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Navier–Stokes (NS) eqs. in a curved thin domain

▶ Γ: given 2D closed surface in R3 (e.g. sphere, torus)

▶ Ωε = {x ∈ R3 | dist(x,Γ) < ε/2} (ε > 0: small)

▶ NS eqs. with Navier’s (perfect) slip B.C. in Ωε

(NSε)


∂tu

ε + (uε · ∇)uε + ∇pε = ν∆u in Ωε × (0,∞)

div uε = 0 in Ωε × (0,∞)

uε · nε = 0, 2νPεD(uε)nε = 0 on ∂Ωε × (0,∞)

uε|t=0 = uε
0 in Ωε

▷ ν > 0: viscosity coefficient independent of ε
▷ nε: unit outer normal of ∂Ωε

▷ Pε = I3 − nε ⊗ nε, 2D(uε) = ∇uε + (∇uε)T

▶ Aim: study the behavior of uε as ε → 0 and derive limit eqs.
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Previous works on NS eqs. in thin domains

Main problems in the study of the NS eqs. in 3D thin domains

▶ Global existence of a strong solution uε for large data

▶ Convergence of uε as ε → 0 in an appropriate sense

▶ Characterization of the limit of uε as a sol. to limit eqs.

Previous works

▶ Raugel–Sell (1993), Temam–Ziane (1996), etc.:
Ωε = ω × (0, ε), ω: 2D domain

▶ Iftimie–Raugel–Sell (2007), Hoang (2010), Hoang–Sell (2010):
Ωε = {(x′, x3) | x′ ∈ (0, 1)2, εg0(x

′) < x3 < εg1(x
′)}

▶ Temam–Ziane (1997): Ωε = {x ∈ R3 | 1 < |x| < 1 + ε}
Our case

▶ Ωε around a general surface Γ with nonconstant curvatures
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Notations

▶ n : unit outer normal of Γ

Ωε = {y + rn(y) | y ∈ Γ, r ∈ (−ε/2, ε/2)}

▶ Average of u : Ωε → R3 and its tangential component

Mu(y) =
1

ε

∫ ε/2

−ε/2
u(y + rn(y)) dr, y ∈ Γ

Mτu(y) = Mu(y) − {Mu(y) · n(y)}n(y)

▶ Initial data of (NSε) satisfies

uε
0 ∈ H1(Ωε)

3, div uε
0 = 0 in Ωε, uε

0 · nε = 0 on ∂Ωε
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Main theorem

Theorem 1 (M., 2020, Adv. Diff. Equ.)
Under suitable assumptions on Γ and uε

0, suppose that

(a) ∃c > 0, ∃ε1, α ∈ (0, 1), s.t.

∥uε
0∥

2
H1(Ωε)

≤ cε−1+α, ∀ε ∈ (0, ε1)

(b) ∃tangential v0 ∈ L2(Γ)3 s.t. lim
ε→0

Mτu
ε
0 = v0 weakly in L2(Γ)3

Then ∃ε2 ∈ (0, ε1) s.t. ∀ε ∈ (0, ε2), ∃global strong solution

uε ∈ C([0,∞);H1(Ωε)
3) ∩ L2

loc([0,∞);H2(Ωε)
3) to (NSε)

and lim
ε→0

Muε · n = 0 strongly in C([0,∞);L2(Γ)).

(NSε)


∂tu

ε + (uε · ∇)uε + ∇pε = ν∆uε, div uε = 0 in Ωε

uε · nε = 0, 2νPεD(uε)nε = 0 on ∂Ωε

uε|t=0 = uε
0 in Ωε
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Theorem 1 (continued)
Moreover, ∃tangential vector field
v ∈ C([0,∞);L2(Γ)3) ∩ L2

loc([0,∞);H1(Γ)3) s.t.

▶ ∀T > 0, lim
ε→0

Mτu
ε = v weakly in L2(0, T ;H1(Γ)3)

▶ v is a unique weak solution to

(NS0)


∂tv + ∇vv + ∇Γq = 2νPdivΓ[DΓ(v)] on Γ × (0,∞)

divΓv = 0 on Γ × (0,∞)

v|t=0 = v0 on Γ

▶ ∇Γ, divΓ: tangential gradient and surface divergence on Γ

▶ ∇vv: covariant derivative of v along itself
▶ DΓ(v): surface strain rate tensor

∇Γq = P∇q, divΓv = tr[∇Γv] (P = I3 − n ⊗ n)

∇vv = P (v · ∇Γ)v, 2DΓ(v) = P{∇Γv + (∇Γv)
T}P
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Outline of our works

It took three papers to derive (NS0):

▶ Part 1: J. Math. Sci. Univ. Tokyo, 29 (2022), 149–256. (108pp.)
Basic inequalities in Ωε with explicit dependence on ε

▶ Part 2: J. Math. Fluid Mech., 23 (2021), 60pp.
Global existence of uε with explicit estimates in terms of ε

▶ Part 3: Adv. Diff. Equ., 25 (2020), 457–626. (170pp.)
Weak convergence of Mτu

ε as ε → 0

and characterization of the limit as a sol. to (NS0)

Why so long?

▶ We need to re-examine everything in view of dependence on ε

(e.g. Sobolev and Korn ineqs., estimates of Stokes op.).

▶ Calculations in Ωε are more complicated due to curvatures of Γ,
since we differentiate uε(x) = uε(y + rn(y)) w.r.t. y ∈ Γ.
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Outline of the proof of Theorem 1

Step 0 Global existence and explicit estimates of a strong sol. uε

(done in Part 2 by using results in Part 1)

Step 1 Derivation of a weak form (w.f) of Mτu
ε

w.f. of uε in Ωε
average in the thin direction−−−−−−−−−−−−−−→ w.f. of Mτu

ε on Γ

Step 2 Energy estimate for Mτu
ε with a bound indep. of ε

max
t∈[0,T ]

∥Mτu
ε(t)∥2L2(Γ) +

∫ T

0
∥Mτu

ε(t)∥2H1(Γ) dt ≤ cT

Step 3 Weak convergence of a subsequence & Characterization

Mτu
εn εn→0−−−→ v : weak sol. to (NS0)

Step 4 Uniqueness of a weak sol. to (NS0) ⇒ Mτu
ε ε→0−−−→ v
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Step 1: Main idea for derivation of w.f. of Mτu
ε

▶ For η ∈ H1(Γ)3 with η · n = 0, divΓη = 0 on Γ, we take

η̄(x) = η(y), x = y + rn(y) ∈ Ωε (y ∈ Γ)

as a test function for w.f. of uε and show
1

ε

∫
Ωε

D(uε) : D(η̄) dx ≈
∫
Γ
DΓ(Mτu

ε) : DΓ(η) dH2

1

ε

∫
Ωε

uε ⊗ uε : ∇η̄ dx ≈
∫
Γ
(Mτu

ε) ⊗ (Mτu
ε) : ∇Γη dH2

▶ Main idea: for a function φ on Ωε,

1

ε

∫
Ωε

φ(x) dx =

∫
Γ

(
1

ε

∫ ε/2

−ε/2
φ(y + rn(y))J(y, r) dr

)
dH2(y)

≈
∫
Γ
Mφ(y) dH2(y) (J(y, r) ≈ 1: Jacobian)
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▶ The use of local coordinates of Γ results in terrible calculations,
since we deal with vector fields and their derivatives.

▶ Instead, we use the following formulas to carry out calculations
in a fixed coordinate system of R3 (although still involved):

▷ For uε : Ωε → R3 and y ∈ Γ,

∇ΓMuε(y)

=
1

ε

∫ ε/2

−ε/2
{I3 − rW (y)}P (y)∇uε(y + rn(y)) dr

▷ For η : Γ → R3 and x = y + rn(y) ∈ Ωε,

∇η̄(x) = {I3 − rW (y)}−1∇Γη(y)

▷ W = −∇Γn: shape op. of Γ, P = I3 − n ⊗ n

T.-H. Miura (Hirosaki Univ.) NS in curved thin domain 2022/12/19 10 / 19



Step 1: Why we need a strong sol. uε

▶ Resulting weak form (w.f.) of Mτu
ε is

w.f. of Mτu
ε = w.f. of (NS0) + Rε (residual term)

▶ To estimate Rε, we need the estimates for the strong sol. uε:

(♯)


∥uε(t)∥2H1(Ωε)

≤ cε−1+α∫ t

0
∥uε(s)∥2H2(Ωε)

ds ≤ cε−1+α(1 + t)

Here α ∈ (0, 1) comes from ∥uε
0∥H1(Ωε) ≤ cε−1+α.

▶ Using (♯), we can show |Rε| ≤ cεα/4 → 0 (ε → 0).
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Estimate for the difference of solutions

Theorem 2 (M., 2020, Adv. Diff. Equ.)
Under the same assumptions as in Theorem 1, we have

max
t∈[0,T ]

∥Mτu
ε(t) − v(t)∥2L2(Γ)

+

∫ T

0
∥∇ΓMτu

ε(t) − ∇Γv(t)∥2L2(Γ) dt

≤ cT

{
εα/2 + ∥Mτu

ε
0 − v0∥2L2(Γ)

}
for all T > 0, where cT > 0 depends only on T .

Idea of proof

▶ take the difference of the weak forms of Mτu
ε and v

▶ test Mτu
ε − v and apply Gronwall’s inequality
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Limit eqs. are the surface NS eqs.

▶ Our limit eqs.:

(NS0)

{
∂tv + ∇vv + ∇Γq = 2νPdivΓ[DΓ(v)] on Γ

divΓv = 0 on Γ

▷ ∇Γ: tangential gradient, divΓ: surface divergence
▷ ∇vv: covariant derivative, P = I3 − n ⊗ n

▷ DΓ(v): surface strain rate tensor

▶ (NS0) are the surface NS eqs.: we can rewrite (NS0) as

∂tv + ∇vv = PdivΓSΓ, divΓv = 0 on Γ

▷ SΓ : Boussinesq–Scriven surface stress tensor

SΓ = −qP + (λ − ν)(divΓv)P + 2νDΓ(v)

(λ, ν : surface dilatational and shear viscosity)
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▶ We also note that our limit eqs.

(NS0)

{
∂tv + ∇vv = PdivΓSΓ, divΓv = 0 on Γ

SΓ = −qP + (λ − ν)(divΓv)P + 2νDΓ(v)

appear as a part of or a special case of

▷ Interface eqs. of two-phase flows
cf. Slattery–Sagis–Oh (2007, book),

Bothe–Prüss (2010), etc.

▷ NS eqs. on an evolving surface
cf. Koba–Liu–Giga (2017),

Jankuhn–Olshanskii–Reusken (2018), etc.
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Limit eqs. are intrinsic / NS eqs. on a manifold

▶ Our limit eqs.

(NS0)

{
∂tv + ∇vv + ∇Γq = 2νPdivΓ[DΓ(v)] on Γ

divΓv = 0 on Γ

are described in terms of a fixed coordinate of R3 and matrices.

▶ However, when v · n = 0 on Γ, we have

2PdivΓ[DΓ(v)] = ∆Hv + ∇Γ(divΓv) + 2Kv on Γ

▷ ∆H : Hodge Laplacian, K: Gaussian curvature

▶ Hence (NS0) can be written as

∂tv + ∇vv + ∇Γq = ν(∆Hv + 2Kv), divΓv = 0 on Γ,

which are intrinsic (i.e. depending only on 1st fundamental form).

T.-H. Miura (Hirosaki Univ.) NS in curved thin domain 2022/12/19 15 / 19



▶ In fact, our limit eqs.

(NS0)

{
∂tv + ∇vv + ∇Γq = ν(∆Hv + 2Kv) on Γ

divΓv = 0 on Γ

agree with the NS eqs. on a Riemannian manifold introduced by

▷ Ebin–Marsden (1970), Taylor (1992)

and studied by many researchers:

▷ Priebe (1994), Nagasawa (1999), Mitrea–Taylor (2001),
Khesin–Misiołek (2012), Chan–Czubak (2013),
Pierfelice (2017), Prüss–Simonett–Wilke (2020), etc.

▶ In a higher dimensional case, the Gaussian curvature K

in (NS0) is replaced by the Ricci curvature.
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Limit eqs. derived under different B.C.

▶ Temam–Ziane (1997) studied the NS eqs. in

Ωε = {x ∈ R3 | 1 < |x| < 1 + ε} ε→0−−−→ S2 : unit sphere

Hodge B.C.: uε · nε = 0, curluε × nε = 0 on ∂Ωε

to derive limit eqs. on S2 of the form

∂tv + ∇vv + ∇Γq = ν∆Hv, divΓv = 0 on S2

▶ In our work, under

Slip B.C.: uε · nε = 0, 2νPεD(uε)nε = 0 on ∂Ωε

our limit eqs. (NS0) on S2 (with K ≡ 1) are of the form

∂tv + ∇vv + ∇Γq = ν(∆Hv + 2v), divΓv = 0 on S2
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B.C. on ∂Ωε Visc. on S2

M. 2νPεD(uε)nε = 0 ∆Hv + 2v

Temam–Ziane curluε × nε = 0 ∆Hv

Difference 2v comes from B.C. of (NSε) and the curvatures of ∂Ωε:

▶ Under the condition uε · nε = 0 on ∂Ωε, we have

2PεD(uε)nε − curluε × nε = 2Wεu
ε on ∂Ωε

▷ Wε : shape operator of ∂Ωε (representing curvatures)

▶ When ∂Ωε = {|x| = 1, 1 + ε}, we have Wεu
ε ≈ ±uε and

2PεD(uε)nε − curluε × nε ≈ ±2uε on ∂Ωε

▶ This 2uε results in the difference 2v in the two limit eqs.
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Thank you for your attention!
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