## Coupled geometric flows with harmonic map flow

Woongbae Park University of Pittsburgh

#### Asia-Pacific Analysis and PDE seminar - January 30, 2023

## Table of Contents

1 Heat flow of harmonic maps







### Harmonic maps

(M,g),(N,h) : Riemannian manifolds.

The Dirichlet energy E(f) of a map  $f:(M,g)\to (N,h)$  is defined by

$$E(f) = \int_M e(f) = \frac{1}{2} \int_M |df|^2 dvol_g,$$

where  $e(f) = \frac{1}{2} |df|^2 dvol_g = \frac{1}{2} g^{ij} h_{\alpha\beta} f_i^{\alpha} f_j^{\beta} dvol_g$  is the energy density and  $dvol_g$  is the volume form on (M, g). A (weakly) harmonic map  $f \in W^{1,2}(M, N)$  is a critical point of the Dirichlet energy E(f).

### Harmonic maps

(M,g),(N,h) : Riemannian manifolds.

The Dirichlet energy E(f) of a map  $f:(M,g)\to (N,h)$  is defined by

$$E(f) = \int_M e(f) = \frac{1}{2} \int_M |df|^2 dvol_g,$$

where  $e(f) = \frac{1}{2} |df|^2 dvol_g = \frac{1}{2} g^{ij} h_{\alpha\beta} f_i^{\alpha} f_j^{\beta} dvol_g$  is the energy density and  $dvol_g$  is the volume form on (M, g). A (weakly) harmonic map  $f \in W^{1,2}(M, N)$  is a critical point of the Dirichlet energy E(f). Embed  $(N, h) \hookrightarrow \mathbb{R}^L$  isometrically, then f: harmonic  $\Rightarrow$ 

$$\tau(f)(x) = \Delta_g f(x) + A_g(f(x))(df, df) = 0,$$

where  $\tau(f) = \operatorname{tr}_g \nabla df \in \Gamma(f^*TX)$  is the tension field of f and  $A_g$  is the second fundamental form of the embedding.

## Properties of harmonic maps

### Theorem 1 (Known results of harmonic maps)

Let  $f \in W^{1,2}(M, N)$  be a map with dim M = m.

- The Dirichlet energy E(f) is conformally invariant if m = 2.
- **2** If m = 2 and f is harmonic, then using local isothermal coordinate z = x + iy, the Hopf differential  $\Phi = (|f_x|^2 |f_y|^2 + 2i\langle f_x, f_y \rangle)dz^2$  is holomorphic.
- Any harmonic map  $f \in W^{1,2}(M,N)$  with m = 2 is smooth. (Helein, '91)
- There is a harmonic map  $f: B^3 \to S^2$  which is discontinuous everywhere. (Riviere, '95)
- The Hausdorff dimension of singular set of harmonic map is at most m-2. (Schoen, '84)
- The Hausdorff dimension of singular set of minimizing harmonic map is at most m-3. (Schoen-Uhlenbeck, '82)

### Heat flow of harmonic maps

Heat flow of harmonic map is the gradient flow of Dirichlet energy:

$$f_t = \tau(f) = \Delta_g f + A(f)(df, df)$$
(1)

with initial condition  $f(0) = f_0$ .

#### Theorem 2 (Eells-Sampson, '64)

For any  $f_0 \in C^{\infty}(M, N)$ , there is  $T_0 > 0$  such that the heat flow equation (1) admits a unique, smooth solution  $f \in C^{\infty}(M \times [0, T_0), N)$ .

With additional curvature assumption on the target, we get more.

#### Theorem 3 (Eells-Sampson, '64)

If moreover sectional curvature of N is non-positive, then the solution exists on  $M\times [0,\infty).$ 

### **Bubbles**

Without non-positive curvature assumption, we get global weak solution.

#### Theorem 4 (Struwe, '85)

If dim M = 2, then for any  $f_0 \in W^{1,2}(M, N)$ ,  $\exists f : M \times [0, \infty) \to N$ , smooth except finitely many  $(x_i, t_i)$ . Moreover, at singular point (x, T),

 $\lim_{r \searrow 0} \lim_{t \nearrow T} E(f(t), D_r(x)) \neq 0.$ 

Those singular points are also called **bubble points**. The loss of energy is captured by bubbles :  $\phi_i: S^2 \to N$  such that

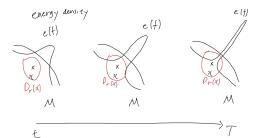
$$\lim_{t \nearrow T} E(f(t)) = E(f(T)) + \sum_{i} E(\phi_i).$$

#### Theorem 5 (Struwe, '85)

If  $E(f_0) < \varepsilon_0$ , then the solution is smooth globally.

(I) < (I)

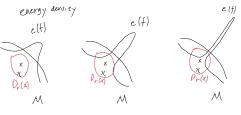
### Picture of bubbles



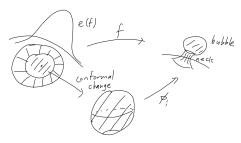
・ロト・西ト・ヨト・ヨー うへの

8/31

## Picture of bubbles







## Finite time singularity

Finite time singularities Do exist!!

#### Theorem 6 (Chang-Ding-Ye, '92)

There exists  $f_0: D^2 \to S^2$  such that the solution of heat flow equation (1) with initial map  $f_0$  blows up at the origin in finite time.

More generally,

### Theorem 7 (Davila-del Pino-Wei, '20)

There exists a solution  $f: \Omega \times (0,T) \to S^2$  of heat flow equation (1) that blows up at  $q_1, \ldots, q_k$  in T.

Those bubbling points should be apart from each other.

### Theorem 8 (Qing-Tian, '97)

In heat flow solution, bubbles are decoupled each other.

### Non-uniqueness

### Theorem 9 (Freire, '95)

If furthermore E(f(s)) < E(f(t)) for almost every s < t, then the weak solution is unique.

Remark : Energy decreasing in Struwe's sense is  $\frac{d}{dt}E(f(t)) \leq 0$  for almost every t. So, Struwe's solution allows bubbling off but it also allows "reverse bubbling".

### Non-uniqueness

### Theorem 9 (Freire, '95)

If furthermore E(f(s)) < E(f(t)) for almost every s < t, then the weak solution is unique.

Remark : Energy decreasing in Struwe's sense is  $\frac{d}{dt}E(f(t))\leq 0$  for almost every t. So, Struwe's solution allows bubbling off but it also allows "reverse bubbling".

### Theorem 10 (Topping, '02)

There exists a harmonic map  $f_0: D \to S^2$  and a weak solution  $f \in W^{1,2}(D \times [0,\infty), S^2)$  of the heat flow equation (1) such that  $f(t) = f_0$  for all  $t \in [0,1]$  but  $f(t) \neq f_0$  for t > 1. Moreover,

$$\lim_{t \searrow 1} E(f(t)) = E(f_0) + 4\pi.$$

## Table of Contents

Heat flow of harmonic maps

### 2 Teichmüller flow of harmonic maps

3 Conformal heat flow of harmonic maps



### Decomposition of space of metrics, 2-dimension

Fix  $g_0 \in \mathcal{M}_c$ : a metric on M with constant curvature.  $\{g: \text{ smooth metric on } M\} = Sym_+^2(T^*M).$ Its tangent space (at  $g_0$ ) is

$$Sym^2(T^*M) = C(g_0) \oplus \{L_X g_0\} \oplus \mathcal{H}(g_0)$$

where

$$C(g_0) = \{\phi \cdot g_0 : \phi \in C^{\infty}(M)\}$$
$$\{L_X g_0\} = \{L_X g_0 : X \in \Gamma(TM)\}$$

and  $\mathcal{H}(g_0)$  consists of the real parts of holomorphic quadratic differentials.

That means, change of metric can be split into change in conformal direction, Lie-derivative direction, and so called horizontal direction.

## Teichmüller flow of harmonic maps

In  $\dim M = 2$ , conformal change of metric does not change the energy.

### Lemma 11 (Rupflin-Topping, '16)

 $\forall g(t) \in \mathcal{M}_c$  smooth, there is diffeomorphism  $f_t: M \to M$  such that

 $\partial_t g_0(t) = \mathcal{H}(g_0(t))$ 

where  $g_0(t) = f_t^* g(t)$ .

## Teichmüller flow of harmonic maps

In  $\dim M = 2$ , conformal change of metric does not change the energy.

### Lemma 11 (Rupflin-Topping, '16)

 $\forall g(t) \in \mathcal{M}_c$  smooth, there is diffeomorphism  $f_t: M \to M$  such that

$$\partial_t g_0(t) = \mathcal{H}(g_0(t))$$

where  $g_0(t) = f_t^* g(t)$ .

### Definition 1 (Rupflin-Topping, '16)

Teichmüller flow is a pair equations

$$\begin{cases} f_t = \Delta_g f + A(f)(df, df) \\ g_t = \frac{1}{4} P_g \Phi(f, g) \end{cases}$$
(2)

 $\Phi(f,g)$  : Hopf differential,  $P_g:Sym^2(T^*M)\to \mathcal{H}(g)$  :  $L^2$  orthogonal projection.

### Another type of singularity

This equation is obtained by  $L^2$  gradient flow of

$$E(f,g) = \frac{1}{2} \int_M |df|_g^2 dvol_g.$$

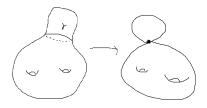
So the flow decreases the energy in the fastest direction. Teichmüller flow changes domain and may develop another type of singularity : Domain degeneration

## Another type of singularity

This equation is obtained by  $L^2$  gradient flow of

$$E(f,g) = \frac{1}{2} \int_M |df|_g^2 dvol_g.$$

So the flow decreases the energy in the fastest direction. Teichmüller flow changes domain and may develop another type of singularity : Domain degeneration



### Another type of singularity

This equation is obtained by  $L^2$  gradient flow of

$$E(f,g) = \frac{1}{2} \int_M |df|_g^2 dvol_g.$$

So the flow decreases the energy in the fastest direction. Teichmüller flow changes domain and may develop another type of singularity : Domain degeneration



### Properties of Teichmüller flow

#### Theorem 12

- A weak solution of (2) exists on [0, T) for T ∈ (0,∞]. Moreover, if T < ∞, then lengths of closed geodesic ℓ(g(t)) → 0. (Rupflin, '14)</p>
- If ℓ(g(t)) → 0 as t → ∞, (M, g(t)) splits into finitely many lower genus surfaces and f(t) subconverges to branched minimal immersions. (Rupflin-Topping-Zhu, '13)
- In the above, the energy is not lost. (Huxol-Rupflin-Topping, '16)
- If (N,h) has non-positive curvature, then there is a global smooth solution. (Rupflin-Topping, '18)
- Solution If  $\ell(g(t)) \to 0$  as  $t \to T$ , Parts 2 and 3 hold. (Rupflin-Topping, '19)

#### Remark 1

Unlike harmonic map heat flow, there can be necks connecting bubbles and body maps. (Rupflin-Topping, '19)

## Table of Contents

Heat flow of harmonic maps

2 Teichmüller flow of harmonic maps

### 3 Conformal heat flow of harmonic maps

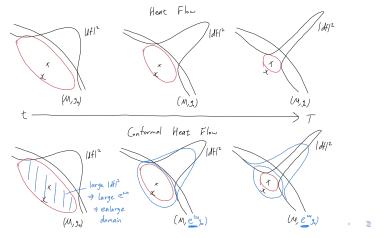


## Brief idea

Idea : Consider variation of metrics that does not change domain geometry.  $\Rightarrow$  conformal direction! Let  $g(x,t)=e^{2u(x,t)}g_0(x)$ , time-dependent metric on M. Then over the region where  $|df|^2$  becomes large, make u(x,t) large.

## Brief idea

Idea : Consider variation of metrics that does not change domain geometry.  $\Rightarrow$  conformal direction! Let  $g(x,t)=e^{2u(x,t)}g_0(x)$ , time-dependent metric on M. Then over the region where  $|df|^2$  becomes large, make u(x,t) large.



23 / 31

### Conformal heat flow of harmonic maps

Let  $f_0:M\to N$  be a map and g(x,t) be a time-dependent metric on M. For a,b>0 constants, consider a pair of equations

$$\begin{cases} f_t = \Delta_{g(t)}(f) + A_{g(t)}(f)(df, df) \\ g_t = (2b|df|_{g(t)}^2 - 2a)g \end{cases}$$
(3)

with initial conditions  $f(0) = f_0$  and  $g(0) = g_0$ . If we let  $g(x,t) = e^{2u(x,t)}g_0$ , the equation for f and u becomes

$$\begin{cases} f_t &= e^{-2u} (\Delta(f) + A(f)(df, df)) \\ u_t &= b e^{-2u} |df|^2 - a \end{cases}$$
(4)

with  $f(0) = f_0$  and u(0) = 0. The volume is defined by

$$V(t) = \int_{M} dvol_{g(t)} = \int_{M} e^{nu} dvol_{g_0}.$$
 (5)

24 / 31

### Volume

Let  $\dim M = 2$ .

#### Lemma 1

For smooth solution of CHF, energy is decreasing. Volume satisfies

$$V(t) = e^{-2at} \left( V(0) + 4b \int_0^t e^{2as} E(s) ds \right) \le e^{-2at} V(0) + \frac{2b}{a} E_0.$$

This lemma comes from direct solution of u:

$$e^{2u} = e^{-2at} \left( 1 + 2b \int_0^t e^{2as} |df|^2(s) ds \right).$$

#### Lemma 2

If  $f_0$  is harmonic, then  $f(t) = f_0$  and the energy density becomes constant  $\frac{a}{b}$  as  $t \to \infty$ .

## Properties of conformal heat flow

#### Theorem 13

- For any  $f_0 \in W^{3,2}(M, N)$ , there exist  $T_0 > 0$  and a pair of smooth solutions  $f: M \times [0, T_0] \to N$  and  $u: M \times [0, T_0] \to \mathbb{R}$  of (4).
- A global weak solution (f, u) exists on M × [0,∞) which is smooth on M × (0,∞) except at most finitely many points (x<sub>i</sub>,t<sub>i</sub>).
- At singularity (x,T), there is  $(x_k,t_k) \in M \times [0,T)$  with  $(x_k,t_k) \to (x,T)$  such that  $|df|^2(x_k,t_k) \to \infty$ .

Many questions are unanswered, like:

### Question 1

- Does CHF avoid finite time singularity?
- Is CHF unique?
- Is there infinite time singularity?

## Table of Contents

Heat flow of harmonic maps

2 Teichmüller flow of harmonic maps

Conformal heat flow of harmonic maps



### Harmonic-Ricci flow

Let  $f_0:M\to N$  be a map and g(x,t) be a time-dependent metric on M. Consider a pair of equations

$$\begin{cases} g_t &= -2Ric + 2\alpha(t)df \otimes df \\ f_t &= \tau_g(f) \end{cases}$$
(6)

with initial conditions  $f(0) = f_0$  and  $g(0) = g_0$  and  $\alpha$  is a positive coupling time-dependent function.

An example of harmonic-Ricci flow arises in warped product manifold. Let  $M = M_1 \times S^1$  with warped product metric  $g_M = g_1 + e^{2\varphi} d\theta^2$ , then Ricci flow on M,  $\frac{\partial g_M}{\partial t} = -2Ric_M$  becomes

$$\begin{cases} \frac{\partial g_1}{\partial t} &= -2Ric_1 + 2d\varphi \otimes d\varphi \\ \varphi_t &= \Delta\varphi \end{cases}$$
(7)

so a special case of harmonic-Ricci flow.

## Properties of harmonic-Ricci flow

### Theorem 14 (Muller, '12)

- The solution of (6) exists for a short time and is unique.
- If  $\alpha(t)$  is positive and non-increasing and  $e^{-\phi}$  solves adjoint heat equation  $\left(-\frac{\partial}{\partial t} \Delta + R \alpha |df|^2\right) e^{-\phi} = 0$  then the functional

$$\mathcal{F}(f,g,\phi) = \int_M (R_g + |
abla \phi|_g^2 - lpha |df|_g^2) e^{-\phi} dV_g$$

is non-decreasing. In fact, (f,g) can be interpreted as gradient flow of  $\mathcal F$  for particularly chosen  $\phi$ .

- If  $\alpha(t) \ge \alpha_0 > 0$  and  $|df|^2(x_k, t_k) \to \infty$  as  $t_k \to T$ , then  $R(x_k, t_k) \to \infty$  as well.
- If  $0 < \alpha_0 \le \alpha(t) \le \alpha_1 < \infty$  and  $T < \infty$  is maximal singular time. Then

$$\limsup_{t \nearrow T} \left( \max_{x \in M} |Rm(x,t)|^2 \right) = \infty.$$

ヘロト ヘヨト ヘヨト

## Special case of 2 dimensional domain

### Theorem 15 (Buzano-Rupflin, '17)

• Let (f,g) be solution of (6) and maximal singular time  $T < \infty$ . Then both map and curvature must blow up:

 $\limsup_{t \nearrow T} \max_{x \in M} |K_g| = \infty \quad and \quad \limsup_{t \nearrow T} \max_{x \in M} \frac{1}{2} |df(x, t)|_g^2 = \infty.$ 

• If coupling function  $\alpha \in [\alpha_0, \alpha_1]$  satisfies

 $\alpha_0 > 2 \max\{K_\tau\}$ 

where  $K_{\tau}$  denotes sectional curvature of N in direction  $\tau$ , then the solution (f,g) of (6) is smooth for all time.

#### Remark 2

Even though Ricci flow and harmonic map flow may develop singularities, its coupling system behaves more regularly!

# Thank You!