Continuity of a spatial derivative for a perturbed one-Laplace equation

Shuntaro TSUBOUCH

email: tsubos@ms.u-tokyo.ac.jp

This research is supported by JSPS KAKENHI Grant number 22KJ0861

Graduate School of Mathematical Sciences, University of Tokyo

May. 22, 2023

S. Tsubouchi (UTokyo)

 C^1 -regularity

May. 22, 2023

The model equation discussed in this talk

We talk about C^1 -regulairity of weak solutions to, for example,

$$L_{b,p}u \coloneqq -b\Delta_1 u - \Delta_p u = f \in L^q(\Omega)$$
 in $\Omega \subset \mathbb{R}^n$, where

- Ω is a bounded *n*-dimensional domain with Lipschitz boundary.
- The unknown function $u: \Omega \to \mathbb{R}$ is in the class $W^{1,p}(\Omega)$.
- $\Delta_s u \coloneqq \operatorname{div} \left(|\nabla u|^{s-2} \nabla u \right) \ (1 \le s < \infty)$ is the s-Laplacian.
- The given function $f: \Omega \to \mathbb{R}$ is in the class $L^q(\Omega)$.
- The constants & dimensions are assumed to be

$$b \in (0, \infty), \ p \in (1, \infty), \ q \in (n, \infty], \ n \ge 2.$$

Mathematical models

The equation

$$L_{b,p}u \coloneqq -b\Delta_1 u - \Delta_p u = f \in L^q(\Omega) \quad \text{in } \Omega \subset \mathbb{R}^n$$

is derived from the Euler–Lagrange equation

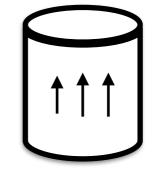
$$\frac{\delta \mathcal{F}}{\delta u} = 0 \quad \text{with} \quad \mathcal{F}(u) \coloneqq b \int_{\Omega} |\nabla u| \, \mathrm{d}x + \frac{1}{p} \int_{\Omega} |\nabla u|^p \, \mathrm{d}x - \int_{\Omega} f \cdot u \, \mathrm{d}x.$$

This energy functional often appears in fields of

• Fluid mechanics (Bingham fluids) for p = 2.

cf. Duvaut-Lions (Springer, Grundlehren series Vol. 219).

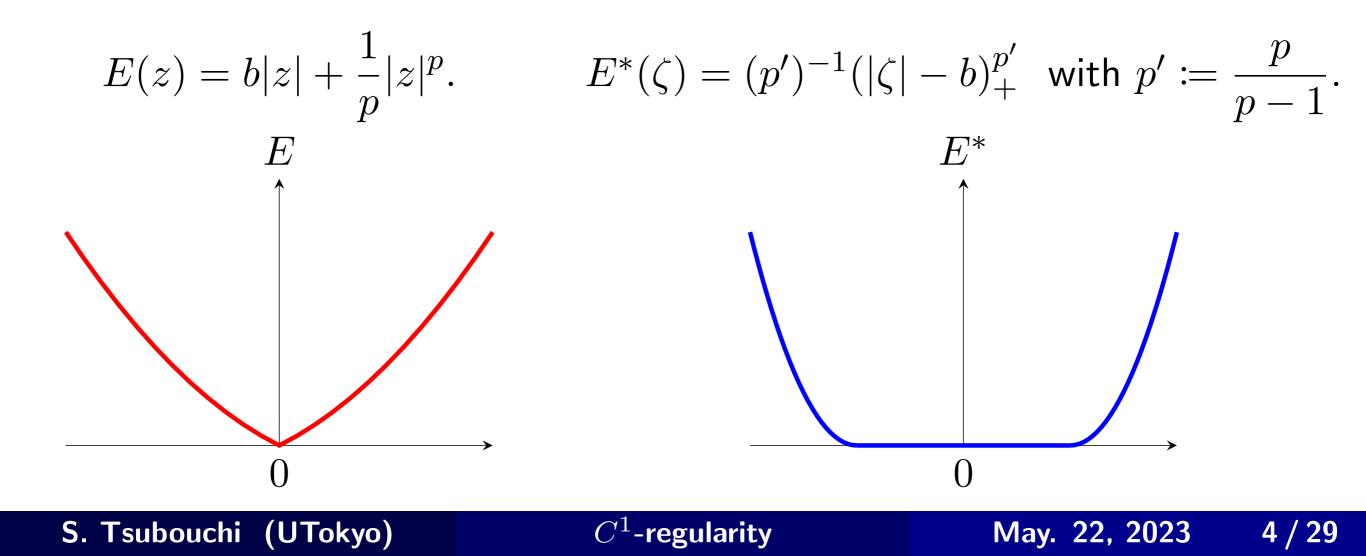
• Materials science (crystal surface growth) for p = 3. cf. Spohn (1993), Kohn (2012): fourth order problems.



Optimal Regularity

For a general energy density E (with smooth structure), we have $\nabla E(\nabla E^*(x)) = x, \quad E^*$: Fenchel dual. (D) Hence $u \coloneqq E^*$ is a solution to $-\operatorname{div}(\nabla E(\nabla u)) = -n$.

 $\rightarrow C^{1, \alpha}$ -regularity with $\alpha \coloneqq \max\{1, (p-1)^{-1}\}$ is at most expectable.



Main result

For p-Poisson problems (i.e., b = 0), $C^{1, \alpha}$ -regularity is established by

- Uraltseva (1968), Uhlenbeck (1977), Evans (1982) for $p \in [2, \infty)$
- Lewis (1983), DiBenedetto (1983), Tolksdorff (1984) for $p \in (1, \infty)$
- ... and many experts. When p = 1, these results are not expectable.

The main result is

Theorem (T.; scalar (arXiv:2208.14640), system (Math. Ann., 2022))

A weak solution to $L_{b, p}u = f \in L^q$ with $q \in (n, \infty]$ is in $C^1(\Omega; \mathbb{R}^N)$.

cf. C^1 -regularity when N = 1 & u: convex. (Y. Giga & T., ARMA, 2022)

Outline of Talk

Introduction and preliminary

- Difficulty & Strategy
- Comparison to related works on a very degenerate problem

2 A priori Hölder estimates for modulus-truncated gradients

- Convergence of approximated solutions
- Key Estimate

3 Generalization & Future Works

- Generalizations
- Future Works

1 Introduction and preliminary

- Difficulty & Strategy
- Comparison to related works on a very degenerate problem

2) A priori Hölder estimates for modulus-truncated gradients

- Convergence of approximated solutions
- Key Estimate

3) Generalization & Future Works

- Generalizations
- Future Works

Difficulty on regularity (1/3)

We fix $s \in [1, \infty)$ & consider a convex function

$$E_s(z) \coloneqq \frac{1}{s} |z|^s \quad (z \in \mathbb{R}^n).$$

Then the Hessian matrix is given by,

$$\nabla^2 E_s(z_0) = (s-2)|z_0|^{s-4} z_0 \otimes z_0 + |z_0|^{s-2} \mathbf{1}_n \quad \text{for} \quad z_0 \in \mathbb{R}^n \setminus \{0\}.$$

In particular, its eigenvalues & corresponding eigenspaces are

$$\begin{cases} (s-1)|z_0|^{s-2} & \& & \mathbb{R}z_0 \\ |z_0|^{s-2} & \& & (\mathbb{R}z_0)^{\perp} & (n-1 \text{ dimensions}). \end{cases}$$

Always 0 is an eigenvalue of $\nabla^2 E_1(z_0)$, even when $z_0 \in \mathbb{R}^n \setminus \{0\}$.

 \rightarrow Diffusivity of $\Delta_1 u$ degenerates in the direction ∇u , even when $\nabla u \neq 0$.

S. Tsubouchi (UTokyo)

Difficulty on regularity (2/3)

We define

$$E(z) \coloneqq b|z| + \frac{1}{p}|z|^p \equiv bE_1(z) + E_p(z) \quad (z \in \mathbb{R}^n).$$

For each $z_0 \in \mathbb{R}^n \setminus \{0\}$, we compute

$$(\mathsf{ER of } \nabla^2 E(z_0)) \coloneqq \frac{(\mathsf{the largest eigenvalue of } \nabla^2 E(z_0))}{(\mathsf{the lowest eigenvalue of } \nabla^2 E(z_0))}$$
$$= \frac{\max\{p-1, 1\} + b|z_0|^{1-p}}{\min\{p-1, 1\} + b \cdot 0}.$$

This ER (Ellipticity Ratio) blows up as $|z_0| \rightarrow 0$.

In other words, **non-uniform ellipticity** appears as $\nabla u \to 0$. cf. (p, q)-growth problems (non-uniform ellipticity as $|Du| \to \infty$).

Difficulty on regularity (3/3)

Going back to our Eq., written by

 $-\operatorname{div}(\nabla E(\nabla u)) = f.$

 \downarrow Differentiate by x_j , then

$$-\operatorname{div}\left(\nabla^2 E(\nabla u) \nabla \partial_{x_j} u\right) = \partial_{x_j} f. \quad (\star)$$

Eq. (*) is **no longer** "uniformly elliptic", near $\{\nabla u = 0\}$ (facet). \rightarrow Growth estimate of $\partial_{x_j} u$ across $\{\nabla u = 0\}$ will be very hard.

Another Problem: Does (\star) make sense in $W^{-1,2}$?

 \rightarrow We should relax $L_{b,p} = -b\Delta_1 - \Delta_p$ by *uniformly elliptic* operators.

Strategy (1/2)

Our Problem:
$$-\operatorname{div}\left(\nabla^2 E(\nabla u)\nabla \partial_{x_j} u\right) = \partial_{x_j} f$$
 (*).
Recall

$$(\text{ER of } \nabla^2 E(\nabla u)) \le C_p \left(1 + b |\nabla u|^{1-p}\right)$$
$$\le C_p \left(1 + b \delta^{1-p}\right) < \infty$$

when $|\nabla u| > \delta > 0$.

Roughly speaking,

- Eq. (*) is "locally uniformly elliptic" in $\{\nabla u \neq 0\}$.
- 2 Its uniform ellipticity can be measured by $|\nabla u|$.

Strategy (2/2)

For each fixed $\delta \in (0, 1)$ and $x_0 \in \Omega$, we would like to prove

$$\mathcal{G}_{\delta}(\nabla u) \coloneqq (|\nabla u| - \delta)_{+} \frac{\nabla u}{|\nabla u|} \in C^{\alpha}(B_{\rho}(x_{0}); \mathbb{R}^{n})$$

for some $\alpha = \alpha(\delta, \operatorname{dist}(x_0, \partial \Omega)) \in (0, 1)$.

Remark

The truncation mapping
$$\mathcal{G}_{\delta}$$
 satisfies $\sup_{z \in \mathbb{R}^n} |\mathcal{G}_{\delta}(z) - z| \leq \delta$.

This yields $\mathcal{G}_{\delta}(\nabla u) \to \nabla u$ uniformly in Ω . Thus, $\nabla u \in C^0$.

S. Tsubouchi (UTokyo)

May. 22, 2023

A very degenerate problem & its motivation

Our strategy can be already found in

 $-\operatorname{div}(\nabla E^*(\nabla v)) = f \in L^q(\Omega)$ with Neumann BC,

where $E^*(\zeta) = \frac{1}{p'}(|\zeta| - b)_+^{p'}$ is the Fenchel dual of $E(z) = b|z| + \frac{|z|^p}{p}$.

This eq. is motivated by the duality formula

$$\nabla E^*(\nabla v) = \underset{\sigma \in L^p(\Omega; \mathbb{R}^n)}{\arg \min} \left\{ \int_{\Omega} E(\sigma) \mathrm{d}x \middle| \begin{array}{ccc} -\operatorname{div} \sigma &=& f & \operatorname{in} \Omega, \\ \sigma \cdot \nu_{\partial \Omega} &=& 0 & \operatorname{on} \partial \Omega, \end{array} \right\},\$$

from congested traffic dynamics problems.

• Carlier–Jimenez–Santambrogio (2008): mathematical modeling.

• Brasco–Carlier–Santambrogio (2010): duality formula.

May. 22, 2023

Regularity results on very degenerate problems

Theorem

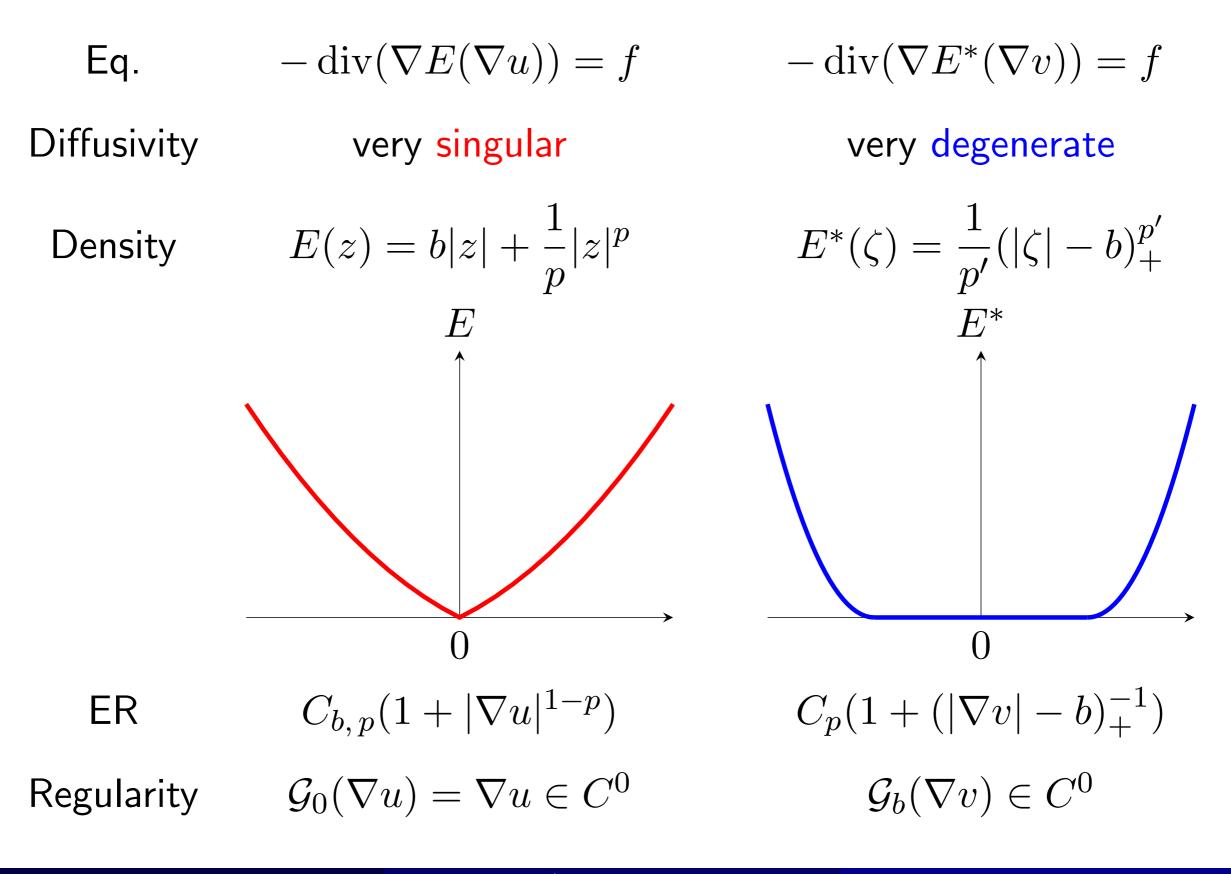
For each $\delta \in (0, 1)$, $\mathcal{G}_{b+\delta}(\nabla v) (\delta > 0)$ is continuous. In particular,

$$\mathcal{G}_b(\nabla v) = (|\nabla v| - b)_+ \frac{\nabla v}{|\nabla v|} \quad \& \quad \nabla E^*(\nabla v) \equiv |\mathcal{G}_b(\nabla v)|^{p'-2} \, \mathcal{G}_b(\nabla v)$$

are also continuous.

- Santambrogio–Vespri (2010); n = 2 only.
- 2 Colombo–Figalli (2014); $n \ge 2$ & general E^* : convex.
- Some state in Bögelein−Duzaar−Giova−Passarelli di Napoli (2022); n ≥ 2 & system. ← De Giorgi's truncation & Freezing coefficient method.

Structures on Ellipticity Ratio (ER)



S. Tsubouchi (UTokyo)

 C^1 -regularity

May. 22, 2023

Introduction and preliminary

- Difficulty & Strategy
- Comparison to related works on a very degenerate problem

2 A priori Hölder estimates for modulus-truncated gradients

- Convergence of approximated solutions
- Key Estimate

3 Generalization & Future Works

- Generalizations
- Future Works

S. Tsubouchi (UTokyo)

May. 22, 2023

Definition of weak solutions

Definition (T., Weak solution in the distributional sense)

A function $u \in W^{1,p}(\Omega)$ is called a weak solution to $L_{b,p}u = f$ in Ω , when there exists $Z \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that

•
$$\int_{\Omega} \left(Z + |\nabla u|^{p-2} \nabla u \right) \cdot \nabla \varphi \, \mathrm{d}x = \int_{\Omega} f \varphi \, \mathrm{d}x$$
 for all $\varphi \in W_0^{1, p}(\Omega)$,

•
$$Z(x) \in \partial |\cdot| (\nabla u(x))$$
 for a.e. $x \in \Omega$.

The subdifferential of $|\cdot|\colon \mathbb{R}^n \to [0,\,\infty)$ is given by

$$\mathbb{R}^{n} \supset \partial |\cdot|(z_{0}) = \begin{cases} \{|z_{0}|^{-1}z_{0}\} & (z_{0} \neq 0), \\ \{\zeta \in \mathbb{R}^{n} \mid |\zeta| \leq 1\} & (z_{0} = 0). \end{cases}$$

Note: $|\cdot|$ is not differentiable at the origin.

May. 22, 2023

Approximation of $L_{b, p}u$

• We approximate $L_{b,p}u = -b\Delta_1 u - \Delta_p u$ by $L_{b,p}^{\varepsilon}u_{\varepsilon} \coloneqq -\operatorname{div}\left(\frac{\nabla u_{\varepsilon}}{\sqrt{\varepsilon^2 + |\nabla u_{\varepsilon}|^2}}\right) - \operatorname{div}\left(\left(\varepsilon^2 + |\nabla u_{\varepsilon}|^2\right)^{p/2-1} \nabla u_{\varepsilon}\right)$

for an approximation parameter $\varepsilon \in (0, 1)$.

• This naturally appears when relaxing $E = b|z| + \frac{|z|^p}{p}$ by $E_{\varepsilon}(z) \coloneqq b\sqrt{\varepsilon^2 + |z|^2} + \frac{1}{p} \left(\varepsilon^2 + |z|^2\right)^{p/2}.$

• The operator $L_{b,p}^{\varepsilon}$ is uniformly elliptic, in the sense that

$$\left(\mathsf{ER of } \nabla^2 E_{\varepsilon}(z_0)\right) \leq 1 + \left(\varepsilon^2 + |z_0|^2\right)^{(1-p)/2} \leq 1 + \varepsilon^{1-p} < \infty \quad \forall z_0 \in \mathbb{R}^n.$$

 \rightarrow Standard elliptic arguments (difference quotient etc.) are useful.

S. Tsubouchi (UTokyo)

Convergence (1/2)

We introduce $\varepsilon \in (0,\,1)$ & consider

$$(\mathsf{E}_{\varepsilon}) \quad L^{\varepsilon}_{b,\,p} u_{\varepsilon} \equiv -\operatorname{div}\left(\nabla E_{\varepsilon}(\nabla u_{\varepsilon})\right) = f_{\varepsilon} \quad \text{in} \quad \Omega,$$

where $f_{\varepsilon} \rightharpoonup f$ in $\sigma(L^q, L^{q'})$. In particular, we may let $f_{\varepsilon} \in C^{\infty}$.

Proposition

Let $u \in W^{1,p}(\Omega)$ be a weak solution to (E) & $\varepsilon \in (0, 1)$. Consider the unique function $u_{\varepsilon} \in u + W_0^{1,p}(\Omega)$ that satisfies (E_{ε}) in the weak sense,

i.e.,
$$\int_{\Omega} \left(\frac{b \nabla u_{\varepsilon}}{\sqrt{\varepsilon^2 + |\nabla u_{\varepsilon}|^2}} + \left(\varepsilon^2 + |\nabla u_{\varepsilon}|^2\right)^{(p-2)/2} \nabla u_{\varepsilon} \right) \cdot \nabla \varphi \, \mathrm{d}x = \int_{\Omega} f_{\varepsilon} \varphi \, \mathrm{d}x$$

holds for all $\varphi \in W_0^{1, p}(\Omega)$. Then $u_{\varepsilon} \to u$ in $W^{1, p}(\Omega)$ (up to a sub-seq.).

Keypoint: Δ_p gives *quantitative* monotonicity estimates.

S. Tsubouchi (UTokyo)

C^1 -regularity

May. 22, 2023

Convergence (2/2)

In particular, a weak solution u to $L_{b, p}u = f$ can be approximated by

$$\left(\mathsf{D}_{\varepsilon}\right)\left\{\begin{array}{rcl}L_{b,p}^{\varepsilon}u_{\varepsilon}&=&f_{\varepsilon}\quad\mathrm{in}\quad\Omega,\\\\u_{\varepsilon}&=&u\quad\mathrm{on}\quad\partial\Omega.\end{array}\right.$$

Unique existence of weak solution of (D_{ε}) is easy. In fact, we have

$$u_{\varepsilon} = \arg \min \left\{ \int_{\Omega} \left[E_{\varepsilon}(\nabla v) - f_{\varepsilon} v \right] \, \mathrm{d}x \, \middle| \, v \in u + W_0^{1, \, p}(\Omega) \right\}.$$

S. Tsubouchi (UTokyo)

May. 22, 2023

Some Remarks

Our Theorem will be reduced to a priori estimates for

$$L_{b,p}^{\varepsilon} u_{\varepsilon} \equiv -\operatorname{div}(\nabla E_{\varepsilon}(\nabla u_{\varepsilon})) = f_{\varepsilon}.$$

 \downarrow Differentiate by x_j , then

$$-\operatorname{div}\left(\nabla^2 E_{\varepsilon}(\nabla u_{\varepsilon})\nabla \partial_{x_j} u_{\varepsilon}\right) = \partial_{x_j} f_{\varepsilon}. \quad (*)$$

- $u_{\varepsilon} \in W_{\text{loc}}^{2,2} \cap W_{\text{loc}}^{1,\infty}$ is expectable (cf. Giusti, World Scientific). In particular, Eq. (*) makes sense locally in $W^{-1,2}$.
- In Example 2 Example 2

by $V_{\varepsilon} \coloneqq \sqrt{\varepsilon^2 + |\nabla u_{\varepsilon}|^2}$, not by $|\nabla u_{\varepsilon}|$. Note: $c(p)V_{\varepsilon}^{p-2}\mathbf{1}_n \leqslant \nabla^2 E_{\varepsilon}(\nabla u_{\varepsilon}) \leqslant \left(C(p)V_{\varepsilon}^{p-2} + bV_{\varepsilon}^{-1}\right)\mathbf{1}_n$, so that $(\mathsf{ER of } \nabla^2 E_{\varepsilon}(\nabla u_{\varepsilon})) \leq C_p \left(1 + bV_{\varepsilon}^{1-p}\right) \leq C_{b, p, \varepsilon} < \infty.$

S. Tsubouchi (UTokyo)

Key estimate: A priori Hölder bounds

Proposition (T., A priori Hölder bounds for $\mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon})$)

Let $\delta \in (0, 1)$ & $\varepsilon \in (0, \delta/8)$. Then for each $x_0 \in \Omega$, we have

$$\mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon}) \coloneqq \left(\sqrt{\varepsilon^2 + |\nabla u_{\varepsilon}|^2} - 2\delta\right)_+ \frac{\nabla u_{\varepsilon}}{|\nabla u_{\varepsilon}|} \in C^{\alpha}(B_{\rho}(x_0); \mathbb{R}^n),$$

where the radius $\rho>0$ and the Hölder exponent $\alpha\in(0,\,1)$

- may depend on δ and $d_0 = \operatorname{dist}(x_0, \partial \Omega)$,
- but are independent of ε .

Moreover, we have

 $|\mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon}(x_1)) - \mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon}(x_2))| \le C|x_1 - x_2|^{\alpha} \text{ for all } x_1, x_2 \in B_{\rho}(x_0)$

with $C = C(\delta, d_0) \in (0, \infty)$ independent of ε .

Note: $\mathcal{G}_{2\delta}(\nabla u) \in C^{\alpha}(B_{\rho}(x_0); \mathbb{R}^n)$ follows from the Arzelà–Ascoli theorem.

S. Tsubouchi (UTokyo)

22 / 29

May. 22, 2023

Sketch of Hölder a priori estimates

Aim:
$$\forall x_0 \in B, \exists \Gamma_{2\delta,\varepsilon}(x_0) \coloneqq \lim_{r \to 0} \left(\mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon}) \right)_{x_0,r} \in \mathbb{R}^n$$
 satisfies

$$\int_{B_r(x_0)} |\mathcal{G}_{2\delta,\varepsilon}(\nabla u_{\varepsilon}) - \Gamma_{2\delta,\varepsilon}(x_0)|^2 \, \mathrm{d}x \lesssim \mu^2 \left(\frac{r}{\rho}\right)^{2\alpha}$$

Our analysis depends on whether a modulus V_{ε} is

non-degenerate \rightarrow Freezing coefficient arguments,

degenerate \rightarrow De Giorgi's truncation,

which can be judged by measuring super-levelsets.

cf. E. DiBenedetto, "Degenerate Parabolic Equations" (Springer).

May. 22, 2023

Introduction and preliminary

- Difficulty & Strategy
- Comparison to related works on a very degenerate problem

2 A priori Hölder estimates for modulus-truncated gradients

- Convergence of approximated solutions
- Key Estimate

3 Generalization & Future Works

- Generalizations
- Future Works

May. 22, 2023

Generalizations for everywhere C^1 -regularity

Scalar case (N = 1). arXiv:2208.14640 (preprint)

- Both convex functions $E_1 = b|z| \& E_p = |z|^p/p$ are generalized.
- Approximate $E = E_1 + E_p$ by convoluting by Friedrichs' mollifiers.
- This scheme works as long as E_1 is positively one-homogeneous,

i.e., $E_1(kz) = kE_1(z) \quad \forall z \in \mathbb{R}^n \quad \& \quad \forall k \in (0, \infty).$

Vector case ($N \ge 2$). Math. Ann. (2022)

- We should impose $E(z) = g(|z|^2)$ (Uhlenbeck structure).
- This symmetry is used to deduce weak forms of $V_{\varepsilon} = \sqrt{\varepsilon^2 + |Du_{\varepsilon}|^2}$.
- In particular, one-homogeneous E_1 should be $E_1(z) = b|z|$.
- E is approximated by $E_{\varepsilon}(z) \coloneqq g(\varepsilon^2 + |z|^2)$.

For both cases, E is required to be (at least) C^2 outside the origin.

Future Works (1/2)

- Growth estimates of ∇u across a facet $\{\nabla u = 0\}$ (less is known).
- Other analysis (e.g., localization) for non-divergence problems.
 cf. Evans & Savin (2008) : C^{1, α}-regularity for Δ_∞u = 0 with n = 2.
 cf. De Silva–Savin (2010), Mooney (2020):
 → C¹-regularity for minimizers of some strictly convex energy.
- Parabolic problems (in preparation). Consider

$$\partial_t u - \Delta_1 u - \Delta_p u = f(x, t) \in L^q(\Omega_T; \mathbb{R}^N) \text{ in } \Omega_T \coloneqq \Omega \times (0, T)$$
 (P)

Question: Is a spatial gradient $Du \in L^p(\Omega_T; \mathbb{R}^{Nn})$ continuous when

$$\frac{2n}{n+2}$$

May. 22, 2023

26 / 29

Answer: Yes, but some restrictions are (technically) required.

S. Tsubouchi (UTokyo)

 C^1 -regularity

Parabolic case

We let N = 1,

$$\frac{2n}{n+2}
$$X^{p}(0, T; \Omega) := \left\{ u \in L^{p}(0, T; W^{1, p}(\Omega)) \mid \partial_{t} u \in L^{p'}(0, T; W^{-1, p'}(\Omega)) \right\},\$$$$

$$X_0^p(0, T; \Omega) \quad \coloneqq \quad \left\{ u \in L^p(0, T; W_0^{1, p}(\Omega)) \mid \partial_t u \in L^{p'}(0, T; W^{-1, p'}(\Omega)) \right\}.$$

Definition

A function $u \in X^p(0, T; \Omega)$ is said to be a weak solution to (P), when $\exists Z \in L^{\infty}(\Omega_T)$ s.t.

- $Z(x, t) \in \partial |\cdot| (\nabla u(x, t))$ for a.e. $(x, t) \in \Omega_T$.
- $\forall \varphi \in X_0^p(0, T; \Omega)$ with $\varphi|_{t=0} = \varphi|_{t=T} = 0$ in $L^2(\Omega)$, there holds

$$-\iint_{\Omega_T} u\partial_t\varphi\,\mathrm{d}x\mathrm{d}t + \iint_{\Omega_T} \left\langle Z + |\nabla u|^{p-2}\nabla u \mid \nabla\varphi \right\rangle\,\mathrm{d}x\mathrm{d}t = \iint_{\Omega_T} f\varphi\,\mathrm{d}x\mathrm{d}t.$$

S. Tsubouchi (UTokyo)

Parabolic Result

3 Remarks on the conditions (A);

• Gelfand triple $W_0^{1,p}(\Omega) \xrightarrow{\mathsf{cpt}} L^2(\Omega) \xrightarrow{\mathsf{conti}} W^{-1,p'}(\Omega)$ by $p > \frac{2n}{n+2}$.

 $\to X_0^p(0, T; \Omega) \subset C([0, T]; L^2(\Omega)) \quad \& \quad X_0^p(0, T; \Omega) \stackrel{\mathsf{cpt}}{\to} L^p(0, T; L^2(\Omega)).$

2 Existence theory for $\partial_t u - \Delta_p u = f$ in $L^{p'}(0, T; W^{-1, p'}(\Omega))$

 \rightarrow J.-L. Lions (1969) & Showalter (1997) for $p > \frac{2n}{n+2}$.

3 The condition $1/p + 1/q \le 1$ allows us to use

 $L^{q}(\Omega_{T}) = L^{q}(0, T; L^{q}(\Omega)) \stackrel{\text{conti}}{\hookrightarrow} L^{p'}(0, T; W^{-1, p'}(\Omega)).$

Theorem (T., (in preparation))

Let u be a weak solution to (P) with (A). Then, $\nabla u \in C^0(\Omega_T; \mathbb{R}^n)$.

S. Tsubouchi (UTokyo)

 C^1 -regularity

May. 22, 2023

Future Works (2/2): Duality & Regularity

