On an overdetermined problem involving the fractional Laplacian

Jack Thompson

University of Western Australia

Asia-Pacific Analysis and PDE Seminar

 May 2023
Why are pipes cylindrical?

Why are pipes cylindrical?

Why are pipes cylindrical?

Let $u: \Omega \rightarrow \mathbb{R}$ be the streamline function.

Why are pipes cylindrical?

Let $u: \Omega \rightarrow \mathbb{R}$ be the streamline function. Then

$$
\left\{\begin{aligned}
-\Delta u=1, & \text { in } \Omega \\
u=0, & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Delta v:=\sum_{j=1}^{n} \frac{\partial^{2} v}{\partial x_{j}^{2}}$.

Why are pipes cylindrical?

Let $u: \Omega \rightarrow \mathbb{R}$ be the streamline function. Then

$$
\left\{\begin{aligned}
&-\Delta u=1, \\
& \text { in } \Omega \\
& u=0, \\
& \text { on } \partial \Omega .
\end{aligned}\right.
$$

where $\Delta v:=\sum_{j=1}^{n} \frac{\partial^{2} v}{\partial x_{j}^{2}}$. Moreover, assume that

$$
\partial_{\nu} u=\text { const. } \quad \text { on } \partial \Omega .
$$

Why are pipes cylindrical?

Let $u: \Omega \rightarrow \mathbb{R}$ be the streamline function. Then

$$
\left\{\begin{aligned}
&-\Delta u=1, \text { in } \Omega \\
& u=0, \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Delta v:=\sum_{j=1}^{n} \frac{\partial^{2} v}{\partial x_{j}^{2}}$. Moreover, assume that

$$
\partial_{\nu} u=\text { const. } \quad \text { on } \partial \Omega .
$$

This constant is a Lagrange multiplier corresponding to the assumption that u maximises the torsional rigidity:

$$
\tau(\Omega):=\sup _{\substack{v \in H_{0}^{1}(\Omega) \\ v \neq 0}} \frac{\left(\int_{\Omega} v d x\right)^{2}}{\int_{\Omega}|\nabla v|^{2} d x}
$$

Serrin's Problem

Goal: Classify regions which admit solutions to the PDE and the overdetermined conditions.

Serrin's Problem

Goal: Classify regions which admit solutions to the PDE and the overdetermined conditions.

Theorem (Serrin, '71)

Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with C^{2} boundary. If there exists a solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ that satisfies

$$
\left\{\begin{aligned}
-\Delta u & =1, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega \\
\partial_{\nu} u & =\text { const., } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

then Ω is a ball.

Serrin's Problem

Goal: Classify regions which admit solutions to the PDE and the overdetermined conditions.

Theorem (Serrin, '71)

Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with C^{2} boundary. If there exists a solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ that satisfies

$$
\left\{\begin{aligned}
-\Delta u & =1, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega \\
\partial_{\nu} u & =\text { const., } & & \text { on } \partial \Omega
\end{aligned}\right.
$$

then Ω is a ball.
Proof relies on the powerful technique now known as the method of moving planes.

The fractional Laplacian

- A nonlocal/integro-differential operator given by

$$
(-\Delta)^{s} u(x)=c_{n, s} \text { P.V. } \int_{\mathbb{R}^{n}}(u(x)-u(x+y)) \frac{d y}{|y|^{n+2 s}}
$$

where $s \in(0,1)$ and $c_{n, s}>0$ is a normalisation constant.

The fractional Laplacian

- A nonlocal/integro-differential operator given by

$$
(-\Delta)^{s} u(x)=c_{n, s} \text { P.V. } \int_{\mathbb{R}^{n}}(u(x)-u(x+y)) \frac{d y}{|y|^{n+2 s}}
$$

where $s \in(0,1)$ and $c_{n, s}>0$ is a normalisation constant.

- 'Fractional Laplacian' because

$$
(-\Delta)^{s} \circ(-\Delta)^{s^{\prime}}=(-\Delta)^{s+s^{\prime}}
$$

and

$$
\lim _{s \rightarrow 1^{-}}(-\Delta)^{s} u(x)=-\Delta u(x)
$$

The fractional Laplacian

- A nonlocal/integro-differential operator given by

$$
(-\Delta)^{s} u(x)=c_{n, s} \text { P.V. } \int_{\mathbb{R}^{n}}(u(x)-u(x+y)) \frac{d y}{|y|^{n+2 s}}
$$

where $s \in(0,1)$ and $c_{n, s}>0$ is a normalisation constant.

- 'Fractional Laplacian' because

$$
(-\Delta)^{s} \circ(-\Delta)^{s^{\prime}}=(-\Delta)^{s+s^{\prime}}
$$

and

$$
\lim _{s \rightarrow 1^{-}}(-\Delta)^{s} u(x)=-\Delta u(x)
$$

Parallel surface problem

Let $\Omega=G+B_{R}$ where

$$
A+B:=\{a+b \text { such that } a \in A, b \in B\} .
$$

Suppose that G is a bounded open set in \mathbb{R}^{n} with C^{1} boundary, $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz, and $\Omega=G+B_{R}$.

Theorem (Dipierro, Poggesi, T, Valdinoci,'22)

Suppose that there exists a non-negative function $u \in C^{2}(\Omega) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ that is not identically zero and satisfies

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =f(u) & & \text { in } \Omega \\
u & =0 & & \text { in } \mathbb{R}^{n} \backslash \Omega \\
u & =\text { const. } & & \text { on } \partial G .
\end{aligned}\right.
$$

Then u is radially symmetric, $u>0$ in Ω, and Ω (and hence G) is a ball.

Suppose that G is a bounded open set in \mathbb{R}^{n} with C^{1} boundary, $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz, and $\Omega=G+B_{R}$.

Theorem (Dipierro, Poggesi, T, Valdinoci,'22)

Suppose that there exists a non-negative function $u \in C^{2}(\Omega) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ that is not identically zero and satisfies

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =f(u) & & \text { in } \Omega \\
u & =0 & & \text { in } \mathbb{R}^{n} \backslash \Omega \\
u & =\text { const. } & & \text { on } \partial G .
\end{aligned}\right.
$$

Then u is radially symmetric, $u>0$ in Ω, and Ω (and hence G) is a ball.

- $s=1$: [Ciraolo, Magnanini, Sakaguchi, '15]

Suppose that G is a bounded open set in \mathbb{R}^{n} with C^{1} boundary, $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz, and $\Omega=G+B_{R}$.

Theorem (Dipierro, Poggesi, T, Valdinoci, '22)

Suppose that there exists a non-negative function $u \in C^{2}(\Omega) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ that is not identically zero and satisfies

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =f(u) & & \text { in } \Omega \\
u & =0 & & \text { in } \mathbb{R}^{n} \backslash \Omega \\
u & =\text { const. } & & \text { on } \partial G .
\end{aligned}\right.
$$

Then u is radially symmetric, $u>0$ in Ω, and Ω (and hence G) is a ball.

- $s=1$: [Ciraolo, Magnanini, Sakaguchi, '15]
- $0<s<1$ and $f \equiv 1$: [Ciraolo, Dipierro, Poggesi, Pollastro, Valdinoci, '21]

Overview of proof

Overview of proof

Let $e \in \mathbb{S}^{n-1}, \mu \in \mathbb{R}$, and $T_{\mu}=\{x \cdot e=\mu\}$. Define

$$
v_{\mu}(x)=u(x)-u\left(\text { reflection of } x \text { across } T_{\mu}\right)
$$

Overview of proof

Let $e \in \mathbb{S}^{n-1}, \mu \in \mathbb{R}$, and $T_{\mu}=\{x \cdot e=\mu\}$. Define

$$
v_{\mu}(x)=u(x)-u\left(\text { reflection of } x \text { across } T_{\mu}\right)
$$

Goal: Prove that $v_{\mu} \equiv 0$ when $\mu=\lambda:=$ critical time.

Overview of proof

Step 1: For all $\mu \in[\lambda, \Lambda), v_{\mu} \geqslant 0$ in H_{μ}^{\prime}.

Overview of proof

$$
\text { Step 1: For all } \mu \in[\lambda, \Lambda), v_{\mu} \geqslant 0 \text { in } H_{\mu}^{\prime} \text {. }
$$

By linearity of $(-\Delta)^{s}$, for all $\mu \in(\lambda, \Lambda)$,

$$
\left\{\begin{aligned}
(-\Delta)^{s} v_{\mu}+c_{\mu} v_{\mu}=0, & \text { in } \Omega_{\mu}^{\prime} \\
v_{\mu} \geqslant 0, & \text { in } H_{\mu}^{\prime} \backslash \Omega_{\mu}^{\prime}
\end{aligned}\right.
$$

where

$$
c_{\mu}(x)= \begin{cases}-\frac{f(u(x))-f\left(u\left(x_{\mu}^{\prime}\right)\right)}{u(x)-u\left(x_{\mu}^{\prime}\right)}, & \text { if } u(x) \neq u\left(x_{\mu}^{\prime}\right) \\ 0, & \text { if } u(x)=u\left(x_{\mu}^{\prime}\right)\end{cases}
$$

where Ω_{μ}^{\prime} is the reflection of the RHS of Ω across $T_{\mu}, x_{\mu}^{\prime}$ is the reflection of x across T_{μ}, and H_{μ}^{\prime} is the halfspace on the LHS of T_{μ}.

Overview of proof

$$
\text { Step 1: For all } \mu \in[\lambda, \Lambda), v_{\mu} \geqslant 0 \text { in } H_{\mu}^{\prime} \text {. }
$$

Overview of proof

$$
\text { Step 1: For all } \mu \in[\lambda, \Lambda), v_{\mu} \geqslant 0 \text { in } H_{\mu}^{\prime} \text {. }
$$

For simplicity, assume that $c_{\mu} \equiv 0$, so for all $\mu \in(\lambda, \Lambda)$,

$$
\left\{\begin{aligned}
(-\Delta)^{s} v_{\mu}=0, & \text { in } \Omega_{\mu}^{\prime} \\
v_{\mu} \geqslant 0, & \text { in } H_{\mu}^{\prime} \backslash \Omega_{\mu}^{\prime}
\end{aligned}\right.
$$

Overview of proof

$$
\text { Step 1: For all } \mu \in[\lambda, \Lambda), v_{\mu} \geqslant 0 \text { in } H_{\mu}^{\prime} \text {. }
$$

For simplicity, assume that $c_{\mu} \equiv 0$, so for all $\mu \in(\lambda, \Lambda)$,

$$
\left\{\begin{aligned}
(-\Delta)^{s} v_{\mu}=0, & \text { in } \Omega_{\mu}^{\prime} \\
v_{\mu} \geqslant 0, & \text { in } H_{\mu}^{\prime} \backslash \Omega_{\mu}^{\prime} .
\end{aligned}\right.
$$

In the local case, Step 1 follows immediately from the maximum principle. However, the maximum principle for nonlocal operators requires that $v_{\mu} \geqslant 0$ in all of \mathbb{R}^{n} which is an issue!

Overview of proof

```
Step 1: For all }\mu\in[\lambda,\Lambda),\mp@subsup{v}{\mu}{}\geqslant0\mathrm{ in }\mp@subsup{H}{\mu}{\prime}
```

For simplicity, assume that $c_{\mu} \equiv 0$, so for all $\mu \in(\lambda, \Lambda)$,

$$
\left\{\begin{aligned}
(-\Delta)^{s} v_{\mu}=0, & \text { in } \Omega_{\mu}^{\prime} \\
v_{\mu} \geqslant 0, & \text { in } H_{\mu}^{\prime} \backslash \Omega_{\mu}^{\prime} .
\end{aligned}\right.
$$

In the local case, Step 1 follows immediately from the maximum principle. However, the maximum principle for nonlocal operators requires that $v_{\mu} \geqslant 0$ in all of \mathbb{R}^{n} which is an issue!

Proposition (Fall, Jarohs, '15)

Let $\Omega \subset \mathbb{R}_{+}^{n}$ be an open, bounded set and suppose that u satisfies: $(-\Delta)^{s} v=0$ in $\Omega, v \geqslant 0$ in $\mathbb{R}_{+}^{n} \backslash \Omega$, and v is antisymmetric with respect to $\partial \mathbb{R}_{+}^{n}$. Then $v \geqslant 0$ in Ω.

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

- Case 1: There exists $p \in\left(G_{\lambda}^{\prime} \cap \partial G\right) \backslash T_{\lambda} \subset \Sigma_{\lambda}^{\prime}$ since ∂G is a parallel to $\partial \Omega$. But u is constant on ∂G, so we have

$$
v_{\lambda}(p)=u(p)-u(\text { reflection of } p)=0
$$

which contradicts assumption.

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

- Case 2: There exists $q \in T_{\lambda} \cap \partial G$ such that e is tangent to ∂G at q. Since u is a constant, we have

$$
\frac{\partial v_{\lambda}}{\partial e}(q)=0
$$

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

Strategy of proof: method of moving planes

Step 2: For μ equal to the critical time $\lambda, v_{\mu} \equiv 0$ in \mathbb{R}^{n}
By the (antisymmetric) strong maximum principle, either $v_{\lambda} \equiv 0$ in \mathbb{R}^{n} or $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. For the sake of contradiction, suppose that $v_{\lambda}>0$ in $\Omega_{\lambda}^{\prime}$. Two cases:

- Case 2: There exists $q \in T_{\lambda} \cap \partial G$ such that e is tangent to ∂G at q. Since u is a constant, we have

$$
\frac{\partial v_{\lambda}}{\partial e}(q)=0
$$

This contradicts the following Hopf-type lemma:

Lemma (Dipierro, Poggesi, T, Valdinoci, '22)

Suppose that $c \in L^{\infty}\left(B_{1}^{+}\right)$, $u \in C^{2}\left(B_{1}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ is antisymmetric with respect to $\left\{x_{1}=0\right\}$, and satisfies $(-\Delta)^{s} u+c u \geqslant 0$ in $B_{1}^{+}, u(x) \geqslant 0$ in $\mathbb{R}_{+}^{n}, u>0$ in B_{1}^{+}. Then

$$
\partial_{1} u(0)>0 .
$$

Stability

Question: Suppose that, instead of well-posed PDE + overdetermined condition, we have well-posed PDE + "almost" overdetermined condition. Does this mean the region Ω is "almost" a ball?

Stability

Question: Suppose that, instead of well-posed PDE + overdetermined condition, we have well-posed PDE + "almost" overdetermined condition. Does this mean the region Ω is "almost" a ball?

We measure how close u is to being constant on ∂G via

$$
[u]_{\partial G}:=\sup _{\substack{x, y \in \partial G \\ x \neq y}} \frac{|u(x)-u(y)|}{|x-y|}
$$

and we measure how close Ω is to being a ball via

$$
\rho(\Omega):=\inf \left\{R-r \text { s.t. } p \in \Omega \text { and } B_{r}(p) \subset \Omega \subset B_{R}(p)\right\} .
$$

Some literature

Some literature

- [Aftalion, Busca, Reichel, '99] Serrin's problem (with semilinearity):

$$
\rho(\Omega) \leqslant C\left|\log \left\|\partial_{\nu} u-c\right\|_{C^{1}(\partial \Omega)}\right|^{-1 / n}
$$

for some constant c.

Some literature

- [Aftalion, Busca, Reichel, '99] Serrin's problem (with semilinearity):

$$
\rho(\Omega) \leqslant C\left|\log \left\|\partial_{\nu} u-c\right\|_{C^{1}(\partial \Omega)}\right|^{-1 / n}
$$

for some constant c.

- [Ciraolo, Magnanini, Sakaguchi, '16] Parallel surface problem:

$$
\rho(\Omega) \leqslant C[u]_{\partial G}
$$

Some literature

- [Aftalion, Busca, Reichel, '99] Serrin's problem (with semilinearity):

$$
\rho(\Omega) \leqslant C\left|\log \left\|\partial_{\nu} u-c\right\|_{C^{1}(\partial \Omega)}\right|^{-1 / n}
$$

for some constant c.

- [Ciraolo, Magnanini, Sakaguchi, '16] Parallel surface problem:

$$
\rho(\Omega) \leqslant C[u]_{\partial G}
$$

- [Ciraolo, Dipierro, Poggesi, Pollastro, Valdinoci, '22] Nonlocal parallel surface problem with $f=1$:

$$
\rho(\Omega) \leqslant C[u]_{\partial G}^{\frac{1}{s+2}}
$$

Stability

In an upcoming work with Dipierro, Poggesi, and Valdinoci:

Theorem

Let G be an open bounded subset of \mathbb{R}^{n} and $\Omega:=G+B_{R}$ for some $R>0$ be such that $\partial \Omega$ is C^{2}. Moreover, let $f \in C_{\mathrm{loc}}^{0,1}(\mathbb{R})$ with $f(0) \geqslant 0$. If $u \in C^{2}(\Omega) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ is non-negative and satisfies

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =f(u) & & \text { in } \Omega \\
u & =0 & & \text { in } \mathbb{R}^{n} \backslash \Omega
\end{aligned}\right.
$$

then

$$
\rho(\Omega) \leqslant C[u]_{\partial G}^{\frac{1}{s+2}} .
$$

Open problem: the optimal exponent

Open problem: Under reasonable assumptions on Ω, what is the optimal $\alpha>0$ such that $\rho(\Omega) \leqslant C[u]_{\partial G}^{\alpha}$?

Open problem: the optimal exponent

Open problem: Under reasonable assumptions on Ω, what is the optimal $\alpha>0$ such that $\rho(\Omega) \leqslant C[u]_{\partial G}^{\alpha}$?

- For G_{ε} such that

$$
G_{\varepsilon}+B_{1 / 2}=\left\{\frac{x_{1}^{2}}{(1+\varepsilon)^{2}}+\left|x^{\prime}\right|^{2}=1\right\}=: \Omega_{\varepsilon}
$$

we have that $\rho\left(\Omega_{\varepsilon}\right)=\varepsilon$ and $\left[u_{\varepsilon}\right]_{\partial G_{\varepsilon}} \simeq \varepsilon$. This suggests that $\alpha=1$ (as in the local case).

- Nonlocality creates difficulties because it sees 'mass that is far away'.

Open problem: the optimal exponent

Suppose that $f \equiv 1$ and $[u]_{\partial G}$ is small, so that Ω is uniformly close to a ball, say B_{1}. Moreover, consider the situation when the reflected region is precisely B_{1} and the critical plane in the direction $e=e_{1}$ is $\left\{x_{1}=0\right\}$:

- The reflected function v_{λ} (at the critical time) is s-harmonic in B_{1}, so, by the nonlocal Poisson representation formula,

$$
v_{\lambda}(x)=\int_{\Omega_{-} \backslash B_{1}^{-}}\left(\frac{1-|x|^{2}}{|y|^{2}-1}\right)^{s}\left(\frac{1}{|x-y|^{n}}-\frac{1}{\left|\left(-x_{1}, x^{\prime}\right)-y\right|^{n}}\right) u(y) d y
$$

for all $x \in B_{1}$.

- The reflected function v_{λ} (at the critical time) is s-harmonic in B_{1}, so, by the nonlocal Poisson representation formula,

$$
v_{\lambda}(x)=\int_{\Omega_{-} \backslash B_{1}^{-}}\left(\frac{1-|x|^{2}}{|y|^{2}-1}\right)^{s}\left(\frac{1}{|x-y|^{n}}-\frac{1}{\left|\left(-x_{1}, x^{\prime}\right)-y\right|^{n}}\right) u(y) d y
$$

for all $x \in B_{1}$.

- Using that $G \subset \subset B_{1}$ (Ω is uniformly close to B_{1}) and regularity theory for the fractional Laplacian, one can show that

$$
\int_{\Omega_{-} \backslash B_{1}^{-}} \frac{\delta_{\partial \Omega}^{s}}{\delta_{\partial B_{1}}^{s}} d y \leqslant C[u]_{\partial G}
$$

and this is (in some sense) sharp. Here $\delta_{\partial A}:=$ distance function to ∂A. This is also indicative of the general case.

- The reflected function v_{λ} (at the critical time) is s-harmonic in B_{1}, so, by the nonlocal Poisson representation formula,

$$
v_{\lambda}(x)=\int_{\Omega_{-} \backslash B_{1}^{-}}\left(\frac{1-|x|^{2}}{|y|^{2}-1}\right)^{s}\left(\frac{1}{|x-y|^{n}}-\frac{1}{\left|\left(-x_{1}, x^{\prime}\right)-y\right|^{n}}\right) u(y) d y
$$

for all $x \in B_{1}$.

- Using that $G \subset \subset B_{1}$ (Ω is uniformly close to B_{1}) and regularity theory for the fractional Laplacian, one can show that

$$
\int_{\Omega_{-} \backslash B_{1}^{-}} \frac{\delta_{\partial \Omega}^{s}}{\delta_{\partial B_{1}}^{s}} d y \leqslant C[u]_{\partial G}
$$

and this is (in some sense) sharp. Here $\delta_{\partial A}:=$ distance function to ∂A. This is also indicative of the general case.

- If one can show that $\int_{\Omega_{-} \backslash B_{1}^{-}} \frac{\delta^{s}}{\delta_{\partial B_{1}}^{\leftrightharpoons}} d y \simeq \rho(\Omega)$ as $[u]_{\partial G} \rightarrow 0^{+}$then we are done (kind of...), but this requires fine estimates up to the boundary!

Thank you for listening!

