Ricci Flow and pinched curvature on non-compact manifolds

Man-Chun Lee

The Chinese University of Hong Kong

Feb, 2023 The Asia-Pacific Analysis and PDE seminar

Man-Chun Lee (CUHK)

Pinched curvature

Feb, 2023 1 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive curvature, under what curvature condition we can classify M^n ?

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive curvature, under what curvature condition we can classify M^n ?

Examples:

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive curvature, under what curvature condition we can classify M^n ?

Examples:

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive curvature, under what curvature condition we can classify M^n ?

Examples:

- Uniformization Theorem
- Ø differentiable Sphere Theorem

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive curvature, under what curvature condition we can classify M^n ?

Examples:

- Uniformization Theorem
- Ø differentiable Sphere Theorem
- Soul Theorem, etc.

Given a complete Riemannian manifold (M^n, g_0) with non-negative or positive **curvature**, under what curvature condition we can classify M^n ?

Examples:

- Uniformization Theorem
- Ø differentiable Sphere Theorem
- Soul Theorem, etc.

Suggesting: curvature should be relatively strong!

< ロト < 同ト < ヨト < ヨ

<ロ> <四> <四> <四> <四> <四</p>

Examples of known results:

<ロ> <四> <四> <四> <四> <四</p>

Examples of known results:

Bonnet-Meyers: manifolds with Ric(g) > (n-1)k > 0 must be compact;

イロト イ団ト イヨト イヨト 二日

Examples of known results:

- Bonnet-Meyers: manifolds with Ric(g) > (n-1)k > 0 must be compact;
- Soul's Theorem: Complete non-compact manifold with K > 0 must be diffeomorphic to Rⁿ.

イロト イポト イヨト イヨト 二日

Examples of known results:

- Bonnet-Meyers: manifolds with Ric(g) > (n-1)k > 0 must be compact;
- Soul's Theorem: Complete non-compact manifold with K > 0 must be diffeomorphic to Rⁿ.
- Positive mass theorem: AF manifold with scal ≥ 0 and zero mass must be ℝⁿ;

イロト イポト イヨト イヨト 二日

Examples of known results:

- Bonnet-Meyers: manifolds with Ric(g) > (n-1)k > 0 must be compact;
- Soul's Theorem: Complete non-compact manifold with K > 0 must be diffeomorphic to Rⁿ.
- Positive mass theorem: AF manifold with scal ≥ 0 and zero mass must be ℝⁿ;
- Gap Theorems in Kähler geometry, Riemannian geometry: Mok-Siu-Yau, Chen-Zhu, Ni-Tam, Green-Wu, etc.

イロト 不得下 イヨト イヨト 二日

Examples of known results:

- Bonnet-Meyers: manifolds with Ric(g) > (n-1)k > 0 must be compact;
- Soul's Theorem: Complete non-compact manifold with K > 0 must be diffeomorphic to Rⁿ.
- O Positive mass theorem: AF manifold with scal ≥ 0 and zero mass must be ℝⁿ;
- Gap Theorems in Kähler geometry, Riemannian geometry: Mok-Siu-Yau, Chen-Zhu, Ni-Tam, Green-Wu, etc.

Question: Any Gap Theorem of flat space under point-wise condition?

イロト 不得下 イヨト イヨト 二日

<ロ> <四> <四> <四> <四> <四</p>

Strong curvature: (most commonly considered in the past)

イロト イポト イヨト イヨト

Strong curvature: (most commonly considered in the past)

() strictly 1/4 pinched: sectional curvature K lies between $(\frac{1}{4}, 1]$;

イロト イポト イヨト イヨト

Strong curvature: (most commonly considered in the past)

- strictly 1/4 pinched: sectional curvature K lies between $(\frac{1}{4}, 1]$;
- 2 positive curvature operator: $\operatorname{Rm}(\psi, \psi) > 0$ for all $\psi \in \Lambda^2 TM$.

A D F A B F A B F A B

Strong curvature: (most commonly considered in the past)

- strictly 1/4 pinched: sectional curvature K lies between $(\frac{1}{4}, 1]$;
- 2 positive curvature operator: $\operatorname{Rm}(\psi, \psi) > 0$ for all $\psi \in \Lambda^2 TM$.

Some earlier results:

A D F A B F A B F A B

Strong curvature: (most commonly considered in the past)

- strictly 1/4 pinched: sectional curvature K lies between $(\frac{1}{4}, 1]$;
- 2 positive curvature operator: $\operatorname{Rm}(\psi, \psi) > 0$ for all $\psi \in \Lambda^2 TM$.

Some earlier results:

 Topological sphere under (1): Berger, Klingenberg, Micalef-Moore, etc

Strong curvature: (most commonly considered in the past)

- strictly 1/4 pinched: sectional curvature K lies between $(\frac{1}{4}, 1]$;
- 2 positive curvature operator: $\operatorname{Rm}(\psi, \psi) > 0$ for all $\psi \in \Lambda^2 TM$.

Some earlier results:

- Topological sphere under (1): Berger, Klingenberg, Micalef-Moore, etc
- **2** Optimal since \mathbb{CP}^n achieves the borderline case: $K \in [\frac{1}{4}, 1]$

イロト 不得 トイヨト イヨト 二日

Hamilton's Ricci flow

Breakthrough of Hamilton:

<ロト <問ト < 目と < 目と

$$\partial_t g(t) = -2\operatorname{Ric}(g(t)), g(0) = g_0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\partial_t g(t) = -2\operatorname{Ric}(g(t)), g(0) = g_0.$$

Results using Ricci flow:

Hamilton: three-fold with Ric > 0 is diffeomorphic to spherical space-form

$$\partial_t g(t) = -2\operatorname{Ric}(g(t)), g(0) = g_0.$$

Results using Ricci flow:

- Hamilton: three-fold with Ric > 0 is diffeomorphic to spherical space-form
- 2 Huisken: manifold with small traceless Ricci and Weyl part

$$\partial_t g(t) = -2\operatorname{Ric}(g(t)), g(0) = g_0.$$

Results using Ricci flow:

- Hamilton: three-fold with Ric > 0 is diffeomorphic to spherical space-form
- 2 Huisken: manifold with small traceless Ricci and Weyl part
- **Solution Bobin-Wilking:** sphere Theorem under $\operatorname{Rm} > 0$

$$\partial_t g(t) = -2\operatorname{Ric}(g(t)), g(0) = g_0.$$

Results using Ricci flow:

- Hamilton: three-fold with Ric > 0 is diffeomorphic to spherical space-form
- 2 Huisken: manifold with small traceless Ricci and Weyl part
- **3** Böhm-Wilking: sphere Theorem under Rm > 0
- **Brendle-Schoen:** Differentiable sphere Theorem under 1/4-pinched

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Man-Chun Lee (CUHK)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Micallef-Moore)

The curvature Rm is said to have non-negative isotropic curvature $(\operatorname{Rm} \in \operatorname{C}_{PIC})$ if the complexified sectional curvature $\operatorname{K}^{\mathbb{C}}(\Sigma) \geq 0$ for any totally isotropic 2-plane $\Sigma \subset T_p M \otimes \mathbb{C}$ (i.e. $\langle v, v \rangle = 0$ for $v \in \Sigma$).

< ロト < 同ト < ヨト < ヨ

Definition (Micallef-Moore)

The curvature Rm is said to have non-negative isotropic curvature $(\operatorname{Rm} \in \operatorname{C}_{PIC})$ if the complexified sectional curvature $\operatorname{K}^{\mathbb{C}}(\Sigma) \geq 0$ for any totally isotropic 2-plane $\Sigma \subset T_p M \otimes \mathbb{C}$ (i.e. $\langle v, v \rangle = 0$ for $v \in \Sigma$).

Extension:

● $\operatorname{Rm} \in \operatorname{C}_{PIC1}$ if $M \times \mathbb{R} \in \operatorname{C}_{PIC}$ (a generalization of Ric);

Definition (Micallef-Moore)

The curvature Rm is said to have non-negative isotropic curvature $(\operatorname{Rm} \in \operatorname{C}_{PIC})$ if the complexified sectional curvature $\operatorname{K}^{\mathbb{C}}(\Sigma) \geq 0$ for any totally isotropic 2-plane $\Sigma \subset T_p M \otimes \mathbb{C}$ (i.e. $\langle v, v \rangle = 0$ for $v \in \Sigma$).

Extension:

- $\operatorname{Rm} \in \operatorname{C}_{PIC1}$ if $M \times \mathbb{R} \in \operatorname{C}_{PIC}$ (a generalization of Ric);
- **2** Rm \in C_{PIC2} if $M \times \mathbb{R}^2 \in$ C_{PIC}

< ロト < 同ト < ヨト < ヨ

Definition (Micallef-Moore)

The curvature Rm is said to have non-negative isotropic curvature $(\operatorname{Rm} \in \operatorname{C}_{PIC})$ if the complexified sectional curvature $\operatorname{K}^{\mathbb{C}}(\Sigma) \geq 0$ for any totally isotropic 2-plane $\Sigma \subset T_p M \otimes \mathbb{C}$ (i.e. $\langle v, v \rangle = 0$ for $v \in \Sigma$).

Extension:

- $\operatorname{Rm} \in \operatorname{C}_{PIC1}$ if $M \times \mathbb{R} \in \operatorname{C}_{PIC}$ (a generalization of Ric);
- 2 Rm \in C_{PIC2} if $M \times \mathbb{R}^2 \in$ C_{PIC}

Differentiable sphere Theorem implied by the following powerful Theorem:

イロト イヨト イヨト

Definition (Micallef-Moore)

The curvature Rm is said to have non-negative isotropic curvature $(\operatorname{Rm} \in \operatorname{C}_{PIC})$ if the complexified sectional curvature $\operatorname{K}^{\mathbb{C}}(\Sigma) \geq 0$ for any totally isotropic 2-plane $\Sigma \subset T_p M \otimes \mathbb{C}$ (i.e. $\langle v, v \rangle = 0$ for $v \in \Sigma$).

Extension:

- $\operatorname{Rm} \in \operatorname{C}_{PIC1}$ if $M \times \mathbb{R} \in \operatorname{C}_{PIC}$ (a generalization of Ric);
- 2 Rm \in C_{PIC2} if $M \times \mathbb{R}^2 \in$ C_{PIC}

Differentiable sphere Theorem implied by the following powerful Theorem:

Theorem (Brendle-Schoen, Brendle)

A closed manifold (M,g) such that $\operatorname{Rm} - \varepsilon I \in \operatorname{C}_{PIC1}$ for some $\varepsilon > 0$, then the Ricci flow converges to spherical space-form after normalization.

Earlier works (motivated by sphere Theorem)

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

Earlier works (motivated by sphere Theorem)

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

- 4 個 ト 4 ヨ ト 4 ヨ

Earlier works (motivated by sphere Theorem)

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

Under additional assumption: $|\text{Rm}(g_0)| \leq 1$, the answer is NO:
Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

Under additional assumption: $|\text{Rm}(g_0)| \le 1$, the answer is NO: Shi, Chen-Zhu: traceless Ricci and Weyl are smaller than scalar

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

Under additional assumption: $|\text{Rm}(g_0)| \leq 1$, the answer is NO:

- Shi, Chen-Zhu: traceless Ricci and Weyl are smaller than scalar
- Ni-Wu: curv denotes curvature operators

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

Under additional assumption: $|\text{Rm}(g_0)| \leq 1$, the answer is NO:

- Shi, Chen-Zhu: traceless Ricci and Weyl are smaller than scalar
- Ni-Wu: curv denotes curvature operators
- Service Schoen: curv denotes PIC₂

Question

If positively pinched curv holds on M uniformly, can M be non-compact?

(Scaling invariant) curv condition on non-compact manifold

 $\operatorname{curv} > \varepsilon_0 \cdot \operatorname{scal} > 0.$

Under additional assumption: $|\mathsf{Rm}(g_0)| \leq 1$, the answer is NO:

- Shi, Chen-Zhu: traceless Ricci and Weyl are smaller than scalar
- Ni-Wu: curv denotes curvature operators
- Service Schoen: curv denotes PIC₂

Question: Is bounded curvature really necessary? Can we generalize further (analogous to sphere theorem)?

Man-Chun Lee (CUHK)

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

Scaling invariant version of Bonnet-Myer's Theorem;

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

- Scaling invariant version of Bonnet-Myer's Theorem;
- Moral idea (by Lott):

.

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

- Scaling invariant version of Bonnet-Myer's Theorem;
- Ø Moral idea (by Lott):
 - $(M, r_i^{-2}g_0)$ is close to a metric cone as $r_i >> 1$;

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

- Scaling invariant version of Bonnet-Myer's Theorem;
- Ø Moral idea (by Lott):
 - $(M, r_i^{-2}g_0)$ is close to a metric cone as $r_i >> 1$;
 - Ricci vanishes on radial direction implies flatness of metric cone by pinching

・ロト ・四ト ・ヨト ・ヨト

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

- Scaling invariant version of Bonnet-Myer's Theorem;
- Ø Moral idea (by Lott):
 - $(M, r_i^{-2}g_0)$ is close to a metric cone as $r_i >> 1$;
 - Price Ricci vanishes on radial direction implies flatness of metric cone by pinching
 - (a) link of cone (at infinity) must be \mathbb{S}^2 as $M = \mathbb{R}^3$ (topologically) and hence Euclidean flat of g_0

<ロト <部ト <注入 < 注入 = 二 =

Suppose (M^3, g_0) is complete manifold with $\operatorname{Ric}(g_0) \ge \varepsilon_0 \operatorname{scal}(g_0)$ for some $\varepsilon_0 > 0$, then (M^3, g_0) is compact or flat.

- Scaling invariant version of Bonnet-Myer's Theorem;
- One of the analysis of the advantage of the advantage
 - $(M, r_i^{-2}g_0)$ is close to a metric cone as $r_i >> 1$;
 - Ricci vanishes on radial direction implies flatness of metric cone by pinching
 - (a) link of cone (at infinity) must be \mathbb{S}^2 as $M = \mathbb{R}^3$ (topologically) and hence Euclidean flat of g_0

Question: What about higher dimension? What is the correct generalization of Ric in this spirit?

イロト 不得 トイラト イラト 一日

Theorem (L.-Topping) Suppose (M^n, g_0) is a complete non-compact manifold such that $\operatorname{Rm}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot \operatorname{Id} \in \operatorname{C}_{PIC1}$

for some $\varepsilon_0 > 0$ and $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$, then (M, g_0) is flat.

イロト 不得 トイヨト イヨト 二日

Theorem (L.-Topping)

Suppose (M^n, g_0) is a complete non-compact manifold such that

 $\operatorname{Rm}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot \operatorname{Id} \in \operatorname{C}_{PIC1}$

for some $\varepsilon_0 > 0$ and $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$, then (M, g_0) is flat.

Some remark:

Gap Theorem does not rely on **boundedness** of curvature;

イロト 不得 トイラト イラト 一日

Theorem (L.-Topping)

Suppose (M^n, g_0) is a complete non-compact manifold such that

 $\operatorname{Rm}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot \operatorname{Id} \in \operatorname{C}_{PIC1}$

for some $\varepsilon_0 > 0$ and $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$, then (M, g_0) is flat.

Some remark:

- Gap Theorem does not rely on **boundedness** of curvature;
- A-priori control of geometry from PIC2: M = Σ^k × F where F is topologically ℝ^{n-k}

イロト 不得 トイヨト イヨト 二日

Theorem (L.-Topping)

Suppose (M^n, g_0) is a complete non-compact manifold such that

 $\operatorname{Rm}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot \operatorname{Id} \in \operatorname{C}_{PIC1}$

for some $\varepsilon_0 > 0$ and $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$, then (M, g_0) is flat.

Some remark:

- Gap Theorem does not rely on **boundedness** of curvature;
- A-priori control of geometry from PIC2: M = Σ^k × F where F is topologically ℝ^{n-k}
- **3** $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$: "probably" is a technical assumption only.

イロト 不得 トイヨト イヨト 二日

Given a complete manifold (M^n, g_0) :

イロト イ部ト イヨト イヨト 二日

Given a complete manifold (M^n, g_0) :

• Evolves g_0 by Ricci flow g(t):

$$\begin{cases} \partial_t g(t) = -2\operatorname{Ric}(g(t)); \\ g(0) = g_0. \end{cases}$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a complete manifold (M^n, g_0) :

• Evolves g_0 by Ricci flow g(t):

$$\begin{cases} \partial_t g(t) = -2\operatorname{Ric}(g(t)); \\ g(0) = g_0. \end{cases}$$
(1)

2 Study long-time existence and behavior of g(t);

イロト 不得 トイヨト イヨト 二日

Given a complete manifold (M^n, g_0) :

• Evolves g_0 by Ricci flow g(t):

$$\begin{cases} \partial_t g(t) = -2\operatorname{Ric}(g(t)); \\ g(0) = g_0. \end{cases}$$
(1)

- 2 Study long-time existence and behavior of g(t);
- **3** g(t) is contracting as $t \to +\infty$: Consider rescaled flow

$$g_k(t) = k^{-1}g(kt), k \to +\infty.$$

イロト イポト イヨト イヨト 二日

Given a complete manifold (M^n, g_0) :

• Evolves g_0 by Ricci flow g(t):

$$\begin{cases} \partial_t g(t) = -2\operatorname{Ric}(g(t)); \\ g(0) = g_0. \end{cases}$$
(1)

- Study long-time existence and behavior of g(t);
- **(3)** g(t) is contracting as $t \to +\infty$: Consider rescaled flow

$$g_k(t) = k^{-1}g(kt), k \to +\infty.$$

In rescaled limit solution g_∞(t) gives metric structure of tangent cone at infinity of (M, g₀) when t → 0.

Man-Chun Lee (CUHK)

Question

Can we start the Ricci flow from a general given initial metric?

< □ > < 同 > < 回 > < Ξ > < Ξ

Question

Can we start the Ricci flow from a general given initial metric?

Answer(?): unclear in general as Ricci flow is non-linear, weakly-parabolic system!

▲ @ ▶ ▲ @ ▶ ▲

Question

Can we start the Ricci flow from a general given initial metric?

Answer(?): unclear in general as Ricci flow is non-linear, weakly-parabolic system!

• Shi: Short-time existence of Ricci flow under bounded curvature

Question

Can we start the Ricci flow from a general given initial metric?

Answer(?): unclear in general as Ricci flow is non-linear, weakly-parabolic system!

- Shi: Short-time existence of Ricci flow under bounded curvature
- Giesen-Topping: complete theory on surface

Question

Can we start the Ricci flow from a general given initial metric?

Answer(?): unclear in general as Ricci flow is non-linear, weakly-parabolic system!

- Shi: Short-time existence of Ricci flow under bounded curvature
- Giesen-Topping: complete theory on surface
- Cabezas-Rivas, Wilking: Short-time existence under Rm(g₀) ∈ C_{PIC2} (but without good estimate)

Question

Can we start the Ricci flow from a general given initial metric?

Answer(?): unclear in general as Ricci flow is non-linear, weakly-parabolic system!

- Shi: Short-time existence of Ricci flow under bounded curvature
- Giesen-Topping: complete theory on surface
- Cabezas-Rivas, Wilking: Short-time existence under Rm(g₀) ∈ C_{PIC2} (but without good estimate)
- L.-Tam, Hochard, Simon-Topping, Lai, etc: non-collapsed with strong curv > -1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 General difficulty: even short-time existence is unclear since geometry of g₀ at spatial infinity can be a-priori very complicated (Shi: ruled out by bounded curvature)

(日)

- General difficulty: even short-time existence is unclear since geometry of g₀ at spatial infinity can be a-priori very complicated (Shi: ruled out by bounded curvature)
- General difficulty: basic maximum principle fails (due to failure of control at infinity)

イロト 不得 トイヨト イヨト

Effective Existence theory under pinching

Theorem (L.-Topping)

Suppose (M^n, g_0) is a complete non-compact manifold with $n \ge 3$ and

 $\mathsf{Rm}(g_0) - \varepsilon_0 \mathrm{scal}(g_0) \cdot \mathit{Id} \in \mathrm{C}_{\mathit{PIC1}}$

for some $1 >> \varepsilon_0 > 0$,

イロト イポト イヨト イヨト 二日

Theorem (L.-Topping)

Suppose (M^n, g_0) is a complete non-compact manifold with $n \ge 3$ and

 $\mathsf{Rm}(g_0) - \varepsilon_0 \mathrm{scal}(g_0) \cdot \mathit{Id} \in \mathrm{C}_{\mathit{PIC1}}$

for some $1 >> \varepsilon_0 > 0$, then there exists a Ricci flow solution g(t) on $M \times [0, +\infty)$ from g_0 such that

- $\mathsf{Rm}(g(t)) \varepsilon_1 \mathrm{scal}(g(t)) \cdot \mathsf{Id} \in \mathrm{C}_{\mathsf{PIC}1};$
- 2 $|\operatorname{Rm}(g(t))| \leq at^{-1}$ for some $a(n, \varepsilon_0) > 0$;
- $\operatorname{scal}(g(t)) > 0$ if g_0 is non-flat;
- $\operatorname{Rm}(g(t)) \in \operatorname{C}_{PIC2}$ if $\operatorname{Rm}(g_0) \in \operatorname{C}_{PIC2}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Short-time Existence theory non-rely on Shi's classical solution

イロン イ理 とく ヨン イヨン

- Short-time Existence theory non-rely on Shi's classical solution
- Non-negative curvature preserved;

イロト イヨト イヨト イヨト

- Short-time Existence theory non-rely on Shi's classical solution
- Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!

(日)

- Short-time Existence theory non-rely on Shi's classical solution
- Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)

イロト 不得下 イヨト イヨト

- Short-time Existence theory non-rely on Shi's classical solution
- Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)
- Solution More importantly, estimates are scaling invariant: decay in c/t

- Short-time Existence theory non-rely on Shi's classical solution
- Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)
- More importantly, estimates are scaling invariant: decay in c/t
- c/t curvature decay: modelling metric cone at infinity after rescaling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Remarks

- Short-time Existence theory non-rely on Shi's classical solution
- In Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)
- More importantly, estimates are scaling invariant: decay in c/t
- c/t curvature decay: modelling metric cone at infinity after rescaling $g_k(t) = k^{-1}g(kt) \approx$ Ricci flow from metric cone at infinity.

イロト イヨト イヨト 一日

Remarks

- Short-time Existence theory non-rely on Shi's classical solution
- In Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)
- More importantly, estimates are scaling invariant: decay in c/t
- c/t curvature decay: modelling metric cone at infinity after rescaling $g_k(t) = k^{-1}g(kt) \approx$ Ricci flow from metric cone at infinity.
- Moral principle: "Ricci flow" from metric cone with pinched curvature must be flat forcing flatness of original manifold

イロト イポト イヨト イヨト 二日

Remarks

- Short-time Existence theory non-rely on Shi's classical solution
- In Non-negative curvature preserved;
- **③** Pinched curvature is preserved: $\operatorname{Rm} \varepsilon' \operatorname{scal} \cdot I \in \operatorname{C}_{PIC1}$ for all t > 0!
- curvature becomes bounded instantaneously after it evolves (infinity propagation)
- More importantly, estimates are scaling invariant: decay in c/t
- c/t curvature decay: modelling metric cone at infinity after rescaling $g_k(t) = k^{-1}g(kt) \approx$ Ricci flow from metric cone at infinity.
- Moral principle: "Ricci flow" from metric cone with pinched curvature must be flat forcing flatness of original manifold
- Argument makes rigorous using Brendle's Li-Yau-Hamilton's Harnack inequality.

イロト イヨト イヨト 一日

Idea of construction

The existence is based on local construction:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The existence is based on local construction:

Theorem (Local existence of Ricci flow)

Suppose M is non-compact and $p \in M$ satisfies $B_{g_0}(p,2) \Subset M$ and

 $\mathsf{Rm}(g_0) - \varepsilon_0 \mathrm{scal}(g_0) \cdot I \in \mathrm{C}_{PIC1}$

on $B_{g_0}(p,2)$, then there exists $T(n,\varepsilon_0)$, $a(n,\varepsilon_0)$, $\varepsilon'_0(n,\varepsilon_0) > 0$ and a Ricci flow solution g(t) on $B_{g_0}(p,1) \times [0,T]$ so that

1
$$|\operatorname{Rm}(g(t))| \leq at^{-1};$$

The existence is based on local construction:

Theorem (Local existence of Ricci flow)

Suppose M is non-compact and $p \in M$ satisfies $B_{g_0}(p,2) \Subset M$ and

 $\mathsf{Rm}(g_0) - \varepsilon_0 \mathrm{scal}(g_0) \cdot I \in \mathrm{C}_{PIC1}$

on $B_{g_0}(p,2)$, then there exists $T(n,\varepsilon_0)$, $a(n,\varepsilon_0)$, $\varepsilon'_0(n,\varepsilon_0) > 0$ and a Ricci flow solution g(t) on $B_{g_0}(p,1) \times [0,T]$ so that

1
$$|\operatorname{Rm}(g(t))| \leq at^{-1};$$

Moral Idea: the (almost) pinching will imply that g(t) looks like sphere at large curvature region which contradicts with non-compactness

Man-Chun Lee (CUHK)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

Suppose (M^n, g_0) is complete non-compact manifold with

 $\operatorname{\mathsf{Rm}}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot I \in \operatorname{C}_{PIC1},$

then g_0 is flat. (True in 3D)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Question

Suppose (M^n, g_0) is complete non-compact manifold with

 $\operatorname{\mathsf{Rm}}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot I \in \operatorname{C}_{PIC1},$

then g_0 is flat. (True in 3D)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Question

Suppose (M^n, g_0) is complete non-compact manifold with

 $\operatorname{\mathsf{Rm}}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot I \in \operatorname{C}_{PIC1},$

then g_0 is flat. (True in 3D)

(also unknown in the Kähler analogy: pinched bisectional curvature)

▲□▶▲□▶▲□▶▲□▶ □ ののの

Question

Suppose (M^n, g_0) is complete non-compact manifold with

 $\operatorname{\mathsf{Rm}}(g_0) - \varepsilon_0 \operatorname{scal}(g_0) \cdot I \in \operatorname{C}_{PIC1},$

then g_0 is flat. (True in 3D)

(also unknown in the Kähler analogy: pinched bisectional curvature)

Sub-question (crucial step in 3D): generalization of Schoen-Yau Theorem Question

Suppose (M^n, g_0) is complete non-compact manifold with

```
\operatorname{Rm}(g_0) \in \operatorname{int}(\operatorname{C}_{PIC1}),
```

then *M* is diffeomorphic to \mathbb{R}^n

THANK YOU!!

イロト イ部ト イヨト イヨト 一日