Asia-Pacific Analysis and PDE Seminar, Monday, March 6, 2023

因

## On a class of GJMS equations on the standard $n$-sphere

## Quốc Anh Ngô

Department of Mathematics, University of Science
Vietnam National University, Ha Noi

## Outline of the talk

Review on functional inequalities of Sobolev type

A perturbation approach by Hang and Yang

Hang and Yang's conjecture


Discussion

Second order Sobolev's inequality for $\mathbf{R}^{n}$ : for $n \geq 3$ and $1<p \leq \frac{2 n}{n-2}$, we have

$$
\begin{equation*}
\left(\int_{\mathbf{R}^{n}}|u|^{p} d x\right)^{2 / p} \leq K_{n, p} \int_{\mathbf{R}^{n}}|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

for all $u \in W^{1,2}\left(\mathbf{R}^{n}\right)$.
[Sharp form of (1) was independently found by Aubin and Talenti in 1976.]
[Inequality (1) can be thought of as the continuity of the embedding $W^{1,2}\left(\mathbf{R}^{n}\right) \hookrightarrow$ $L^{p}\left(\mathbf{R}^{n}\right)$ up to $p=\frac{2 n}{n-2}$.]

Second order Sobolev's inequality for $\left(\mathbb{S}^{n}, g_{\mathbb{S}^{n}}\right)$ : on the standard sphere $\left(\mathbb{S}^{n}, g_{\mathbb{S}^{n}}\right)$

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{n}}|v|^{p} d \mu_{\mathbb{S}^{n}}\right)^{2 / p} \leq \frac{p-2}{n} \int_{\mathbb{S}^{n}}|\nabla v|^{2} d \mu_{\mathbb{S}^{n}}+\int_{\mathbb{S}^{n}}|v|^{2} d \mu_{\mathbb{S}^{n}} \tag{2}
\end{equation*}
$$

for $n \geq 3,2<p \leq \frac{2 n}{n-2}$, and all $v \in W^{1,2}\left(\mathbb{S}^{n}\right)$.
[Sharp form of (2) was proved by Beckner in 1993 using spherical harmonics and the dual-spectral form of the Hardy-Littlewood-Sobolev inequality on $\mathbb{S}^{n}$.]
[Inequality (2) can also be obtained directly from (1) by making use of stereographic projection.]
[The case $p=\frac{2 n}{n-2}$ is of particularly interesting.]

Critical Sobolev's inequality for $\left(\mathbb{S}^{n}, g_{\mathbb{S}^{n}}\right)$ : With $2<p \leq \frac{2 n}{n-2}$, recall from (2)

$$
\left(\int_{\mathbb{S}^{n}}|v|^{p} d \mu_{\mathbb{S}^{n}}\right)^{2 / p} \leq \frac{p-2}{n} \int_{\mathbb{S}^{n}}|\nabla v|^{2} d \mu_{\mathbb{S}^{n}}+\int_{\mathbb{S}^{n}}|v|^{2} d \mu_{\mathbb{S}^{n}} .
$$

In the critical case $p=\frac{2 n}{n-2}$ with $n \geq 3$ the critical Sobolev inequality is

$$
\left(\int_{\mathbb{S}^{n}}|v|^{\frac{2 n}{n-2}} d \mu_{\mathbb{S}^{n}}\right)^{\frac{n-2}{n}} \leq \frac{4}{n(n-2)} \int_{\mathbb{S}^{n}}|\nabla v|^{2} d \mu_{\mathbb{S}^{n}}+\int_{\mathbb{S}^{n}}|v|^{2} d \mu_{\mathbb{S}^{n}} .
$$

If we denote

$$
\mathbf{L}_{n}^{2}: v \mapsto-\Delta v+\frac{n(n-2)}{4} v,
$$

then the critical Sobolev inequality can be rewritten as

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{n}}|v|^{\frac{2 n}{n-2}} d \mu_{\mathbb{S}^{n}}\right)^{\frac{n-2}{n}} \leq \frac{4}{n(n-2)} \int_{\mathbb{S}^{n}} v \mathbf{L}_{n}^{2}(v) d \mu_{\mathbb{S}^{n}} \tag{3}
\end{equation*}
$$

[This is because

$$
\left.\int_{\mathbb{S}^{n}} v \mathbf{L}_{n}^{2}(v) d \mu_{\mathbb{S}^{n}}=\int_{\mathbb{S}^{n}} v\left(-\Delta v+\frac{n(n-2)}{4} v\right) d \mu_{\mathbb{S}^{n}}=\cdots .\right]
$$

$\left[\mathbf{L}_{n}^{2}\right.$ is known as the conformal Laplacian on $\mathbb{S}^{n}$, which is of second order. And we are interested in cases of higher order operators instead of second order operator $\mathbf{L}_{n}^{2}$.]

The conformal Laplacian of second-order on $\mathbb{S}^{n}$

$$
\mathbf{L}_{n}^{2}=-\Delta+\frac{n(n-2)}{4}
$$

is an example of lower-order conformal transformations. The first example of higher-order conformal transformations was found by Paneitz in 1983.
On $\left(\mathbb{S}^{n}, g_{\mathbb{S}^{n}}\right)$ with $n \geq 3$, this operator, denoted by $\mathbf{P}_{n}^{4}$ and called Paneitz's operator, is as follows

$$
\mathbf{P}_{n}^{4}=\left(-\Delta+\frac{n(n-2)}{4}\right)\left(-\Delta+\frac{(n+2)(n-4)}{4}\right)
$$

The other example of higher-order conformal transformations was found by Graham, Jenne, Mason, and Sparling in 1992.
On ( $\mathbb{S}^{n}, g_{\mathbb{S}^{n}}$ ) with $n \geq 3$, this operator of order $2 m$, denoted by $\mathbf{P}_{n}^{2 m}$ and called GJMS's operator, is as follows

$$
\mathbf{P}_{n}^{2 m}=\prod_{i=0}^{m-1}\left(-\Delta+\frac{(n+2 i)(n-2 i-2)}{4}\right)
$$

[In general, to define $\mathbf{P}_{n}^{2 m}$ it is required either $3 \leq n$ is odd or $2 m \leq n$ is even.]

Recall (3), that is

$$
\left(\int_{\mathbb{S}^{n}}|v|^{\frac{2 n}{n-2}} d \mu_{\mathbb{S}^{n}}\right)^{\frac{n-2}{n}} \leq \frac{4}{n(n-2)} \int_{\mathbb{S}^{n}} v \mathbf{L}_{n}^{2}(v) d \mu_{\mathbb{S}^{n}}
$$

A natural generalization of (3) for Paneitz's operator could be

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{n}}|v|^{p} d \mu_{\mathbb{S}^{n}}\right)^{2 / p} \lesssim_{n, p} \int_{\mathbb{S}^{n}} v \mathbf{P}_{n}^{4}(v) d \mu_{\mathbb{S}^{n}} \tag{4}
\end{equation*}
$$

for $1<p \leq \frac{2 n}{n-4}$ if $n \geq 5$ and $-6=\frac{2 \cdot 3}{3-4} \leq p<0$ if $n=3$.
[The 4th order Sobolev's inequality for $\mathbf{R}^{n}$ : for $n \geq 5$ and $1<p \leq \frac{2 n}{n-4}$, we have

$$
\begin{equation*}
\left.\left(\int_{\mathbf{R}^{n}}|u|^{p} d x\right)^{2 / p} \lesssim_{n, p} \int_{\mathbf{R}^{n}}(\Delta u)^{2} d x \quad \forall u \in W^{2,2}\left(\mathbf{R}^{n}\right) .\right] \tag{5}
\end{equation*}
$$

[It appears that in (4) the two cases $n<4$ and $n \geq 5$ could be very different.]
[In the case $n=3$, as $\mathbf{P}_{3}^{4}(1)=-15 / 16<0$, the RHS of (4) is strictly negative.]
Similarly, a natural generalization of (3) for GJMS's operator could be

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{n}}|v|^{p} d \mu_{\mathbb{S}^{n}}\right)^{2 / p} \lesssim n, p^{\int_{\mathbb{S}^{n}} v \mathbf{P}_{n}^{2 m}(v) d \mu_{\mathbb{S}^{n}} . . .} \tag{6}
\end{equation*}
$$

for $1<p \leq \frac{2 n}{n-2 m}$ if $n>2 m$ and $\frac{2 n}{n-2 m} \leq p<0$ if $3 \leq n<2 m$.
[It appears that in (4) the two cases $n<2 m$ and $n>2 m$ could also be very different.]

In 1993 (a preprint appeared in 1991), Beckner proved (6) for $n>2 m \geq 4$

$$
\left(\int_{\mathbb{S}^{n}}|v|^{p} d \mu_{\mathbb{S}^{n}}\right)^{2 / p} \lesssim{ }_{n, p} \int_{\mathbb{S}^{n}} v \mathbf{P}_{n}^{2 m}(v) d \mu_{\mathbb{S}^{n}}
$$

[The method used is based on spherical harmonics.]
[The above inequality also includes (4) for all $n \geq 5$.]
In 2004 (a preprint appeared in 2003), Yang and Zhu proved (4) in the critical case in the remaining case $n=3$

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{3}}|v|^{-6} d \mu_{\mathbb{S}^{n}}\right)^{-3} \lesssim \int_{\mathbb{S}^{3}} v \mathbf{P}_{3}^{4}(v) d \mu_{\mathbb{S}^{3}} \tag{7}
\end{equation*}
$$

[If $n=3$, then $\frac{2 n}{n-4}=-6$. The method used is based on symmetrization.]
In 2007 (a preprint appeared in 2003), Zhu proved (8) in the critical case for odd $n \in\{3, \ldots, 2 m\}$

$$
\begin{equation*}
\left(\int_{\mathbb{S}^{n}}|v|^{-\frac{2 n}{2 m-n}} d \mu_{\mathbb{S}^{n}}\right)^{-\frac{2 m-n}{n}} \lesssim_{n, p} \int_{\mathbb{S}^{n}} v \mathbf{P}_{n}^{2 m}(v) d \mu_{\mathbb{S}^{n}} \tag{8}
\end{equation*}
$$

[In fact, the RHS of (8) is bounded from below if either $n=2 m-1$ or $n=2 m-3$.
The method used is variational.]

In 2018, F. Hang and P. Yang (arXiv:1802.09692) proposed the following alternative approach to prove (7). For small $\varepsilon>0$, consider

$$
\begin{equation*}
\inf _{0<\phi \in W^{2,2}\left(\mathbb{S}^{3}\right)}\left(\int_{\mathbb{S}^{3}}|\phi|^{-6} d \mu_{\mathbb{S}^{n}}\right)^{3} \int_{\mathbb{S}^{3}} \phi\left[\mathbf{P}_{3}^{4}(\phi)+\varepsilon \phi\right] d \mu_{\mathbb{S}^{3}} \tag{9}
\end{equation*}
$$

It can be proved that there is a smooth minimizer $v_{\varepsilon}>0$ to (9). In addition, $v_{\varepsilon}$ solves

$$
\mathbf{P}_{3}^{4}\left(v_{\varepsilon}\right)+\varepsilon v_{\varepsilon}=-v_{\varepsilon}^{-7} \quad \text { on } \mathbb{S}^{3}
$$

If any smooth, positive solution to the above PDE is constant, then for any $\phi \in W^{2,2}\left(\mathbb{S}^{3}\right)$

$$
\left(\int_{\mathbb{S}^{3}}|\phi|^{-6} d \mu_{\mathbb{S}^{n}}\right)^{3} \int_{\mathbb{S}^{3}} \phi\left[\mathbf{P}_{3}^{4}(\phi)+\varepsilon \phi\right] d \mu_{\mathbb{S}^{3}} \geq\left[\mathbf{P}_{3}^{4}(1)+\varepsilon\right]\left|\mathbb{S}^{3}\right|^{4 / 3}
$$

Letting $\varepsilon \searrow 0$ gives the desired inequality with a sharp constant

$$
-\frac{15}{16}\left|\mathbb{S}^{3}\right|^{4 / 3}
$$

[Recall that $\mathbf{P}_{3}^{4}=\left(-\Delta+\frac{3}{4}\right)\left(-\Delta-\frac{5}{4}\right)=\Delta^{2}+\frac{1}{2} \Delta-\frac{15}{16}$.]
[Hang and Yang proposed this approach, but in their paper, they used a way around.]

For small $\varepsilon>0$, recall if $u_{\varepsilon}$ is a minimizer to (9), namely

$$
\inf _{0<\phi \in W^{2,2}\left(\mathbb{S}^{3}\right)}\left(\int_{\mathbb{S}^{3}}|\phi|^{-6} d \mu_{\mathbb{S}^{n}}\right)^{3} \int_{\mathbb{S}^{3}} \phi\left[\mathbf{P}_{3}^{4}(\phi)+\varepsilon \phi\right] d \mu_{\mathbb{S}^{3}},
$$

then up to a constant multiple $u_{\varepsilon}$ solves

$$
\begin{equation*}
\mathbf{P}_{3}^{4}(v)+\varepsilon v=-v^{-7} \quad \text { on } \mathbb{S}^{3} . \tag{10}
\end{equation*}
$$

Hang and Yang raised the following:

## Conjecture

Let $\varepsilon>0$ be a small number. If $v$ is a positive, smooth function solution to (10), then $v$ must be a constant function.
[In their work, Hang and Yang worked on minimizers. Being a minimizer, there is an extra freedom, namely one assumes

$$
\int_{\mathbb{S}^{3}}|\phi|^{-6} d \mu_{\mathbb{S}^{n}}=1
$$

which is not available for any solution to the PDE. Hence, the conjecture is about to ask for a larger class of optimizers without any constraint.]

This conjecture was recently confirmed by Shihong Zhang (arXiv:2104.03060).

Inspired by Hang and Yang's conjecture and the work of Zhang, we aim to study Liouville type result for

$$
\begin{equation*}
\mathbf{P}_{n}^{2 m}(v)=\underbrace{Q_{n}^{2 m}}_{\mathbf{P}_{n}^{2 m}(1)}\left(\varepsilon v+v^{-\alpha}\right) \quad \text { on } \mathbb{S}^{n} \tag{11}
\end{equation*}
$$

under

$$
3 \leq n<2 m, \quad n \text { is odd }, \quad \alpha>0, \quad \varepsilon \in[0,1)
$$

Here recall $\mathbf{P}_{n}^{2 m}$ is GJMS's operator of order $2 m$ on $\mathbb{S}^{n}$ with

$$
\mathbf{P}_{n}^{2 m}=(-\Delta)^{m}+\text { l.o.t }+Q_{n}^{2 m}
$$

[ $Q_{n}^{2 m}$ does not have a sign, for example $Q_{3}^{4}<0$ but $Q_{3}^{6}>0$. Fortunately, $Q_{n}^{2 m} \neq 0$.] [Now the condition $\varepsilon \in[0,1)$ can be easily seen by integrating both sides of (11) to get

$$
(1-\varepsilon) \int_{\mathbb{S}^{n}} v d \mu_{g_{\mathbb{S}} n}=\int_{\mathbb{S}^{n}} v^{-\alpha} d \mu_{g_{\mathbb{S}} n}
$$

after canceling both sides by $Q_{n}^{2 m}$.]
Our aim is to show that for suitable small $\varepsilon \in(0,1)$ and $0<\alpha \leq \frac{2 m+n}{2 m-n}$, any smooth, positive solution to (11) must be constant.

However, we need to modify Zhang's approach.

Our main result reads as follows:

## Theorem (the negative case, namely $n<2 m$ )

Let assume $n \geq 3$ be odd and $m>n / 2$. Then there exists $\varepsilon_{*} \in(0,1)$ such that under one of the following conditions
(1) either $\varepsilon \in\left(0, \varepsilon_{*}\right)$ and

$$
0<\alpha \leq \frac{2 m+n}{2 m-n}
$$

(2) or $\varepsilon=0$ and

$$
0<\alpha<\frac{2 m+n}{2 m-n}
$$

any positive, smooth solution $v$ to

$$
\mathbf{P}_{n}^{2 m}(v)=Q_{n}^{2 m}\left(\varepsilon v+v^{-\alpha}\right) \quad \text { on } \mathbb{S}^{n}
$$

must be constant, hence is equal to $(1-\varepsilon)^{-1 /(\alpha+1)}$.
Next, let us briefly sketch our approach. It consists of three main steps as follows: (1) to derive some integral equation for $u$ on $\mathbf{R}^{n}$, (2) to prove that $u$ must be radially symmetric, and (3) to prove that $v$ must be constant.

Zhang used the following approach to tackle the conjecture:

$$
\begin{gathered}
\mathbf{P}_{3}^{4}(v)=-\left(\varepsilon v+v^{-7}\right) \quad \text { on } \mathbb{S}^{3} \\
\downarrow \\
\Delta^{2} u=-\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{4} u+u^{-7}\right] \quad \text { in } \mathbf{R}^{3} \\
u(x)=\frac{1}{8 \pi} \int_{\mathbf{R}^{3}}|x-y|\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{4} u(y)+u(y)^{-7}\right] d y \quad \text { in } \mathbf{R}^{3} \\
\downarrow \\
\Delta^{2} u^{*}=-\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{4} u^{*}+\left(u^{*}\right)^{-7}\right] \\
\downarrow \\
\text { in } \mathbf{R}^{3} \backslash\{0\} \\
\text { via the Kelvin transform } \\
u^{*} \text { is radially symmetric and increasing method of moving planes } \\
\downarrow
\end{gathered}
$$

$v$ is radially symmetric w.r.t. any critical point


We modify Zhang's approach to tackle the higher dimensional problem as follows:

$$
\begin{array}{cl}
\mathbf{P}_{n}^{2 m}(v)=Q_{n}^{2 m}\left(\varepsilon v+v^{-\alpha}\right) & \text { on } \mathbb{S}^{n} \\
\downarrow \quad \text { via the stereographic projection }
\end{array}
$$

$$
(\Delta)^{m} u=Q_{n}^{2 m}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m} u+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u^{-\alpha}\right] \text { in } \mathbf{R}^{n}
$$

$$
u(x)=C \int_{\mathbf{R}^{n}}|x-y|^{2 m-n}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m} u+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u^{-\alpha}\right] d y \text { in } \mathbf{R}^{n}
$$

$$
(\Delta)^{m} u^{*}=Q_{n}^{2 m}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m}{u^{*}}^{2}+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}}\left(u^{*}\right)^{-\alpha}\right] \text { in } \mathbf{R}^{n}
$$

$$
\downarrow \quad \text { via the method of moving planes }
$$

$u^{*}$ is radially symmetric and increasing
$u$ is radially symmetric and increasing
$\square$
$v$ is radially symmetric w.r.t. any critical point

There are at least three difficulties that we are going to describe.
The first difficulity is how to transfer

$$
\begin{gathered}
\mathbf{P}_{n}^{2 m}(v)=Q_{n}^{2 m}\left(\varepsilon v+v^{-\alpha}\right) \text { on } \mathbb{S}^{n} \\
\downarrow \quad u=\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n-2 m}{2}}\left(v \circ \pi^{-1}\right) \\
u(x)=C \int_{\mathbf{R}^{n}}|x-y|^{2 m-n} F_{\varepsilon, u}(y) d y \quad \text { in } \mathbf{R}^{n}
\end{gathered}
$$

for some $F_{\varepsilon, u}$. Roughly speaking, there are at least two routes achieving this.
(1) to exploit the sign of $(-\Delta)^{i} u$, the sub/super poly-harmonicity
(2) to exploit the sign of $\int_{\mathbf{R}^{n}} u(-\Delta)^{i} \varphi$, the weakly sub/super poly-harmonicity.

Zhang essentially follows the first route by making use of techniques from potential analysis, which makes the analysis quite involved.
[In the published version, this part consists of nearly 10 pages.]
We offer a completely new approach by exploiting the relation of stereographic projections centered at different points.

Now let see why a compactness result is required. This is the second difficulty. Now we forget $v$ on $\mathbb{S}^{n}$ but focus on $u$ on $\mathbf{R}^{n}$. The aim is to prove $u$ (blue curve in the figure below) is symmetric w.r.t. $x_{1}=0$. As

$$
u(x)=\underbrace{\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n-2 m}{2}}}_{\nearrow+\infty} \underbrace{\left(v \circ \pi^{-1}\right)(x)}_{\rightarrow v(\text { north pole })} \quad \text { as }|x| \nearrow+\infty
$$

So for large $\lambda \gg 1$ and large $x_{1} \gg \lambda$, one should have

$$
u\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq u\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{n}\right) \quad \forall x_{1} \gg \lambda
$$



Then we lower $\lambda \searrow 0$ so long as $u\left(x_{1}, x_{2}, \ldots\right) \geq u\left(2 \lambda-x_{1}, x_{2}, \ldots\right)$ remains valid. The key step is to show $\lambda=0$. (Then we let $\lambda \nearrow 0 \ldots$ to get symmetry.)

Denote $x^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\left|x^{\lambda}\right|<|x|$ in $\left\{x_{1}>\lambda>0\right\}$. Recall $u(x)-u\left(x^{\lambda}\right)=C \int_{\left\{x_{1}>\lambda\right\}}[\underbrace{\left|x^{\lambda}-y\right|^{2 m-n}-|x-y|^{2 m-n}}_{\geq 0}]\left[F_{\varepsilon}\left(y^{\lambda}\right)-F_{\varepsilon}(y)\right] d y$
with

$$
F_{\varepsilon}(z)=\varepsilon\left(\frac{2}{1+|z|^{2}}\right)^{2 m} u(z)+\left(\frac{2}{1+|z|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u(z)^{-\alpha} .
$$

To lower $\lambda \searrow 0$ one needs $u(x)>u\left(x^{\lambda}\right)$. And to gain $u(x)>u\left(x^{\lambda}\right)$, one wishes

$$
F_{\varepsilon}\left(y^{\lambda}\right)-F_{\varepsilon}(y) \geq 0 \quad \forall y_{1}>\lambda>0 .
$$

As $F_{\varepsilon}(z)$ has two power terms with opposite sign: while in $\left\{x_{1}>\lambda>0\right\}$

$$
\varepsilon\left(\frac{2}{1+\left|y^{\lambda}\right|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u\left(y^{\lambda}\right)^{-\alpha}>\varepsilon\left(\frac{2}{1+|y|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u(y)^{-\alpha},
$$

which is good, the first term is not that good because one cannot claim

$$
\varepsilon\left(\frac{2}{1+\left|y^{\lambda}\right|^{2}}\right)^{2 m} u\left(y^{\lambda}\right) \stackrel{? ? ?}{\geq} \varepsilon\left(\frac{2}{1+|y|^{2}}\right)^{2 m} u(y) .
$$

This requires some control of $u$ independent of $\varepsilon$, leading to a compactness result. We make use of this compactness result as follows

$$
u(y) \ll u(y)^{-\alpha} \ll u\left(y^{\lambda}\right)^{-\alpha} \ll u\left(y^{\lambda}\right) .
$$

Let us discuss the third difficulty. To obtain the symmetry of solutions, one often use either the MMP or the method of moving spheres (MMS). But either

$$
(-\Delta)^{m} u=Q_{n}^{2 m}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m} u+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u^{-\alpha}\right]
$$

or

$$
u(x)=C \int_{\mathbf{R}^{n}}|x-y|^{2 m-n}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m} u+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u^{-\alpha}\right] d y
$$

contains the weight of $1+|x|^{2}$, which seems to be difficult to handle using MMS.
[When using the MMS, the center is arbitrary.]
In practice, the MMP can be effectively applied to differential/integral equations with positive exponents. Our case is quite different. Fortunately, we are still successful with the MMP because we have good control on the growth of $u$, namely $u \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and

$$
\frac{1+|x|^{2 m-n}}{C} \leq u(x) \leq C\left(1+|x|^{2 m-n}\right) \quad \forall x \in \mathbf{R}^{n}
$$

thanks to

$$
u=\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n-2 m}{2}}\left(v \circ \pi^{-1}\right) \quad \text { in } \mathbf{R}^{n}
$$

An application of the Liouville type result is the following Sobolev inequality, which motivates Hang and Yang to work on this higher-order PDE.

## A subcritical/critical Sobolev inequality for GJMS's operator on $\mathbb{S}^{n}$

Let $n$ be an odd number and $m=\frac{n+1}{2}$. Then, for any $\phi \in H^{m}\left(\mathbb{S}^{n}\right)$ with $\phi>0$ and any $\alpha \in(0,1) \cup(1,2 n+1)$, we have the following sharp Sobolev inequality

$$
\begin{equation*}
\int_{\mathbb{S}^{n}} \phi \mathbf{P}_{n}^{2 m}(\phi) d \mu_{g_{\mathbb{S}^{n}}} \geq \frac{\Gamma(n / 2+m)}{\Gamma(n / 2-m)}\left|\mathbb{S}^{n}\right|^{\frac{\alpha+1}{\alpha-1}}\left(\int_{\mathbb{S}^{n}} \phi^{1-\alpha} d \mu_{g_{\mathbb{S}^{n}}}\right)^{-\frac{2}{\alpha-1}} \tag{12}
\end{equation*}
$$

Moreover, equality occurs if $\phi$ is constant.
[ $\alpha=1$ is the limiting case, the inequality becomes

$$
\begin{equation*}
\int_{\mathbb{S}^{n}} \phi \mathbf{P}_{n}^{2 m}(\phi) d \mu_{g_{\mathbb{S}} n} \geq \frac{\Gamma(n / 2+m)}{\Gamma(n / 2-m)}\left|\mathbb{S}^{n}\right| \exp \left(\frac{2}{\left|\mathbb{S}^{n}\right|} \int_{\mathbb{S}^{n}} \log \phi d \mu_{g_{\mathbb{S}^{n}}}\right) \tag{13}
\end{equation*}
$$

which can be obtained from $(12)_{\alpha}$ as $\alpha \searrow 1$.]
[It turns out that

$$
(12)_{2 n+1} \longrightarrow(12)_{\beta} \text { with } \beta \in(1,2 n+1) \longrightarrow(13) \longrightarrow(12)_{\alpha} \text { with } \alpha \in(0,1) \text {, }
$$

where the notation $A \longrightarrow B$ means we can obtain $B$ from $A$.]

The method developed here works equally well for the case of positive exponents, namely we can prove the following.

## Theorem (the positive case, namely $n>2 m$ )

Let assume $n \geq 3$ be odd and $m<n / 2$. Then, under one of the following conditions
(1) either $\varepsilon \in(0,1)$ and $1<\alpha \leq \frac{n+2 m}{n-2 m}$
(2) or $\varepsilon=0$ and $1<\alpha<\frac{n+2 m}{n-2 m}$
any positive, smooth solution $v$ to

$$
\mathbf{P}_{n}^{2 m}(v)=Q_{n}^{2 m}\left(\varepsilon v+v^{\alpha}\right) \quad \text { on } \mathbb{S}^{n}
$$

must be constant, hence is equal to $(1-\varepsilon)^{1 /(\alpha-1)}$.
[Recall the equation $\mathbf{P}_{n}^{2 m}(v)=Q_{n}^{2 m}\left(\varepsilon v+v^{-\alpha}\right)$ in the negative case with $m>n / 2$, $0<\alpha \leq(n+2 m) /(2 m-n)$, and $0<\varepsilon<\varepsilon_{*}<1$.]
[No compactness is required, hence the above result holds for any $0<\varepsilon<1$, not necessarily small like $0<\varepsilon<\varepsilon_{*}<1$ in the negative case.]

We recall our equation

$$
(-\Delta)^{m} u=Q_{n}^{2 m}\left[\varepsilon\left(\frac{2}{1+|x|^{2}}\right)^{2 m} u+\left(\frac{2}{1+|x|^{2}}\right)^{\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}} u^{-\alpha}\right] \quad \text { in } \mathbf{R}^{n}
$$

In the special case $\varepsilon=0$ and with $\sigma=\frac{n+2 m}{2}+\alpha \frac{n-2 m}{2}>0$ we are led to

$$
\begin{equation*}
(-\Delta)^{m} u=Q_{n}^{2 m}\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} u^{\frac{n+2 m-2 \sigma}{n-2 m}} \quad \text { in } \mathbf{R}^{n} \tag{14}
\end{equation*}
$$

Let us focus on the case $n>2 m$, in particular $Q_{n}^{2 m}>0$. After normalization, the above equation is similar to the higher-order Hardy-Hénon equation in $\mathbf{R}^{n}$, namely

$$
(-\Delta)^{m} u=|x|^{\sigma} u^{p} \quad \text { in } \mathbf{R}^{n}
$$

(Sobolev-type critical exponent is $\frac{n+2 m+2 \sigma}{n-2 m}$.) As $\sigma>0$ and

$$
\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} \sim|x|^{-2 \sigma}
$$

in this scenario the exponent is 'supercritical' because

$$
\frac{n+2 m-2 \sigma}{n-2 m}>\frac{n+2 m-4 \sigma}{n-2 m}
$$

This coincides with the fact that (14) always admits a radial solution. But we should not expect these two types of equations sharing similar properties.

The equation (14), namely

$$
(-\Delta)^{m} u=\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} u^{\frac{n+2 m-2 \sigma}{n-2 m}} \quad \text { in } \mathbf{R}^{n},
$$

is also very similar to Matukuma's equation in $\mathbf{R}^{3}$, namely

$$
-\Delta u=\frac{1}{1+|x|^{2}} u^{p} \quad \text { in } \mathbf{R}^{3}
$$

with $p>1$. It is known that this equation admits at least one radial solution for any $p>1$ (Sobolev's critical exponent is $\frac{2 \cdot 3}{3-2}=6$ ). If we set $m=1, n=3$, and $\alpha=-3$, then after normalization our equation (14) becomes

$$
-\Delta u=\frac{1}{1+|x|^{2}} u^{3} \quad \text { in } \mathbf{R}^{3} .
$$

So without requiring the exact asymptotic behavior at infinity, it is expected that our equation (14) admits other solutions rather than the radial one. We can also investigate solutions to

$$
(-\Delta)^{m} u=\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} u^{p} \quad \text { in } \mathbf{R}^{n}
$$

with

$$
n>2 m, \quad p>1 \quad \text { or } \quad p \geq \frac{n+2 m-4 \sigma}{n-2 m}
$$

For Matukuma's equation in $\mathbf{R}^{n}$, namely

$$
-\Delta u=\frac{1}{1+|x|^{2}} u^{p} \quad \text { in } \mathbf{R}^{n}
$$

it is known (after Y. Li, W.M. Ni, E.S. Noussair, C.A. Swanson, E. Yanagida, S. Yotsutani, etc.) that if

$$
n=3, \quad 1<p<5=\frac{3+2}{3-2},
$$

then all positive solution must be radially symmetric with respect to the origin. Hence we can ask if such a symmetry result still holds for higher-order cases, at least in the special case

$$
(-\Delta)^{m} u=\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} u^{\frac{n+2 m-2 \sigma}{n-2 m}} \quad \text { in } \mathbf{R}^{n}
$$

with $n>2 m \geq 4$ and $\sigma>0$.

For Matukuma's equation in $\mathbf{R}^{n}$, namely

$$
-\Delta u=\frac{1}{1+|x|^{2}} u^{p} \quad \text { in } \mathbf{R}^{n}
$$

it is known (after Y. Li, W.M. Ni, E.S. Noussair, C.A. Swanson, E. Yanagida, S. Yotsutani, etc.) that if

$$
n=3, \quad 1<p<5=\frac{3+2}{3-2},
$$

then all positive solution must be radially symmetric with respect to the origin. Hence we can ask if such a symmetry result still holds for higher-order cases, at least in the special case

$$
(-\Delta)^{m} u=\left(\frac{2}{1+|x|^{2}}\right)^{\sigma} u^{\frac{n+2 m-2 \sigma}{n-2 m}} \quad \text { in } \mathbf{R}^{n}
$$

with $n>2 m \geq 4$ and $\sigma>0$.

Thank you for your attention...

