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INTRODUCTION.

The fractional Laplacian.

For 0 < s < 1, and u ∈ C2
c (R

N), the fractional Laplacian can be defined
as the singular integral operator

(−∆)su(x) = cN,s lim
ϵ→0+

∫
RN\Bϵ(x)

u(x)− u(y)
|x − y|N+2s dy,

for every x ∈ RN where cN,s is a normalized constant, see for example
[Ann. Inst. H. Poincaré-AN (2014)] by Cabré & Sire,

cN,s = 22sπ−N
2 s

Γ(N+2s
2 )

Γ(1 − s)
,

which makes

F ((−∆)su)(ξ) = |ξ|2sû(ξ) for every ξ ∈ RN.

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



INTRODUCTION.

The fractional Laplacian.
For 0 < s < 1, and u ∈ C2

c (R
N), the fractional Laplacian can be defined

as the singular integral operator

(−∆)su(x) = cN,s lim
ϵ→0+

∫
RN\Bϵ(x)

u(x)− u(y)
|x − y|N+2s dy,

for every x ∈ RN where cN,s is a normalized constant, see for example
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INTRODUCTION.

The fractional Laplacian.

The following property of (−∆)s is well known, see e.g. [Hitchhiker’s
guide (2012)] by Di Nezza, Pelatucci, Valdinoci.

ASYMPTOTIC PROPERTIES.

Let u ∈ C2
c (R

N). Then, one has that

lim
s→0+

(−∆)su(x) = u(x) and lim
s→1−

(−∆)su(x) = −∆u(x)

for every x ∈ RN.
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INTRODUCTION.

The logarithmic Laplacian.

Chen & Weth [Comm. Part. Diff. Eq. (2019)] introduced the

logarithmic Laplacian L∆

such that

(−∆)su(x) = u(x) + s L∆ u(x) + o(s) as s → 0+

for u ∈ C2
c (R

N) and x ∈ RN.
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INTRODUCTION.

The logarithmic Laplacian.

A.1 THEOREM [CHEN & WETH’2019].

Let u ∈ Cα
c (R

N), α > 0. Then, one has that

1
d
ds

(−∆)su(x)|s=0
= L∆ u(x),

2 L∆ u(x) = cN P.V.
∫
RN

u(x)1B1(x) − u(y)
|x − y|N dy + ρN u(x),

where

cN =
Γ(N

2 )

πN/2 =
2

ωN

, ρN := 2 ln(2) + ψ(
N
2
)− γ,

γ = −Γ′(1) is the Euler Mascheroni constant, and ψ = Γ′/Γ is the
Digamma function.

3 F (L∆ u)(ξ) = 2 ln |ξ|û(ξ) for every ξ ∈ RN.
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INTRODUCTION.

The logarithmic Laplacian.

APPLICATIONS.

1 Determing the asymptotics as s → 0+ of the Dirichlet eigenvalues
and eigenfunctions of (−∆)s [J. Fourier Anal. Appl.(2022)] by
Feulefack, Jarohs, and Weth;

2 In the geometric context of the 0-fractional perimeter, see [Ann.
Scuola Norm-SCI (2021)] by De Luca, Novaga, and Ponsiglione.

INDEPENDENT DISCOVERY.
In the study of classifying all finite energy solutions of an equation
arising from the Euler-Lagrange equation of a conformally invariant
logarithmic Sobolev inequality, Rupert, T. König & Tang [Adv. in Math.,
2020] also arrived to the logarithmic Laplacian.

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



INTRODUCTION.

The logarithmic Laplacian.

APPLICATIONS.

1 Determing the asymptotics as s → 0+ of the Dirichlet eigenvalues
and eigenfunctions of (−∆)s [J. Fourier Anal. Appl.(2022)] by
Feulefack, Jarohs, and Weth;

2 In the geometric context of the 0-fractional perimeter, see [Ann.
Scuola Norm-SCI (2021)] by De Luca, Novaga, and Ponsiglione.

INDEPENDENT DISCOVERY.
In the study of classifying all finite energy solutions of an equation
arising from the Euler-Lagrange equation of a conformally invariant
logarithmic Sobolev inequality, Rupert, T. König & Tang [Adv. in Math.,
2020] also arrived to the logarithmic Laplacian.

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



AN EXTENSION PROBLEM FOR (−∆)s.

The fractional Laplacian.

A.2 THEOREM [CAFFARELLI & SILVESTRE, COMM. PDE (2007)].

Let 0 < s < 1 and u ∈ C∞
c (RN). Then, there is an s-harmonic extension

ws : RN+1
+ → R of u; more precisely, ws is a distributional solution of

(1)

−div (t1−2s∇ws) = 0 in RN+1
+ ,

ws = u on RN = ∂RN+1
+ ,

and

(2) (−∆)su = −ds lim
t→0+

t1−2s∂tws

with constant ds = 22s−1 Γ(s)
Γ(1 − s)

.
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AN EXTENSION PROBLEM FOR (−∆)s.

The fractional Laplacian.

A.2 THEOREM [CAFFARELLI & SILVESTRE, COMM. PDE (2007)].

Let 0 < s < 1. Then, one has that

(−∆)s = ds Λs,

where Λs is the Dirichlet-to-Neumann map associated with
A = −div (t1−2s∇ws) on R

N+1
+ given by

C∞
c (RN) ∋ u 7→ Λsu := − lim

t→0+
t1−2s∂tws.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN INFORMAL DERIVATION (NO.1)

Our starting point is

POISSON KERNEL REPRESENTATION (CAFFARELLI & SILVESTRE
[COMM. PDE’07], CABRÉ & SIRE [ANN. INST. H. POIN.’14].

Let 0 < s < 1 and u ∈ Cc(RN). Then, the weak solution ws of the
exentions problem (1) admits the representation

ws(x, t) = pN,s t2s
∫
RN

(|x − x̃|2 + t2)−
N+2s

2 u(x̃)dx̃

for every (x, t) ∈ RN+1
+ , where the constant pN,s is given by

pN,s = π−N
s s

Γ(N
2 + s)

Γ(1 + s)
.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN INFORMAL DERIVATION (NO.1)

By reflection with respect to the variable “t”:

ws(x, t) := pN,s |t|2s
∫
RN

(|x − x̃|2 + |t|2)−
N+2s

2 u(x̃)dx̃

for every (x, t) ∈ RN+1 with t ̸= 0, one obtains that ws is a weak
solution of

−div (|t|1−2s∇ws) = 0 on RN × {t : |t| > 0}.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN INFORMAL DERIVATION (NO.1)

Let u ∈ C2
c (R

N). Since

vs(x, t) := 2
ws(x, t)− (1 − |t|2s) u(x)

s |t|2s = O(1) as s → 0+

we make the following

ASYMPTOTIC ANSATZ.

ws(x, t) = (1 − |t|2s) u(x) +
s |t|2s

2
vs(x, t)

for ever (x, t) ∈ RN+1 with t ̸= 0 and every small enough s > 0.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN INFORMAL DERIVATION (NO.1)

Recall that (−∆)s = ds Λs,

i.e.,

(−∆)su(x) = −ds lim
t→0+

t1−2s∂tws(x, t).

By the asymptotic Ansatz (0 < s << 1), for t > 0,

ws(x, t) = (1 − t2s) u(x) +
s t2s

2
vs(x, t),

one has that

∂tws(x, t) = −2 s t2s−1 u(x) + s2 t2s−1 vs(x, t) +
s t2s

2
∂tvs(x, t)

and so,

t1−2s∂tws(x, t) = −2 s u(x) + s2 vs(x, t) +
s t
2

∂tvs(x, t).
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
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Note,

lim
s→0+

s ds =
1
2

and

lim
s→0+

2sds − 1
s

= lim
s→0+

22s Γ(s+1)
Γ(1−s) − 1

s
= 2 ln 2 + 2Γ′(1) = 2(ln 2 − γ),

where γ = −Γ′(1) is the Euler Mascheroni constant.

Further, we make the following assumption.

ASSUMPTION.

There exist v0 ∈ C(RN+1) such that

lim
s→0+

sup
(x,t)∈B

|vs(x, t)− v0(x, t)| = 0 for every B ⋐ RN+1.
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Then, sending s → 0+ in

(−∆)su(x)− u(x)
s

=
2 sds − 1

s
u(x)− ds s vs(x, 0),

one obtains

(3) L∆ u(x) = lim
s→0+

(−∆)su(x)− u(x)
s

= 2 (ln 2− γ) u(x)− 1
2

v0(x, 0).

AIM.
We need to identify v0!
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LEMMA 1.

Let 0 < s < 1
2 and u ∈ C2

c (R
N). Then the weak solution

ws : RN+1 → R of the extension problem (1) satisfies

(4) − div (|t|1−2s∇ws) =
2
ds
[(−∆)su]LN × δ{0} in RN+1

in the distributional sense,

i.e.,∫
RN+1

ws

(
−div (|t|1−2s∇φ)

)
d(x, t) =

2
ds

∫
RN

[(−∆)su](x)φ(x, 0)dx

for every φ ∈ C∞
c (RN+1).
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LEMMA 2.

Let 0 < s < 1
2 and u ∈ C2

c (R
N). Then the function vs : RN+1 → R

given by (for 0 < s << 1)

vs(x, t) := 2
ws(x, t)− (1 − |t|2s) u(x)

s |t|2s

is a distributional solution in RN+1 of

−div (|t|∇vs) = 2 s
t
|t|∂tvs + 2(svs − 2u)LN × δ{0}

+
4

s ds
(−∆)suLN × δ{0} + 2 t| |t|

−2s − 1
s

∆xu.
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This means that

− 4
s ds

∫
RN

(−∆)su(x)φ(x, 0)dx

= 2
∫
RN+1

|t| |t|
−2s − 1

s
(
∆xu(x)

)
φ(x, t)d(x, t)− 8

∫
RN

u(x)φ(x, 0)dx

+
∫
RN+1

vs div (|t|∇φ)d(x, t) + 4s
∫
RN

vs(x, 0)φ(x, 0)dx

+ 2s
∫
RN+1

∂tvs
t
|t| φ d(x, t)

for every φ ∈ C∞
c (RN+1). Since

lim
s→0+

(−∆)su(x) = u(x) on Rd

and by the assumption

lim
s→0+

vs = v0 in L∞
loc(R

N+1),
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Sending s → 0+ in the last integral equation

leads to

−8
∫
RN

u(x)φ(x, 0)dx = 2
∫
RN+1

|t|(−2 ln |t|)∆xu(x) φ(x, t)d(x, t)

− 8
∫
RN

u(x)φ(x, 0)dx

+
∫
RN+1

v0 div (|t|∇φ)d(x, t)

for every φ ∈ C∞
c (RN+1).
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LEMMA 3.

Let u ∈ C2
c (R

N) and suppose that there is a v0 ∈ C(RN+1) such that

lim
s→0+

vs = v0 in L∞
loc(R

N+1).

Then, v0 is a distributional solution of

−div (|t|∇v0) = −4 |t| ln |t|∆xu in RN+1.
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LEMMA 4.

Let u ∈ C2
c (R

N) and suppose that there is a v0 ∈ C(RN+1) such that

lim
s→0+

vs = v0 in L∞
loc(R

N+1).

Then, wu given by

wu(x, t) :=
1
4

v0(x, t)− u(x) ln |t|

for every (x, t) ∈ RN+1 with t ̸= 0, is a distributional solution of

(5) − div (|t|∇wu) = 2 uLN × δ{0} in RN+1.
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PROOF OF LEMMA 4.
Note,

−div (|t|∇wu) = −1
4

div (|t|∇v0) + div (|t|∇(u ln |t|))

and v = ln |t| is a distributional solution of

∂t(|t|∂t ln |t|) = 2 δ{0} in R.

Thus and by Lemma 3.,

−div (|t|∇wu) = − |t|
(
ln |t|

)
∆xu + |t|

(
ln |t|

)
∆xu + u ∂t(|t|∂t ln |t|)

= u 2LN × δ{0}

in the distributional sense in RN+1.
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Due to Lemma 4, we have that

wu(x, t) :=
1
4

v0(x, t)− u(x) ln |t|

is a distributional solution of

(5) −div (|t|∇wu) = 2 uLN × δ{0} in RN+1.

Note, (5) means that

wu is a distributional solution of the inhomogeneous Neumann problem
−div (t∇wu) = 0 in RN+1

+ ,

− lim
t→0+

t∂twu = u on RN.
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Further,
1
2

v0(x, 0) = 2 lim
t→0

(
wu(x, t) + u(x) ln |t|

)

and according to (3),

L∆ u(x) = lim
s→0+

(−∆)su(x)− u(x)
s

= 2 (ln 2 − γ) u(x)− 1
2

v0(x, 0).

So, we get for u ∈ C2
c (R

N) that

L∆ u(x) = 2 (ln 2 − γ) u(x)− 2 lim
t→0

(
wu(x, t) + u(x) ln |t|

)
.
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Therefore, we have formally justified that the logarithmic Laplacian L∆

admits the following extension property.

One has that
L∆ = 2 (ln 2 − γ) id − 2 ΛEx,−1

0

where ΛEx,−1
0 is the Neumann-to-Dirichlet map with an excess term

associated with −div (t∇·) given by

u 7→ ΛEx,−1
0 u := lim

t→0

(
wu(x, t) + u(x) ln |t|

)
.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
DERIVATION OF A POISSON KERNEL REPRESENTATION.

If one inserts the Poisson kernel representation

ws(x, t) = pN,s t2s
∫
RN

(|x − x̃|2 + t2)−
N+2s

2 u(x̃)dx̃

of the weak solution ws of the exentions problem (1) for (−∆)s into

1
2 vs(x, t) =

ws(x, t)− (1 − |t|2s) u(x)
s |t|2s

and subsequently, sends s → 0+, then one finds

1
2 v0(x, t) = cN

∫
RN

(|x − x̃|2 + |t|2)−
N
2 u(x̃) dx̃ + 2 ln |t| u(x)

for every (x, t) ∈ RN+1 with t ̸= 0, and cN = 2/ωN.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
DERIVATION OF A POISSON KERNEL REPRESENTATION.

Consider the space

L1
0(R

N) := L1(RN, dx/(1+ |x|)N) :=
{

u ∈ L1
loc(R

N)
∣∣∣ ∫
RN

|u(x)|dx
(1+|x|)N < ∞

}
.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

THEOREM 1 [CHEN, H., WETH’23].

For every u ∈ L1
0(R

N), there is a unique distributional solution

wu ∈ L1
loc(R

N+1) ∩ C∞(RN × (R \ {0}))

of the Poisson problem

(6) − div (|t| ∇wu) = 2 u LN ⊗ δ0 in RN+1

satisfying
lim
|t|→∞

wu(x, t) = 0 for every x ∈ RN,

where LN denotes the Lebesgue-measure on RN and δ0 the
Dirac-measure on R at t = 0.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

THEOREM 1 [CHEN, H., WETH’23] (CONT.).

In particular, for u ∈ L1
0(R

N), the following statements hold.

1. wu can be represented via the Poisson formula

wu(x, t) =
cN
2

∫
RN

u(x̃)
(|x − x̃|2 + |t|2)N/2 dx̃

for every (x, t) ∈ RN × (R \ {0}), and wu satisfies

L∆ u = 2(ln 2 − γ)u − 2 lim
t→0

(
wu + u log |t|

)
in the distributional sense in RN, and

lim
|t|→0+

wu(x, t)
ln |t| = −u(x) in L1

loc(R
N).
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

THEOREM 1 [CHEN, H., WETH’23] (CONT.).

Further, the following statement holds.

2. If u ∈ L1
0(R

N) ∩ C(RN), then wu satisfies the Neumann boundary
condition

− lim
t→0+

t∂twu(·, t) = u in L1
loc(R

N),

and, in particular, wu is a distributional solution of the Neumann
problem on the half-space RN+1

+ ,
−div (t∇wu) = 0 in RN+1

+ ,

− lim
t→0+

t∂twu(·, t) = u on RN.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

THEOREM 1 [CHEN, H., WETH’23] (CONT.).

Further, the following statement holds.

3. If u ∈ L1
0(R

N) and Dini continuous at x ∈ RN, then

L∆ u(x) = 2 (ln 2 − γ) u(x)− 2
(

wu(x, t) + ln |t| u(x)
)
(1 + o(1))

(in the strong sense) in R as |t| → 0+, where o(1) → 0 as |t| → 0+.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

REMARK.

By definition, the distributional limit

L∆ u = 2(ln 2 − γ)u − 2 lim
t→0

(
wu + u log |t|

)
means that∫

RN
uL∆ ϕdx = 2(ln 2 − γ)

∫
RN

uϕ dx

− 2 lim
t→0+

∫
RN

(
wu(x, t) + u ln t

)
ϕ(x) dx

for all ϕ ∈ C∞
c (RN).

In fact, we shall show that this property already holds if
ϕ ∈ CD

c (R
N), where CD

c (R
N) denotes the space of uniformly Dini

continous functions on RN with compact support.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

REMARK.
A direct consequence of this property is an alternative representation
of the energy

ϕ 7→ EL(ϕ, ϕ) =
cN
2

∫
|x−x̃|<1

(ϕ(x)− ϕ(x̃))2

|x − x̃|N dxdx̃

− cN
2

∫
|x−x̃|≥1

ϕ(x)ϕ(x̃)
|x − x̃|N dxdx̃ +

ρN
2

∫
RN

ϕ(x)2 dx.

associated with L∆ , which has been introduced by Chen & Weth
[Comm. Part. Diff. Eq. (2019)].
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
MAIN RESULT.

COROLLARY 1 [CHEN, H., WETH’23].

For every ϕ ∈ CD
c (R

N), one has that

EL(ϕ, ϕ) =
∫
RN

ϕ L∆ ϕ dx

= 2(ln 2 − γ)∥ϕ∥2
L2(RN)

− 2 lim
t→0+

∫
RN

(
ϕ(x)wϕ(x, t) + ϕ2(x) ln t

)
dx.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
PROPERTIES.

THEOREM 2 [CHEN, H., WETH’23].

For u ∈ L1
0(R

N), let wu be a solution of

(5) −div (|t|∇wu) = 2 uLN ⊗ δ{0} in D′(RN+1).

If one considers wu(x, |y|) as a function on RN+2, then

(7) − ∆wu = 2π uLN ⊗ δ{(0,0)} in D′(RN+2).
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

Proof.

Let φ ∈ C∞
c (RN+2), and define

φ̃(x, t) =
∫ 2π

0
φ(x, |t| eiθ)dθ for (x, t) ∈ RN+1.

Then, for |y| = |(y1, y2)| and by representing y in polar coordinates,∫
RN+2

wu∆φ d(x, y) =
∫
RN

∫
R2

wu(x, |y|)∆x φ(x, y) + ∆y φ(x, y)dy dx

=
∫
RN

∫ ∞

0
wu(x, r)

∫ 2π

0

[
∆x φ(x, reiθ) + ∂r(r ∂r φ(x,reiθ))

r

+ ∂θθ φ(x,reiθ)
r2

]
dθ rdr dx

=
∫
RN

∫ ∞

0
wu(x, r)

[
r∆x φ̃(x, r) + ∂r(r ∂r φ̃(x, r))

]
dr dx

=
∫
RN

∫ ∞

0
wu(x, r)div (r∇ϕ̃(x, r)) dr dx

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

Proof.
Let φ ∈ C∞

c (RN+2),

and define

φ̃(x, t) =
∫ 2π

0
φ(x, |t| eiθ)dθ for (x, t) ∈ RN+1.

Then, for |y| = |(y1, y2)| and by representing y in polar coordinates,∫
RN+2

wu∆φ d(x, y) =
∫
RN

∫
R2

wu(x, |y|)∆x φ(x, y) + ∆y φ(x, y)dy dx

=
∫
RN

∫ ∞

0
wu(x, r)

∫ 2π

0

[
∆x φ(x, reiθ) + ∂r(r ∂r φ(x,reiθ))

r

+ ∂θθ φ(x,reiθ)
r2

]
dθ rdr dx

=
∫
RN

∫ ∞

0
wu(x, r)

[
r∆x φ̃(x, r) + ∂r(r ∂r φ̃(x, r))

]
dr dx

=
∫
RN

∫ ∞

0
wu(x, r)div (r∇ϕ̃(x, r)) dr dx

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

Proof.
Let φ ∈ C∞

c (RN+2), and define

φ̃(x, t) =
∫ 2π

0
φ(x, |t| eiθ)dθ for (x, t) ∈ RN+1.

Then, for |y| = |(y1, y2)| and by representing y in polar coordinates,∫
RN+2

wu∆φ d(x, y) =
∫
RN

∫
R2

wu(x, |y|)∆x φ(x, y) + ∆y φ(x, y)dy dx

=
∫
RN

∫ ∞

0
wu(x, r)

∫ 2π

0

[
∆x φ(x, reiθ) + ∂r(r ∂r φ(x,reiθ))

r

+ ∂θθ φ(x,reiθ)
r2

]
dθ rdr dx

=
∫
RN

∫ ∞

0
wu(x, r)

[
r∆x φ̃(x, r) + ∂r(r ∂r φ̃(x, r))

]
dr dx

=
∫
RN

∫ ∞

0
wu(x, r)div (r∇ϕ̃(x, r)) dr dx

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

Proof.
Let φ ∈ C∞

c (RN+2), and define

φ̃(x, t) =
∫ 2π

0
φ(x, |t| eiθ)dθ for (x, t) ∈ RN+1.

Then, for |y| = |(y1, y2)| and by representing y in polar coordinates,∫
RN+2

wu∆φ d(x, y) =
∫
RN

∫
R2

wu(x, |y|)∆x φ(x, y) + ∆y φ(x, y)dy dx

=
∫
RN

∫ ∞

0
wu(x, r)

∫ 2π

0

[
∆x φ(x, reiθ) + ∂r(r ∂r φ(x,reiθ))

r

+ ∂θθ φ(x,reiθ)
r2

]
dθ rdr dx

=
∫
RN

∫ ∞

0
wu(x, r)

[
r∆x φ̃(x, r) + ∂r(r ∂r φ̃(x, r))

]
dr dx

=
∫
RN

∫ ∞

0
wu(x, r)div (r∇ϕ̃(x, r)) dr dx

D. HAUER, SYDNEY, 18 DECEMBER 2023 AN EXTENSION PROBLEM FOR THE LOGARITHMIC LAPLACIAN



AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

Proof.
Recall,

wu is radially symmetric in the r-variable,

wu is a solution of

(5) −div (|t|∇wu) = 2 uLN × δ{0} in D′(RN+1).

Thus,∫
RN+2

wu∆φ d(x, y) =
∫
RN

∫ ∞

0
wu(x, r)div (r∇φ̃(x, r)) dr dx

=
1
2

∫
RN+1

wu(x, t)div (|t|∇φ̃(x, t)) dxdt

= −
∫
RN

u(x)ϕ̃(x, 0) dx

= −2π
∫
RN

u(x)ϕ(x, 0) dx.

This complete the proof of Theorem 2.
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AN EXTENSION PROBLEM FOR THE LOG. LAPLACIAN.
AN APPLICATION.

The weak unique continuation property.

THEOREM 3 [CHEN, H., WETH’23].

Let u ∈ L1
0(R

N) and suppose there is an open, non-empty subset

Ω ⊆ RN such that

u = 0 on Ω and L∆ u = 0 on Ω.

Then, u = 0 on RN.
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Thank you for your attention!!!
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