((z , σ), t, y)
that

K(s)((z , σ), t) =
2k

(4πt)
m
2

+k

∫
Rk

e−
i
t
〈σ,λ〉

(
|λ|

sinh |λ|

)m
2

+1−s
e
− |z|

2

4t
|λ|

tanh |λ| dλ.

Note that, in the local case s = 1, the kernel K(s) coincides with the
Gaveau-Hulanicki-Cygan heat kernel p((z , σ), t). Denote now by
K(−s)((z , σ), t) the function obtained by changing s into −s in the
previous definition. With a slight abuse of notation we let

K(±s)(g , g ′, t) = K(±s)(g−1 ◦ g ′, t),

and then consider the two linear operators on Lp(G) defined by the formula

P(±s),tu(g) =

∫
G

K(±s)(g , g ′, t)u(g ′)dg ′.

The motivation for the operator P(−s),t is provided by (0.23). The one for
P(s),t is unraveled by the next slide.
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Conformal Riesz operators

Now that we have the heat equation based definition (0.23) of the
nonlocal operators Ls , we use the operators P(s),t , intertwined with
P(−s),t , to introduce the following conformal version of the Riesz operators

I(2s)u(g) =
1

Γ(s)

∫ ∞
0

ts−1P(s),tu(g)dt.

I can now state our third main result which represents the geometric
counterpart of the non-conformal inversion formula (0.10) stated above.

Theorem (Invertibility of Ls)

For every 0 < s < 1 and u ∈ C∞0 (G) one has(
I(2s) ◦Ls

)
u =

(
Ls ◦I(2s)

)
u = u.
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I emphasise that the proof of this theorem is not as simple as the one for
the corresponding non-geometric case. Our approach is based on some
lemmas of independent interest which are purely inspired to semigroup
methods and does not use any non-commutative harmonic analysis. A key
role is played by a representation formula for the group convolution of the
intertwined kernels K(s)(·, t) and K(−s)(·, τ) and also by a remarkable
cancellation property.

A related circle of ideas is at the core of our proof of the geometric
intertwining formula (0.21), but some additional complications creep up.

Our plan is to proceed as closely as possible to the proof of the Euclidean
case outlined above, but we immediately encounter some difficulties. In
the Euclidean setting there are two aspects that play a crucial role: (i) the
same heat kernel p(·, t) occurs both in the expression (0.8) of (−∆)s and
in that of the function E (s); (ii) the Chapman-Kolmogorov identity
(semigroup property) plays a critical role. Both facts (i) and (ii) fail to
hold in the geometric setting!
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cancellation property.

A related circle of ideas is at the core of our proof of the geometric
intertwining formula (0.21), but some additional complications creep up.

Our plan is to proceed as closely as possible to the proof of the Euclidean
case outlined above, but we immediately encounter some difficulties. In
the Euclidean setting there are two aspects that play a crucial role: (i) the
same heat kernel p(·, t) occurs both in the expression (0.8) of (−∆)s and
in that of the function E (s); (ii) the Chapman-Kolmogorov identity
(semigroup property) plays a critical role. Both facts (i) and (ii) fail to
hold in the geometric setting!
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A third more pervasive complication is represented by the very different
nature of the fundamental solutions of the parabolic extension problems.
But, of course, I must skip technical details...

Let me mention that one crucial consequence of the above invertibility
theorem is that the kernel

E(s)(z , σ) =
1

Γ(s)

∫ ∞
0

ts−1K(s)((z , σ), t)dt

of the conformal Riesz operator I2s provides a fundamental solution for
the operator Ls .
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In the following theorem, which is our fourth main result, we compute
such kernel explicitly.

Theorem (Fundamental solution of Ls)

Let G be a group of Heisenberg type. The following statements hold:

(i) For any 0 < s ≤ 1 one has

E(s)(z , σ)
def
=

1

Γ(s)

∫ ∞
0

ts−1K(s)((z , σ), t)dt =
C(s)(m, k)

N(z , σ)Q−2s
,

where Q = m + 2k is the homogeneous dimension of G,
N(z , σ) = (|z |4 + 16|σ|2)1/4 is the natural gauge, and the constant
C(s)(m, k) is that defined in (0.19) above.

(ii) The distribution E(s) ∈ C∞(G \ {e}) ∩ L1
loc(G), and it provides a

fundamental solution of Ls with pole at the group identity e ∈ G and
vanishing at infinity.
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I note explicitly that in the limiting case s = 1 the above theorem provides
a heat equation proof of Folland’s remarkable formula for the fundamental
solution of L ! But...I have already taken-up too much of your time...

T H A N K Y OU FOR BE I N G H E RE !
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