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Second order Sobolev’s inequality for Rn: for n ≥ 3 and 1 < p ≤ 2n
n−2 , we have(∫

Rn

|u|pdx
)2/p

≤ Kn,p

∫
Rn

|∇u|2dx (1)

for all u ∈ W 1,2(Rn).

[Sharp form of (1) was independently found by Aubin and Talenti in 1976.]

[Inequality (1) can be thought of as the continuity of the embedding W 1,2(Rn) ↪→
Lp(Rn) up to p = 2n

n−2
.]

Second order Sobolev’s inequality for (Sn, gSn): on the standard sphere (Sn, gSn)(∫
Sn

|v|pdµSn
)2/p

≤ p− 2

n

∫
Sn

|∇v|2dµSn +

∫
Sn

|v|2dµSn (2)

for n ≥ 3, 2 < p ≤ 2n
n−2 , and all v ∈ W 1,2(Sn).

[Sharp form of (2) was proved by Beckner in 1993 using spherical harmonics and the

dual-spectral form of the Hardy–Littlewood–Sobolev inequality on Sn.]
[Inequality (2) can also be obtained directly from (1) by making use of stereographic

projection.]

[The case p = 2n
n−2

is of particularly interesting.]



Review Motivation Main result Methodogy Technical difficulties Applications Discussion

Critical Sobolev’s inequality for (Sn, gSn): With 2 < p ≤ 2n
n−2 , recall from (2)(∫

Sn
|v|pdµSn

)2/p

≤ p− 2

n

∫
Sn

|∇v|2dµSn +

∫
Sn

|v|2dµSn .

In the critical case p = 2n
n−2 with n ≥ 3 the critical Sobolev inequality is(∫

Sn
|v|

2n
n−2 dµSn

)n−2
n ≤ 4

n(n− 2)

∫
Sn

|∇v|2dµSn +

∫
Sn

|v|2dµSn .

If we denote

L2
n : v 7→ −∆v +

n(n− 2)

4
v,

then the critical Sobolev inequality can be rewritten as(∫
Sn

|v|
2n

n−2 dµSn
)n−2

n ≤ 4

n(n− 2)

∫
Sn

vL2
n(v)dµSn (3)

[This is because∫
Sn

vL2
n(v)dµSn =

∫
Sn

v
(
−∆v +

n(n− 2)

4
v
)
dµSn = · · · .]

[L2
n is known as the conformal Laplacian on Sn, which is of second order. And we

are interested in cases of higher order operators instead of second order operator L2
n.]
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The conformal Laplacian of second-order on Sn

L2
n = −∆+

n(n− 2)

4
is an example of lower-order conformal transformations. The first example of
higher-order conformal transformations was found by Paneitz in 1983.

On (Sn, gSn) with n ≥ 3, this operator, denoted by P4
n and called Paneitz’s

operator, is as follows

P4
n =

(
−∆+

n(n− 2)

4

)(
−∆+

(n+ 2)(n− 4)

4

)
The other example of higher-order conformal transformations was found by
Graham, Jenne, Mason, and Sparling in 1992.

On (Sn, gSn) with n ≥ 3, this operator of order 2m, denoted by P2m
n and called

GJMS’s operator, is as follows

P2m
n =

m−1∏
i=0

(
−∆+

(n+ 2i)(n− 2i− 2)

4

)
[In general, to define P2m

n it is required either 3 ≤ n is odd or 2m ≤ n is even.]
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Recall (3), that is(∫
Sn

|v|
2n

n−2 dµSn
)n−2

n ≤ 4

n(n− 2)

∫
Sn

vL2
n(v)dµSn .

A natural generalization of (3) for Paneitz’s operator could be(∫
Sn

|v|pdµSn
)2/p

≲n,p

∫
Sn

vP4
n(v)dµSn (4)

for 1 < p ≤ 2n
n−4 if n ≥ 5 and −6 = 2·3

3−4 ≤ p < 0 if n = 3.

[The 4th order Sobolev’s inequality for Rn: for n ≥ 5 and 1 < p ≤ 2n
n−4

, we have(∫
Rn

|u|pdx
)2/p

≲n,p

∫
Rn

(∆u)2dx ∀u ∈ W 2,2(Rn).] (5)

[It appears that in (4) the two cases n < 4 and n ≥ 5 could be very different.]

[In the case n = 3, as P4
3(1) = −15/16 < 0, the RHS of (4) is strictly negative.]

Similarly, a natural generalization of (3) for GJMS’s operator could be(∫
Sn

|v|pdµSn
)2/p

≲n,p

∫
Sn

vP2m
n (v)dµSn (6)

for 1 < p ≤ 2n
n−2m if n > 2m and 2n

n−2m ≤ p < 0 if 3 ≤ n < 2m.

[It appears that in (4) the two cases n < 2m and n > 2m could also be very different.]
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In 1993 (a preprint appeared in 1991), Beckner proved (6) for n > 2m ≥ 4(∫
Sn

|v|pdµSn
)2/p

≲n,p

∫
Sn

vP2m
n (v)dµSn

[The method used is based on spherical harmonics.]

[The above inequality also includes (4) for all n ≥ 5.]

In 2004 (a preprint appeared in 2003), Yang and Zhu proved (4) in the critical
case in the remaining case n = 3(∫

S3
|v|−6dµSn

)−3

≲
∫
S3
vP4

3(v)dµS3 (7)

[If n = 3, then 2n
n−4

= −6. The method used is based on symmetrization.]

In 2007 (a preprint appeared in 2003), Zhu proved (8) in the critical case for odd
n ∈ {3, ..., 2m}(∫

Sn
|v|−

2n
2m−n dµSn

)− 2m−n
n

≲n,p

∫
Sn

vP2m
n (v)dµSn (8)

[In fact, the RHS of (8) is bounded from below if either n = 2m− 1 or n = 2m− 3.

The method used is variational.]
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In 2018, F. Hang and P. Yang (arXiv:1802.09692) proposed the following
alternative approach to prove (7). For small ε > 0, consider

inf
0<ϕ∈W 2,2(S3)

(∫
S3
|ϕ|−6dµSn

)3
∫
S3
ϕ
[
P4

3(ϕ) + εϕ
]
dµS3 (9)

It can be proved that there is a smooth minimizer vε > 0 to (9). In addition, vε
solves

P4
3(vε) + εvε = −v−7

ε on S3

If any smooth, positive solution to the above PDE is constant, then for any
ϕ ∈ W 2,2(S3)(∫

S3
|ϕ|−6dµSn

)3
∫
S3
ϕ
[
P4

3(ϕ) + εϕ
]
dµS3 ≥

[
P4

3(1) + ε
]
|S3|4/3

Letting ε ↘ 0 gives the desired inequality with a sharp constant

−15

16
|S3|4/3

[Recall that P4
3 = (−∆+ 3

4
)(−∆− 5

4
) = ∆2 + 1

2
∆− 15

16
.]

[Hang and Yang proposed this approach, but in their paper, they used a way around.]
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For small ε > 0, recall if uε is a minimizer to (9), namely

inf
0<ϕ∈W 2,2(S3)

(∫
S3
|ϕ|−6dµSn

)3
∫
S3
ϕ
[
P4

3(ϕ) + εϕ
]
dµS3 ,

then up to a constant multiple uε solves

P4
3(v) + εv = −v−7 on S3. (10)

Hang and Yang raised the following:

Conjecture

Let ε > 0 be a small number. If v is a positive, smooth function solution to (10),
then v must be a constant function.

[In their work, Hang and Yang worked on minimizers. Being a minimizer, there is an
extra freedom, namely one assumes∫

S3
|ϕ|−6dµSn = 1,

which is not available for any solution to the PDE. Hence, the conjecture is about to

ask for a larger class of optimizers without any constraint.]

This conjecture was recently confirmed by Shihong Zhang (arXiv:2104.03060).
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Inspired by Hang and Yang’s conjecture and the work of Zhang, we aim to study
Liouville type result for

P2m
n (v) = Q2m

n︸︷︷︸
P2m

n (1)

(εv + v−α) on Sn (11)

under

3 ≤ n < 2m, n is odd, α > 0, ε ∈ [0, 1)

Here recall P2m
n is GJMS’s operator of order 2m on Sn with

P2m
n = (−∆)m + l.o.t+Q2m

n

[Q2m
n does not have a sign, for example Q4

3 < 0 but Q6
3 > 0. Fortunately, Q2m

n ≠ 0.]
[Now the condition ε ∈ [0, 1) can be easily seen by integrating both sides of (11) to
get

(1− ε)

∫
Sn

vdµgSn =

∫
Sn

v−αdµgSn

after canceling both sides by Q2m
n .]

Our aim is to show that for suitable small ε ∈ (0, 1) and 0 < α ≤ 2m+n
2m−n , any

smooth, positive solution to (11) must be constant. back to Hang–Yang’s conjecture

However, we need to modify Zhang’s approach. to our approach
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Our main result reads as follows:

Theorem (the negative case, namely n < 2m)

Let assume n ≥ 3 be odd and m > n/2. Then there exists ε∗ ∈ (0, 1) such that
under one of the following conditions

1 either ε ∈ (0, ε∗) and

0 < α ≤ 2m+ n

2m− n

2 or ε = 0 and

0 < α <
2m+ n

2m− n

any positive, smooth solution v to

P2m
n (v) = Q2m

n (εv + v−α) on Sn

must be constant, hence is equal to (1− ε)−1/(α+1).

Next, let us briefly sketch our approach. It consists of three main steps as follows:
(1) to derive some integral equation for u on Rn, (2) to prove that u must be
radially symmetric, and (3) to prove that v must be constant. to positive case
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Zhang used the following approach to tackle the conjecture:

P4
3(v) = −(εv + v−7) on S3y via the stereographic projection

∆2u = −
[
ε
( 2

1 + |x|2
)4
u+ u−7

]
in R3

u(x) =
1

8π

∫
R3

|x− y|
[
ε
( 2

1 + |x|2
)4
u(y) + u(y)−7

]
dy in R3y via the Kelvin transform

∆2u∗ = −
[
ε
( 2

1 + |x|2
)4
u∗ + (u∗)−7

]
in R3 \ {0}y via the method of moving planes

u∗ is radially symmetric and increasingy
v is radially symmetric w.r.t. any critical pointy via Kazdan–Warner type identity

v is constant to our approach
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We modify Zhang’s approach to tackle the higher dimensional problem as follows:

P2m
n (v) = Q2m

n (εv + v−α) on Sny via the stereographic projection

(−∆)mu = Q2m
n

[
ε
( 2

1 + |x|2
)2m

u+
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u−α

]
in Rn

u(x) = C

∫
Rn

|x− y|2m−n
[
ε
( 2

1 + |x|2
)2m

u+
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u−α

]
dy in Rny via the Kelvin transform

(−∆)mu∗ = Q2m
n

[
ε
( 2

1 + |x|2
)2m

u∗ +
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 (u∗)−α

]
in Rny via the method of moving planes

u∗ is radially symmetric and increasing
u is radially symmetric and increasingy

v is radially symmetric w.r.t. any critical pointy via Kazdan–Warner type identity

v is constant to difficulties
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There are at least three difficulties that we are going to describe.

The first difficulity is how to transfer

P2m
n (v) = Q2m

n (εv + v−α) on Sny u = ( 2
1+|x|2 )

n−2m
2 (v ◦ π−1)

u(x) = C

∫
Rn

|x− y|2m−nFε,u(y)dy in Rn

for some Fε,u. Roughly speaking, there are at least two routes achieving this.

1 to exploit the sign of (−∆)iu, the sub/super poly-harmonicity

2 to exploit the sign of
∫
Rn u(−∆)iφ, the weakly sub/super poly-harmonicity.

Zhang essentially follows the first route by making use of techniques from
potential analysis, which makes the analysis quite involved.

[In the published version, this part consists of nearly 10 pages.]

We offer a completely new approach by exploiting the relation of stereographic
projections centered at different points.
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Now let see why a compactness result is required. This is the second difficulty.
Now we forget v on Sn but focus on u on Rn. The aim is to prove u (blue curve
in the figure below) is symmetric w.r.t. x1 = 0. As

u(x) =
( 2

1 + |x|2
)n−2m

2︸ ︷︷ ︸
↗+∞

(v ◦ π−1)(x)︸ ︷︷ ︸
→v(north pole)

as |x| ↗ +∞

So for large λ ≫ 1 and large x1 ≫ λ, one should have

u(x1, x2, ..., xn) ≥ u(2λ− x1, x2, ..., xn) ∀x1 ≫ λ

u

λ = 0
x1

λ

u(x1, x2, ..., xn)

u(2λ− x1, x2, ..., xn)

Then we lower λ ↘ 0 so long as u(x1, x2, ...) ≥ u(2λ− x1, x2, ...) remains valid.
The key step is to show λ = 0. (Then we let λ ↗ 0... to get symmetry.)
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Denote xλ = (2λ− x1, x2, ..., xn) with |xλ| < |x| in {x1 > λ > 0}. Recall

u(x)− u(xλ) = C

∫
{x1>λ}

[
|xλ − y|2m−n − |x− y|2m−n︸ ︷︷ ︸

≥0

][
Fε(y

λ)− Fε(y)
]
dy

with

Fε(z) = ε
( 2

1 + |z|2
)2m

u(z) +
( 2

1 + |z|2
)n+2m

2 +αn−2m
2 u(z)−α.

To lower λ ↘ 0 one needs u(x) > u(xλ). And to gain u(x) > u(xλ), one wishes

Fε(y
λ)− Fε(y) ≥ 0 ∀y1 > λ > 0.

As Fε(z) has two power terms with opposite sign: while in {x1 > λ > 0}

ε
( 2

1 + |yλ|2
)n+2m

2 +αn−2m
2 u(yλ)−α > ε

( 2

1 + |y|2
)n+2m

2 +αn−2m
2 u(y)−α,

which is good, the first term is not that good because one cannot claim

ε
( 2

1 + |yλ|2
)2m

u(yλ)
???
≥ ε

( 2

1 + |y|2
)2m

u(y).

This requires some control of u independent of ε, leading to a compactness
result. We make use of this compactness result as follows

u(y) ≪ u(y)−α ≪ u(yλ)−α ≪ u(yλ).
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Let us discuss the third difficulty. To obtain the symmetry of solutions, one often
use either the MMP or the method of moving spheres (MMS). But either

(−∆)mu = Q2m
n

[
ε
( 2

1 + |x|2
)2m

u+
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u−α

]
or

u(x) = C

∫
Rn

|x− y|2m−n
[
ε
( 2

1 + |x|2
)2m

u+
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u−α

]
dy

contains the weight of 1 + |x|2, which seems to be difficult to handle using MMS.

[When using the MMS, the center is arbitrary.]

In practice, the MMP can be effectively applied to differential/integral equations
with positive exponents. Our case is quite different. Fortunately, we are still
successful with the MMP because we have good control on the growth of u,
namely u ∈ C∞(Rn) and

1 + |x|2m−n

C
≤ u(x) ≤ C(1 + |x|2m−n) ∀x ∈ Rn,

thanks to

u = (
2

1 + |x|2
)

n−2m
2 (v ◦ π−1) in Rn.
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An application of the Liouville type result is the following Sobolev inequality,
which motivates Hang and Yang to work on this higher-order PDE.

A subcritical/critical Sobolev inequality for GJMS’s operator on Sn

Let n be an odd number and m = n+1
2 . Then, for any ϕ ∈ Hm(Sn) with ϕ > 0

and any α ∈ (0, 1) ∪ (1, 2n+ 1), we have the following sharp Sobolev inequality∫
Sn

ϕP2m
n (ϕ)dµgSn ≥ Γ(n/2 +m)

Γ(n/2−m)
|Sn|

α+1
α−1

(∫
Sn

ϕ1−αdµgSn

)− 2
α−1

. (12)α

Moreover, equality occurs if ϕ is constant.

[α = 1 is the limiting case, the inequality becomes∫
Sn

ϕP2m
n (ϕ)dµgSn ≥

Γ(n/2 +m)

Γ(n/2−m)
|Sn| exp

( 2

|Sn|

∫
Sn

log ϕdµgSn

)
, (13)

which can be obtained from (12)α as α ↘ 1.]
[It turns out that

(12)2n+1 −→ (12)β with β ∈ (1, 2n+ 1) −→ (13) −→ (12)α with α ∈ (0, 1),

where the notation A −→ B means we can obtain B from A.]
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The method developed here works equally well for the case of positive exponents,
namely we can prove the following.

Theorem (the positive case, namely n > 2m)

Let assume n ≥ 3 be odd and m < n/2. Then, under one of the following
conditions

1 either ε ∈ (0, 1) and 1 < α ≤ n+ 2m

n− 2m

2 or ε = 0 and 1 < α <
n+ 2m

n− 2m

any positive, smooth solution v to

P2m
n (v) = Q2m

n (εv + vα) on Sn

must be constant, hence is equal to (1− ε)1/(α−1).

[Recall the equation P2m
n (v) = Q2m

n (εv + v−α) in the negative case with m > n/2,

0 < α ≤ (n+ 2m)/(2m− n), and 0 < ε < ε∗ < 1.]

[No compactness is required, hence the above result holds for any 0 < ε < 1, not

necessarily small like 0 < ε < ε∗ < 1 in the negative case.] to negative case
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We recall our equation

(−∆)mu = Q2m
n

[
ε
( 2

1 + |x|2
)2m

u+
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u−α

]
in Rn.

In the special case ε = 0 and with σ = n+2m
2 + αn−2m

2 > 0 we are led to

(−∆)mu = Q2m
n

( 2

1 + |x|2
)σ
u

n+2m−2σ
n−2m in Rn. (14)

Let us focus on the case n > 2m, in particular Q2m
n > 0. After normalization,

the above equation is similar to the higher-order Hardy-Hénon equation in Rn,
namely

(−∆)mu = |x|σup in Rn.

(Sobolev-type critical exponent is n+2m+2σ
n−2m .) As σ > 0 and( 2

1 + |x|2
)σ ∼ |x|−2σ,

in this scenario the exponent is ‘supercritical’ because
n+ 2m− 2σ

n− 2m
>

n+ 2m− 4σ

n− 2m
.

This coincides with the fact that (14) always admits a radial solution. But we
should not expect these two types of equations sharing similar properties.
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The equation (14), namely

(−∆)mu =
( 2

1 + |x|2
)σ
u

n+2m−2σ
n−2m in Rn,

is also very similar to Matukuma’s equation in R3, namely

−∆u =
1

1 + |x|2
up in R3

with p > 1. It is known that this equation admits at least one radial solution for
any p > 1 (Sobolev’s critical exponent is 2·3

3−2 = 6). If we set m = 1, n = 3, and
α = −3, then after normalization our equation (14) becomes

−∆u =
1

1 + |x|2
u3 in R3.

So without requiring the exact asymptotic behavior at infinity, it is expected that
our equation (14) admits other solutions rather than the radial one. We can also
investigate solutions to

(−∆)mu =
( 2

1 + |x|2
)σ
up in Rn

with

n > 2m, p > 1 or p ≥ n+ 2m− 4σ

n− 2m
.
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For Matukuma’s equation in Rn, namely

−∆u =
1

1 + |x|2
up in Rn

it is known (after Y. Li, W.M. Ni, E.S. Noussair, C.A. Swanson, E. Yanagida, S.
Yotsutani, etc.) that if

n = 3, 1 < p < 5 =
3 + 2

3− 2
,

then all positive solution must be radially symmetric with respect to the origin.
Hence we can ask if such a symmetry result still holds for higher-order cases, at
least in the special case

(−∆)mu =
( 2

1 + |x|2
)σ
u

n+2m−2σ
n−2m in Rn

with n > 2m ≥ 4 and σ > 0.

Thank you for your attention...
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,
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1 + |x|2
)σ
u
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