# Classifications of solutions to some nonlinear PDEs of elliptic type and their applications

#### Congming Li School of Mathematical Sciences and CMA-Shanghai, SJTU

Asia-Pacific Analysis and PDE Seminar

### A brief introduction

- Liouville type theorems, classification and applications
- A few words about regularity and a priori estimates

### 2 Fractional Laplacian

- Preliminaries
- Unexpected problem with uniqueness

### Illustrating examples of Liouville type theorems

- Liouville theorems for Hardy-Littlewood-Sobolev system
- The method of moving planes
- Fractional Laplacian and anti-symmetric systems

4 Outline of the proof for the maximum principle on a punctured ball

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

## We start with an example:

For the prescribing scalar curvature equation

$$-\Delta u + \frac{n(n-2)}{4}u = \frac{n-2}{4(n-1)}R(x)u^{\frac{n+2}{n-2}}, \ u > 0, \ x \in S^n.$$
(1)

Nirenberg Problem: For which function R, one can solve (2)?

A priori estimates + degree theory+ variational methods....

Generally:

 $-\Delta u(x) = f(x, u(x), \nabla u(x)), \ u > 0, \ x \in \Omega, + \text{ boundary conditions}$ (2)

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

## The blow-up method with Liouville type theorem

Theorem (A simple example)

For 0 < lpha < 2, and 1 < p <  $\frac{n+lpha}{n-lpha}$ , suppose

 $u \in L_{\alpha} \cap C^{1,1}_{loc}(\Omega)$  is upper semi-continuous on  $\overline{\Omega}$ ,

and is a positive solution of

$$\begin{cases} (-\Delta)^{\alpha/2}u(x) = R(x)u^p(x) + \text{ lower order term, } x \in \Omega, \\ u(x) \equiv 0, \qquad x \notin \Omega. \end{cases}$$

Assuming R(x) is continuous with  $0 < a \le R(x) \le b$ , then:

 $\|u\|_{L^{\infty}(\Omega)} \leq C,$ 

for some positive constant C independent of u.

୬ < ୯ 4 / 49

(3)

(4)

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

#### Sketch of the proof.

Assume for a sequence of solutions  $\{u_k\}$  to (3) such that:

$$u_k(x^k) = \max_{\Omega} u_k := m_k \to \infty.$$

Let  $\lambda_k = m_k^{\frac{1-p}{\alpha}}, \ 0 \le v_k = \frac{1}{m_k} u_k (\lambda_k x + x^k) \le 1$ , then

$$(-\Delta)^{\alpha/2}v_k(x)=v_k^p(x),$$

 $x \in \Omega_k := \{x \in R^n | x = \frac{y - x^k}{\lambda_k}, y \in \Omega\}.$ Let  $d_k = dist(x^k, \partial \Omega)$ . Employing the contradiction argument, we exhaust all three possibilities.

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

Case i) 
$$\lim_{k\to\infty} \frac{d_k}{\lambda_k} = \infty$$
.  
It is clear that

$$\Omega_k o R^n$$
, as  $k o \infty$ .

We can prove there exists a function v such that, as  $k 
ightarrow \infty$ ,

$$v_k(x) 
ightarrow v(x), \ \ (-\Delta)^{rac{lpha}{2}} v_k(x) 
ightarrow (-\Delta)^{rac{lpha}{2}} v(x),$$

thus

$$(-\Delta)^{\frac{\alpha}{2}}v(x) = v^{p}(x), \ x \in \mathbb{R}^{n}.$$
(5)

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 6/49

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

Case ii) 
$$\lim_{k\to\infty} \frac{d_k}{\lambda_k} = C > 0$$
.  
In this case,

$$\Omega_k \to R_{+C}^n := \{x_n \ge -C | x \in \mathbb{R}^n\}.$$

Similar to Case i), here we are able to establish the existence of a function v and a subsequence of  $\{v_k\}$ , such that, as  $k \to \infty$ ,

$$v_k(x) 
ightarrow v(x), \ (-\Delta)^{rac{lpha}{2}} v_k(x) 
ightarrow (-\Delta)^{rac{lpha}{2}} v(x),$$

thus

$$(-\Delta)^{\frac{\alpha}{2}}v(x) = v^{p}(x), \ x \in R^{n}_{+C}.$$
(6)

4 ロ ト 4 回 ト 4 目 ト 4 目 ト 4 目 今 Q ペ
7/49

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

Case iii)  $\lim_{k\to\infty} \frac{d_k}{\lambda_k} = 0$ . Impossible via uniform a priori estimates of  $V_k$ . Standard  $W^{2,p}$  and  $C^{2,\alpha}$  type estimates.  $V_k = 1$  near boundary where it equals 0. For 1 , the Liouville type theorem (non-existence of positive solutions) in the whole space and the half space for the following equation**are known:** 

 $(-\Delta)^{\frac{\alpha}{2}}u(x)=u^p(x).$ 

Hence, (5) and (6), or cases (i) and (ii) are impossible. Hence  $\Rightarrow$  the **a priori estimate**.

The critical case  $p = \frac{n+2s}{n-2s}$  is much harder.

One approach: Liouville type theorem  $\Rightarrow$  a priori estimates  $\Rightarrow$  existence. When  $p \ge \frac{n+\alpha}{n-\alpha}$ , we don't have Liouville type thorem.

Another interesting case: non-existence  $\Rightarrow$  existence.

Super-critical HLS non-existence in some bounded domain

 $\Rightarrow$  existence in the whole space (via Poincare Map)

Liouville type theorems, classification and applications A few words about regularity and a priori estimates

## Regularity and a priori estimates

The regularity of solutions was extensively studied and many fruitful results was achieved (L. Caffarelli, B. Gidas, L. Nirenberg, J. Spruck, De Giorgi, J. Nash,...)

- Hilbert 19th problems
- Variational problems
- Prescribing scalar curvature equations
- Monge-Ampere equation
- Navier-Stokes equation

Maximum principles are very useful tools .....

Preliminaries Unexpected problem with uniqueness

## Fractional Laplacian

For  $u \in C_0^\infty(\mathbb{R}^n)$ , 0 < s < 1, the fractional Laplacian  $(-\Delta)^s u(x)$ , is defined as

$$(-\Delta)^{s}u(x) = \mathcal{F}^{-1}[(2\pi|\xi|)^{2s}\mathcal{F}[u](\xi)](x) = C_{n,s}P.V.\int_{\mathbb{R}^{n}}\frac{u(x)-u(y)}{|x-y|^{n+2s}}dy,$$

where P.V. stands for the Cauchy principle value. One can show that for the above type functions u, it holds that:

$$|(-\Delta)^s u(x)| \leqslant \frac{C}{1+|x|^{n+2s}}.$$
(7)

To define  $(-\Delta)^s u$  as a distribution, one naturally introduce the following space for u:

$$\mathcal{L}_{2s} = \bigg\{ u: \mathbb{R}^n \to \mathbb{R} \bigg| \|u\|_{\mathcal{L}_{2s}} := \int_{\mathbb{R}^n} \frac{|u(y)|}{1+|y|^{n+2s}} dy < +\infty \bigg\}.$$

Preliminaries Unexpected problem with uniqueness

Then for  $u \in \mathcal{L}_{2s}$ ,  $(-\Delta)^{s}u$  as a distribution is well-defined:  $\forall \varphi \in C_{0}^{\infty}(\mathbb{R}^{n})$ ,

$$(-\Delta)^{s} u[\varphi] = \int_{\mathbb{R}^{n}} u(x)(-\Delta)^{s} \varphi(x) dx.$$
(8)

Indeed,  $u \in \mathcal{L}_{2s} \Longrightarrow$  the integral on the right hand side of (8) converges. For  $u \in \mathcal{L}_{2s}\mathbb{R}^n$ ,  $(-\Delta)^s u$  is also a distribution on  $\Omega \subset \mathbb{R}^n$  naturally. For  $f \in L^1_{loc}(\Omega) \subset D'(\Omega)$ , we say

$$(-\Delta)^{s} u = f$$
 in  $\mathcal{D}'(\Omega)$ , (9)

if for any test function  $\varphi \in C_0^{\infty}(\Omega)$ , it holds that

$$(-\Delta)^{s} u[\varphi] = \int_{\mathbb{R}^{n}} u(x)(-\Delta)^{s} \varphi(x) dx = \int_{\Omega} f(x)\varphi(x) dx.$$
(10)

For  $u \in \mathcal{L}_{2s} \cap C^{1,1}_{\text{loc}}(\Omega)$ ,  $(-\Delta)^s u$  is also pointwisely well-defined on  $\Omega$  by the formula

$$(-\Delta)^{s}u(x) = C_{n,s}\mathrm{P.V.}\int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n + 2s}} dy \triangleq f(x) \quad \text{for} \quad x \in \Omega.$$
 (11)

For  $u \in \mathcal{L}_{2s} \cap C^{1,1}_{\text{loc}}(\Omega)$ ,  $f(x) \in C^{\nu}(\Omega_{\text{loc}})$  and the point-wise definition  $\Leftrightarrow$  the distributional one:

$$(-\Delta)^{s}u(x) = f(x)$$
 in  $D'(\Omega)$ . (12)

One proof is to approximate u in  $\mathcal{L}_{2s} \cap C^{1,1}_{loc}(\Omega)$  by  $C_0^{\infty}$  functions in  $\mathbb{R}^n$ .

- The fractional Laplacian is a nonlocal operator that captures nonlocal phenomena better.
- It is the operator associated with the Levy process.
- **③** It is a promising research filed with many interesting mathematical problems.
- Many applications in life sciences

Preliminaries Unexpected problem with uniqueness

For 0 < s < 1, consider the problem:

$$\begin{cases} (-\Delta)^s u = f & \text{in } \Omega, \\ u = 0 & \text{on } \mathbb{R}^n \backslash \Omega. \end{cases}$$
(13)

Classical solutions  $u \in C^{2s}_{loc}(\Omega) \cap C(\mathbb{R}^n)$  for the Dirichlet problem (13) has been well studied.

Preliminaries Unexpected problem with uniqueness

We start with a special solution:

$$u(x) = \begin{cases} c(n,s) \int_{\partial B_1} \frac{(1-|x|^2)^s}{|x-y|^n} d\mathcal{H}_y^{n-1}, & \text{for } x \in B_1; \\ 0, & \text{for } x \in \mathbb{R}^n \backslash B_1. \end{cases}$$
(14)

is a non-trivial solution of :

$$\begin{cases} (-\Delta)^s u = 0 & \text{in } B_1, \\ u = 0 & \text{on } \mathbb{R}^n \setminus B_1. \end{cases}$$
(15)

One can check that u satisfies:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^s} \int_{\{x \in B_1 | \delta(x) \leq \epsilon\}} |u(x)| dx = c > 0.$$
(16)

Here and hereafter, we denote,  $\delta(x) = \text{dist}(x, \partial \Omega)$ .

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > 3 Q (~ 17/49 For fractional Laplacian, the Dirichlet type problem has a uniqueness problem. One naturally want to know:

- $\blacksquare$  some 'natural' conditions on u to guarantee the uniqueness,
- Some corresponding estimates in the related spaces,
- $w \notin W^{2s,p}(\Omega)$ , what can replace it?

First, we derive a uniqueness condition which is somewhat optimal:

Theorem (Li, Liu preprint)

Let 0 < s < 1,  $\delta^s f \in L^1(B_1)$ , then the solution  $u \in \mathcal{L}_{2s}$  of (13) that satisfies condition:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^s} \int_{\{x \in B_1 | \delta(x) \leqslant \epsilon\}} |u(x)| dx = 0,$$

exists and must be unique.

(17)

Preliminaries Unexpected problem with uniqueness

#### Remark

Indeed, in the L<sup>p</sup>-theory for the regular Laplacian case:

The boundary condition u = 0 on  $\partial \Omega can be understood as:$ 

$$\lim_{\epsilon\to 0}\frac{1}{\epsilon}\int_{\{x\in B_1|\delta(x)\leqslant\epsilon\}}|u(x)|dx=0.$$

In this sense, the previous theorem can be seen as a fractional generalization.

(19)

Preliminaries Unexpected problem with uniqueness

We also derive some basic estimates for:

$$\begin{cases} (-\Delta)^s u + \vec{b} \cdot \nabla u + cu = f & \text{in } \mathcal{D}'(B_1), \\ u = 0 & \text{in } \mathbb{R}^n \backslash B_1. \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

(20)

Preliminaries Unexpected problem with uniqueness

#### Theorem (Li, Liu preprint)

 $\frac{1}{2} < s < 1, 1 - s \leq r \leq s, 1 \leq p < \infty, \vec{b}, c \in L^{\infty}(B_1), c \geq 0$  in  $B_1$  and  $f \in L^p_r(B_1)$ . Then (20) has a unique solution  $u \in \mathcal{L}_{2s}$  that satisfies the condition (17). Furthermore,

$$\|\delta^{r}(-\Delta)^{s}u\|_{L^{p}(B_{1})} \leq C\|\delta^{r}f\|_{L^{p}(B_{1})}.$$
(21)

The derivative of u can also be estimated:

$$\||\nabla u|\|_{L^q_r(B_1)} \leqslant C \|f\|_{L^1_r(B_1)}, \quad if \quad p = 1 \quad 1 \leqslant q < \frac{n}{n-2s+1}.$$
 (22)

$$\| |\nabla u| \|_{L^{\frac{np}{n-(2s-1)p}}_{r}(B_{1})} \leq C \| f \|_{L^{p}_{r}(B_{1})}, \quad \text{if } 1 (23)
$$\| |\nabla u| \|_{L^{\infty}_{r}(B_{1})} \leq C \| f \|_{L^{p}_{r}(B_{1})}, \quad \text{if } p > \frac{n}{2s-1}.$$
(24)$$

22 / 49

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

The well known Hardy-Littlewood-Sobolev inequality states:

$$egin{aligned} &\int_{R^n}\int_{R^n}rac{f(x)g(y)}{|x-y|^\lambda}dxdy\ &\leq C(n,s,\lambda)||f||_r||g||_s \end{aligned}$$
 where  $0<\lambda< n,\ 1< s,r<\infty,\ rac{1}{r}+rac{1}{s}+rac{\lambda}{n}=2,\ f\in L^r(R^n)$  and  $g\in L^s(R^n).$ 

The best constant  $C = C(n, s, \alpha)$  is the maximal of:

$$J(f,g) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) |x-y|^{\alpha-n} g(y) dx dy$$

under the constraints

$$||f||_r = ||g||_s = 1.$$

The above leads us to a system of integral equations on f and g. Let  $u = c_1 f^{r-1}$ ,  $v = c_2 g^{s-1}$ ,  $p = \frac{1}{r-1}$ ,  $q = \frac{1}{s-1}$ , and choose suitable constants  $c_1$  and  $c_2$ , we arrive at the Hardy-Littlewood-Sobolev system of the Euler-Lagrange equations for the H-L-S inequality :

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

The Hardy-Littlewood-Sobolev system (HLS):

$$\left\{ egin{array}{ll} u(x)=\int_{\mathcal{R}^n}rac{v^q(y)}{|x-y|^{n-\gamma}}dy, & u>0, \ v(x)=\int_{\mathcal{R}^n}rac{u^p(y)}{|x-y|^{n-\gamma}}dy, & v>0, \end{array} 
ight.$$

It corresponds to

$$\begin{cases} (-\Delta)^{\gamma/2} u = v^{q}, & u > 0, \text{ in } R^{n}, \\ (-\Delta)^{\gamma/2} v = u^{p}, & v > 0, \text{ in } R^{n}, \end{cases}$$
(26)

with

$$0$$

.

(25)

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## Liouville theorems and classifications of solutions

If 
$$p = q = \frac{n+\gamma}{n-\gamma}$$
, and  $u(x) = v(x)$ , then (26) reduces to

$$(-\Delta)^{\gamma/2}u = u^{(n+\gamma)/(n-\gamma)}, \ u > 0, \text{ in } \mathbb{R}^n.$$
 (27)

$$u(x) = \int_{R^n} \frac{u(y)^{\frac{n+\gamma}{n-\gamma}}}{|x-y|^{n-\gamma}} dy, \quad u > 0 \text{ in } R^n.$$
(28)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣 ● ● ● ●

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## Liouville theorems and classifications of solutions

In particular, when  $n \ge 3$ , and  $\gamma = 2$ ,

 $-\Delta u = u^{(n+2)/(n-2)}, \ u > 0, \text{ in } \mathbb{R}^n, \ n \ge 3$ 

(29) is the 'blowing-up' equation of the curvature equation:

$$-\Delta u + \frac{n(n-2)}{4}R_0u = \frac{n-2}{4(n-1)}R_1(x)u^{\frac{n+2}{n-2}}, x \in M^n, n \ge 3$$

There is a similar blowing-up equation to study for n = 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(29)

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## Liouville theorems and classifications of solutions

The classification of solutions for the following equation is solved with the development of the method of moving planes:

$$(-\Delta)^{s}u = u^{\frac{n+2s}{n-2s}}, \ x \in \mathbb{R}^{n}, \ n \ge 3,$$

$$(30)$$

with

$$u = O(|x|^{2s-n}). (31)$$

Gidas, Ni, and Nirenberg(1981), s = 1Caffarelli, Gidas and Spruck (1989) removed the condition (31) when s = 1. Chen and Li (1992), and Li (1996) simplified their proof. Wei and Xu (1999) generalized this result to high order for 2s is an even integer.

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## When $\gamma$ is not an even integer

Theorem (Chen, Li, Ou, 2006, CPAM.)

Every positive regular solution u(x) of

$$u(x) = \int_{\mathbb{R}^n} \frac{u(y)^{\frac{n+\gamma}{n-\gamma}}}{|x-y|^{n-\gamma}} dy, \quad 0 < \gamma < n, \ u > 0 \ in \ \mathbb{R}^n.$$
(32)

is radially symmetric and decreasing about some point  $x_0$  and therefore assumes the form

$$u = C \frac{[n(n-2)\lambda^2]^{\frac{n-2}{4}}}{(\lambda^2 + |x - x_0|^2)^{\frac{n-2}{2}}}$$

with some positive constants C and  $\lambda$ .

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## Liouville theorems and classifications of solutions

#### Another similar problem is

$$\begin{cases} -\Delta u = e^{u}, & x \in \mathbb{R}^{2}, \\ \int_{\mathbb{R}^{2}} e^{u} dx < +\infty. \end{cases}$$
(33)

#### Theorem (Chen, Li, Duke.)

Every solution of (33) is radially symmetric with respect to some point in  $\mathbb{R}^2$  and hence assumes the form of

$$u(x) = \ln \frac{(32\lambda^3)}{(4+\lambda^2|x-x_0|^2)^2}.$$

Here, we present a brief introduction of the method of moving planes: Consider u(x) a solution to  $-\Delta u = f(x, u)$  or simply f(u) $x = (x_1, x_2, ..., x - n) = (x_1, x') \in \mathbb{R}^n$ ,  $w_{\lambda}(x) = u_{\lambda}(x) - u(x)$ with  $u_{\lambda}(x) = u(x^{\lambda})$ ,  $x^{\lambda} = (2\lambda - x_1, x')$ Then  $-\Delta w_{\lambda}(x) = f(x^{\lambda}, u_{\lambda}) - f(x, u) \ge f(x, u^{\lambda}) - f(x, u) = c(x, \lambda)w_{\lambda}$ , or:

 $-\Delta w_{\lambda}(x) \geq c(x,\lambda)w_{\lambda}$ 

for  $x \in \Sigma_{\lambda} = \{x = (x_1, x') \mid x_1 < \lambda\}.$ 

Here we use the structure type condition that f is monotone increasing in  $x_1$  before it reaches certain center point.

Liouville theorems for Hardy-Littlewood-Sobolev system **The method of moving planes** Fractional Laplacian and anti-symmetric systems

$$\Sigma_{A} = \left\{ (x_{1}, x') \in \mathbb{R}^{n} | x_{1} < \lambda \right\}$$

$$x'$$

$$(= (x_{1}, x'))$$

$$(= (2\lambda - x_{1}, x'))$$

$$T_{A} = \left\{ (\lambda, x') | x' \in \mathbb{R}^{n-1} \right\}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

32 / 49

Liouville theorems for Hardy-Littlewood-Sobolev system **The method of moving planes** Fractional Laplacian and anti-symmetric systems



<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Liouville theorems for Hardy-Littlewood-Sobolev systen The method of moving planes Fractional Laplacian and anti-symmetric systems

## Maximum principle for anti-symmetric solutions:

#### Theorem (Cheng, Li, Huang, CCM, 2017.)

Let  $w(y) \in \mathcal{L}_{2s}$  be a  $\lambda$ -antisymmetric function. Suppose there exists  $x \in \Sigma_{\lambda}$  such that

 $w(x) = \inf_{\Sigma_{\lambda}} w(y) \leq 0.$ 

If w is  $C^{1,1}$  at x, we have

$$(-\Delta)^s w(x) \leq \widetilde{C_{n,s}}\left(\delta^{-2s}w(x) - \delta\int_{\Sigma_\lambda} \frac{(w(y) - w(x))(\lambda - y_1)}{|x - y^\lambda|^{n+2s+2}}dy\right)$$

for some positive constant  $\widetilde{C_{n,s}}$ , where  $\delta = d(x, T_{\lambda}) = |x_1 - \lambda|$ .

Liouville theorems for Hardy-Littlewood-Sobolev systen The method of moving planes Fractional Laplacian and anti-symmetric systems

## Maximum principle for singular solutions:

#### Theorem (Li, Wu, Xu, PNAS, 2018.)

Assume that  $w(x) \in \mathcal{L}_{2s}$ , and satisfies in the sense of distribution

$$\begin{cases} (-\Delta)^{s} w(x) + a(x) w(x) \ge 0, \text{ on } B_{r}(x^{0}) \setminus \{x^{0}\}, \\ w(x) \ge m > 0, \text{ on } B_{r}(x^{0}) \setminus B_{\frac{r}{2}}(x^{0}), r \le 1, \\ w(x) \ge 0, \text{ in } \mathbb{R}^{n}, n \ge 2, \end{cases}$$
(34)

Here  $a(x) \leq D$  for some constant D, then there exists a positive constant c = c(n, s, D) depending on n, s and D only, such that w(x) satisfies in the sense of distribution

$$w(x) \ge cm, \ x \in B_r(x^0) \setminus \{x^0\}.$$

(35)

Liouville theorems for Hardy-Littlewood-Sobolev system The method of moving planes Fractional Laplacian and anti-symmetric systems

## Liouville theorems for anti-symmetric solutions and existence

We study the anti-symmetric solutions of the following equation involving fractional Laplacian:

$$\begin{cases} (-\Delta)^{s} u(x) = u^{p}(x), \ u(x) \ge 0, \ x \in R^{n}_{+}, \\ u(x', -x_{n}) = -u(x', x_{n}), \ x = (x', x_{n}) \in R^{n}, \end{cases}$$
(36)

where  $s \in (0, 1)$ ,  $R_{+}^{n} = \{x = (x_{1}, x_{2}, \cdots, x_{n}) \in R^{n} | x_{n} > 0\}$ , and  $x' = (x_{1}, \dots, x_{n-1})$ .

Liouville theorems for Hardy-Littlewood-Sobolev syster The method of moving planes Fractional Laplacian and anti-symmetric systems

## Our first result is the following Liouville type theorem to (36) (C. Li, R. Zhuo, 2022 CVPDE).

#### Theorem 1

Assuming  $0 and <math>u(x) \in L_{2s} \cap C^{1,1}_{loc}(\mathbb{R}^n_+) \cap C(\mathbb{R}^n)$  solves (36), then  $u \equiv 0$ .

In particular, there exists no bounded non-trivial solution.

Due to the anti-symmetric property, fractional Laplacian can be written in the following form:

$$(-\Delta)^{s} u(x) =$$

$$= C_{n,s} P.V. \{ \int_{R_{+}^{n}} (\frac{1}{|x-y|^{n+2s}} - \frac{1}{|x^{*}-y|^{n+2s}}) (u(x) - u(y)) dy + \int_{R_{+}^{n}} \frac{2u(x)}{|x^{*}-y|^{n+2s}} dy \}.$$

Thus, one can naturally extend the defining domain of *u*:

$$L_{2s} \Longrightarrow L_{2s+1}.$$

## Our second main result study the solutions in the extended class $L_{2s+1}$ (C. Li, R. Zhuo, 2022 CVPDE).

#### Theorem 2

For  $0 , if <math>u(x) \in L_{2s+1} \cap C^{1,1}_{loc}(R^n_+) \cap C(R^n)$  solves (36), then:

- when p + 2s > 1, u = 0 is the only solution,
- **2** when p + 2s < 1, there exist non-trivial solutions to (36).

#### Theorem

Assume that  $w(x) \in \mathcal{L}_{2s}$ , and satisfies in the sense of distribution

$$\begin{cases} (-\Delta)^{s}w(x) + a(x)w(x) \ge 0, \text{ on } B_{r}(x^{0}) \setminus \{x^{0}\}, \\ w(x) \ge m > 0, \text{ on } B_{r}(x^{0}) \setminus B_{\frac{r}{2}}(x^{0}), r \le 1, \\ w(x) \ge 0, \text{ in } \mathbb{R}^{n}, n \ge 2, \end{cases}$$
(37)

Here  $a(x) \leq D$  for some constant D, then there exists a positive constant c = c(n, s, D) depending on n, s and D only, such that w(x) satisfies in the sense of distribution

$$w(x) \geq cm, \ x \in B_r(x^0) \setminus \{x^0\}.$$
(38)

## Generalized Bocher theorems

To derive this maximum principle for the nonnegative function with possible singularity at the origin, we need to establish the following Bocher theorem for the fractional Laplacian.

**Generalized Bocher theorem for fractional super-harmonic nonnegative functions on a punctuated ball**(PNAS, 2018, C.Li,Z.Wu,H.Xu):

#### Theorem

Let  $v(x) \in \mathcal{L}_{2s}$  be a nonnegative solution to

$$(-\Delta)^s v(x) + c(x)v(x) = f(x) \ge 0 \quad \text{on } B_1(0) \setminus \{0\}$$

$$(39)$$

for some  $f(x) \in L^1_{loc}(B_1(0) \setminus \{0\})$  and  $c(x) \leq D$  with some constant D, then

(i)  $v(x), f(x) \in L^{1}_{loc}(B_{1}(0)),$ (ii)  $(-\Delta)^{s}v(x) + c(x)v(x) = f(x) + a\delta_{0}$ on  $B_{1}(0), \text{ for a constant } a \geq 0,$ 

where  $\delta_0$  is the Delta distribution concentrated at the origin, and all the inequalities and identities are in the sense of distribution.

(40)

## Generalized Bocher theorems

#### Equations with first order term:

#### Theorem

(Bôcher theorem for fractional Laplacian) Let  $u(x) \in \mathcal{L}_{2s}$  with  $s \in (\frac{1}{2}, 1)$  be a nonnegative function in  $\mathbb{R}^n$   $(n \ge 2)$  satisfying

$$(-\Delta)^s u(x) + \vec{b}(x) \cdot \nabla u(x) + c(x)u(x) \ge 0 \quad \text{in} \quad \mathcal{D}'(B_1 \setminus \{0\}),$$

$$(41)$$

where  $\|\vec{b}(x)\|_{C^{1}(B_{1})} + \|c(x)\|_{L^{\infty}(B_{1})} \leq M$  for some constant M, then  $u(x) \in L^{1}_{loc}(B_{1})$ and

$$(-\Delta)^{s}u(x) + \vec{b}(x) \cdot \nabla u(x) + c(x)u(x) = \mu + a\delta_{0}(x) \quad \text{in } \mathcal{D}'(B_{1}), \tag{42}$$

for some constant a  $\geq 0$  and some nonnegative Radon measure  $\mu$  on  $B_1$  satisfying  $\mu(\{0\})=0.$ 

## Generalized Bocher theorems

Besides, when  $\vec{b}(x) \equiv 0$  in (41), then the theorem holds for  $s \in (0, 1)$ . **The classical Bocher theorems for the Laplacian**: **Bôcher theorem**(1903): If v(x) is nonnegative and harmonic on  $B_1(0)\setminus\{0\}$ , then there is a constant  $a \ge 0$  such that for all  $x \in B_1(0)\setminus\{0\} \subset \mathbb{R}^n$  with  $n \ge 2$  that

$$\begin{cases} (i) \quad v(x) \text{ is integrable on } B_1(0), \\ (ii) \quad -\Delta v(x) = a\delta_0, \end{cases}$$
(43)

where  $\delta_0$  is the Delta distribution concentrated at the origin.

## Generalized Bocher theorems

H. Brézis and P. Lions (1981) obtained another Bôcher type theorem for super-harmonic functions:

Let  $v(x) \in L^1_{\mathrm{loc}}(B_1(0) \setminus \{0\})$ ,  $v(x) \geq 0$  a.e. in  $B_1(0)$  be such that

 $\Delta v(x) \in L^1_{loc}(B_1(0) \setminus \{0\})$  in the sense of distribution on  $B_1(0) \setminus \{0\}$ ,

$$-\Delta v(x) \geq -Dv(x) - f(x), \ D > 0, \ a.e. \ in \ B_1(0), \ with \ f \in L^1_{loc}(B_1(0)).$$

Then  $v(x) \in L^1_{loc}(B_1(0))$  and there exist  $\phi(x) \in L^1_{loc}(B_1(0))$  and  $a \ge 0$  such that

$$-\Delta v(x) = \phi(x) + a\delta_0$$
, in  $\mathcal{D}'(B_1(0))$ .

## Generalized Bocher theorems

#### Proof of Theorem (MPFL2)

We only need to consider the special case  $a(x) \equiv D$  and  $D \ge 0$ .

First, we consider the case that w(x) is smooth and r = 1.

Then, when w(x) is not smooth, we consider  $w_{\epsilon}(x) = w * \rho_{\epsilon} \in C^{\infty}(B_{1-\epsilon}(0))$ , where  $\rho_{\epsilon}$  is the standard mollifier.

From Theorem 10 (Bocher Theorem) and applying the mollification process in a suitable way, we have  $(-\Delta)^s w_{\epsilon}(x) + Dw_{\epsilon}(x) \ge 0$  in  $B_{1-\epsilon}(x^0)$ .

## Generalized Bocher theorems

Then using the conclusion in the first step, we know there exist suitable positive constants c and  $\tilde{c}$  satisfying  $0 < c < \tilde{c} < 1$  such that  $w_{\epsilon}(x) \ge \tilde{c}m_{\epsilon} \ge cm$  in  $B_{1-\epsilon}(x^0)$ , where c > 0 is independent of  $\epsilon$ . Letting  $\epsilon \to 0$ , we can immediately derive  $w(x) \ge cm$  with some c > 0, when  $x \in B_1(x^0) \setminus \{x^0\}$ .

## Generalized Bocher theorems

Finally, making scaling  $\bar{w}(x) = w(rx + x_0)$ , we know from the first step that if

$$\begin{cases} \bar{w}(x) \ge 0, \ x \in \mathbb{R}^{n}, \\ (-\Delta)^{s} \bar{w}(x) + D \bar{w}(x) \ge 0, \ x \in B_{1}(0) \setminus \{0\}, \\ \bar{w}(x) \ge m > 0, \ x \in B_{1}(0) \setminus B_{\frac{1}{2}}(0), \end{cases}$$
(44)

then there exists some positive constant c depending on n and s only such that

$$\bar{w}(x) \geq cm, \text{ in } B_1(0) \setminus \{0\} \}.$$

This completes the proof of the theorem.

## Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

49 / 49