The Beris-Edwards system for nematic liquid crystal flows

Zhewen Feng
 (Joint work with Min-Chun Hong and Yu Mei)

School of Mathematics and Physics
The University of Queensland
2023

- Liquid crystals are intermediate states of matter
- Liquid crystals are intermediate states of matter
- They may flow slowly like a liquid with solid-like alignment
- Liquid crystals are intermediate states of matter
- They may flow slowly like a liquid with solid-like alignment

111

1

- Liquid crystals are intermediate states of matter
- They may flow slowly like a liquid with solid-like alignment

111

$\hat{1}$
1

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Leslie explored the theoretical aspects for naturally twisted nematics.

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Leslie explored the theoretical aspects for naturally twisted nematics.
In 1970, Schadt and Helfrich discovered TN-effect for LCDs.

- Let $u=\left(u^{1}, u^{2}, u^{3}\right)$ represent a preferred molecular direction.
－Let $u=\left(u^{1}, u^{2}, u^{3}\right)$ represent a preferred molecular direction．
－Molecular orientations：

－the $x-z$ cross－section views：
－1／1／／
$\rightarrow 11 / 1 /$
－11／1／
いいIノ
－Let $u=\left(u^{1}, u^{2}, u^{3}\right)$ represent a preferred molecular direction．
－Molecular orientations：

－the $x-z$ cross－section views：

－Let $u=\left(u^{1}, u^{2}, u^{3}\right)$ represent a preferred molecular direction．
－Molecular orientations：

－the $x-z$ cross－section views：
जl／ノ
－11110．
जlノノ
いいIノ
いいノノ
－1 J I 10
－1）110．
－J J 1 0．

MIMN
11111
｜｜｜｜｜
／／I／I／1

The first continuum theory

- Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

$$
W(u, \nabla u)
$$

The first continuum theory

- Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

$$
W(u, \nabla u)
$$

- The energy is frame-indifference and rotational invariant.

The first continuum theory

- Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

$$
W(u, \nabla u)
$$

- The energy is frame-indifference and rotational invariant.
- For $u=(0,0,1)$ at the origin, we have a vector notation on the molecular orientations, for instance,
the splay type: $\frac{\partial u^{1}}{\partial x}+\frac{\partial u^{2}}{\partial y}=\operatorname{div} u$.

The Oseen-Frank energy

- For $u \in H^{1}\left(\Omega ; S^{2}\right), \Omega \in \mathbb{R}^{3}$, the associated energy is

$$
E(u)=\int_{\Omega} W(u, \nabla u) \mathrm{d} x
$$

The Oseen-Frank energy

- For $u \in H^{1}\left(\Omega ; S^{2}\right), \Omega \in \mathbb{R}^{3}$, the associated energy is

$$
E(u)=\int_{\Omega} W(u, \nabla u) \mathrm{d} x
$$

- The coordinate free form of the energy density is

$$
\begin{aligned}
W(u, \nabla u) & =k_{1}(\operatorname{div} u)^{2}+k_{2}(u \cdot \operatorname{curl} u)^{2} \\
& +k_{3}|u \times \operatorname{curl} u|^{2}+\left(k_{2}+k_{4}\right)\left[\operatorname{tr}(\nabla u)^{2}-(\operatorname{div} u)^{2}\right]
\end{aligned}
$$

The Oseen-Frank energy

- For $u \in H^{1}\left(\Omega ; S^{2}\right), \Omega \in \mathbb{R}^{3}$, the associated energy is

$$
E(u)=\int_{\Omega} W(u, \nabla u) \mathrm{d} x
$$

- The coordinate free form of the energy density is

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

at 125 degrees Celsius has

$$
k_{1}=9, \quad k_{2}=5.8 \quad \text { and } \quad k_{3}=19 \text { (unit: } 10^{-12} \text { Newtons) }
$$

Generally, Frank constants are unequal, i.e., $k_{1} \neq k_{2} \neq k_{3}$.

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

at 125 degrees Celsius has

$$
k_{1}=9, \quad k_{2}=5.8 \quad \text { and } \quad k_{3}=19 \text { (unit: } 10^{-12} \text { Newtons) }
$$

Generally, Frank constants are unequal, i.e., $k_{1} \neq k_{2} \neq k_{3}$.
Hardt-Kinderlehrer-Lin (CMP, '86) proved that a minimizer u of the energy $E(u)$ is smooth away from a closed set $\Sigma \subset \Omega$ which has Hausdorff dimension strictly less than one (the set Σ may not be finite).

A hydrodynamic model

- During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

A hydrodynamic model

- During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.
- Let the director field, fluid velocity and pressure be

$$
(u, v, P):[0, T] \times \mathbb{R}^{3} \rightarrow S^{2} \times \mathbb{R}^{3} \times \mathbb{R}
$$

A hydrodynamic model

- During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.
- Let the director field, fluid velocity and pressure be

$$
(u, v, P):[0, T] \times \mathbb{R}^{3} \rightarrow S^{2} \times \mathbb{R}^{3} \times \mathbb{R}
$$

A hydrodynamic model

- During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.
- Let the director field, fluid velocity and pressure be

$$
(u, v, P):[0, T] \times \mathbb{R}^{3} \rightarrow S^{2} \times \mathbb{R}^{3} \times \mathbb{R}
$$

The Ericksen-Leslie system (ELS)

$$
\begin{aligned}
& \partial_{t} v^{i}+v^{j} \nabla_{j} v^{i}+\nabla_{i} P-\Delta v=\nabla_{j} \sigma^{E}{ }_{i j} \\
& \nabla_{j} v^{j}=0 \\
& \partial_{t} u^{i}+v^{j} \nabla_{j} u^{i}=\left(\delta_{i k}-u^{i} u^{k}\right)\left(\nabla_{j} W_{p_{j}^{k}}(u, \nabla u)-W_{u^{k}}(u, \nabla u)\right)
\end{aligned}
$$

where $p_{j}^{i}:=\nabla_{j} u^{i}, \sigma^{E}$ is the Ericksen tensor.

A hydrodynamic model

- During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.
- Let the director field, fluid velocity and pressure be

$$
(u, v, P):[0, T] \times \mathbb{R}^{3} \rightarrow S^{2} \times \mathbb{R}^{3} \times \mathbb{R}
$$

The Ericksen-Leslie system (ELS)

$$
\begin{aligned}
& \partial_{t} v^{i}+v^{j} \nabla_{j} v^{i}+\nabla_{i} P-\Delta v=\nabla_{j} \sigma^{E}{ }_{i j} \\
& \nabla_{j} v^{j}=0 \\
& \partial_{t} u^{i}+v^{j} \nabla_{j} u^{i}=\left(\delta_{i k}-u^{i} u^{k}\right)\left(\nabla_{j} W_{p_{j}^{k}}(u, \nabla u)-W_{u^{k}}(u, \nabla u)\right)
\end{aligned}
$$

where $p_{j}^{i}:=\nabla_{j} u^{i}, \sigma^{E}$ is the Ericksen tensor.

- Physics background for ELS: conservation laws for linear momentum, mass and angular momentum respectively.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv|\nabla u|^{2}$.

$$
\begin{aligned}
\partial_{t} v^{i}+v^{j} \nabla_{j} v^{i}+\nabla_{i} P & =\Delta v^{i}-\nabla_{j}\left(\nabla_{i} u^{k} \nabla_{j} u^{k}\right) \\
\nabla_{j} v^{j} & =0 \\
\partial_{t} u^{i}+v^{j} \nabla_{j} u & =\Delta u^{i}+|\nabla u|^{2} u^{i}
\end{aligned}
$$

- If $v \equiv 0, \mathrm{OCM}$ reduces to a constrained heat flow of harmonic maps into spheres.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv|\nabla u|^{2}$.

$$
\begin{aligned}
\partial_{t} v^{i}+v^{j} \nabla_{j} v^{i}+\nabla_{i} P & =\Delta v^{i}-\nabla_{j}\left(\nabla_{i} u^{k} \nabla_{j} u^{k}\right) \\
\nabla_{j} v^{j} & =0 \\
\partial_{t} u^{i}+v^{j} \nabla_{j} u & =\Delta u^{i}+|\nabla u|^{2} u^{i}
\end{aligned}
$$

- If $v \equiv 0, \mathrm{OCM}$ reduces to a constrained heat flow of harmonic maps into spheres.
- For the harmonic map flow, Chen-Struwe (Math. Z. '89) proved the existence and the partial regularity of global weak solutions between manifolds using the Ginzburg-Landau approximation.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv|\nabla u|^{2}$.

$$
\begin{aligned}
\partial_{t} v^{i}+v^{j} \nabla_{j} v^{i}+\nabla_{i} P & =\Delta v^{i}-\nabla_{j}\left(\nabla_{i} u^{k} \nabla_{j} u^{k}\right) \\
\nabla_{j} v^{j} & =0 \\
\partial_{t} u^{i}+v^{j} \nabla_{j} u & =\Delta u^{i}+|\nabla u|^{2} u^{i}
\end{aligned}
$$

- If $v \equiv 0, \mathrm{OCM}$ reduces to a constrained heat flow of harmonic maps into spheres.
- For the harmonic map flow, Chen-Struwe (Math. Z. '89) proved the existence and the partial regularity of global weak solutions between manifolds using the Ginzburg-Landau approximation.
- Such method was initially appeared in the study the phase transition in superconductivity in the 50's.
- The main idea is to relax the constrain

$$
u \in S^{2} \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^{3}
$$

at the cost of a penalized energy
$E(u)=\int_{\Omega}|\nabla u|^{2} d x \Rightarrow E\left(u_{\varepsilon}\right)=\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+\frac{\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}}{2 \varepsilon^{2}} d x$.

- The main idea is to relax the constrain

$$
u \in S^{2} \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^{3}
$$

at the cost of a penalized energy
$E(u)=\int_{\Omega}|\nabla u|^{2} d x \Rightarrow E\left(u_{\varepsilon}\right)=\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+\frac{\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}}{2 \varepsilon^{2}} d x$.

- Then it leads to the Ginzburg-Landau approximation for ELS proposed by Lin-Liu (CPAM '95)
- The main idea is to relax the constrain

$$
u \in S^{2} \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^{3}
$$

at the cost of a penalized energy

$$
E(u)=\int_{\Omega}|\nabla u|^{2} d x \Rightarrow E\left(u_{\varepsilon}\right)=\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+\frac{\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}}{2 \varepsilon^{2}} d x
$$

- Then it leads to the Ginzburg-Landau approximation for ELS proposed by Lin-Liu (CPAM '95)

The Ginzburg-Landau system (OCM case)

$$
\begin{aligned}
\partial_{t} v_{\varepsilon}^{i}+v_{\varepsilon}^{j} \nabla_{j} v_{\varepsilon}^{i}+\nabla_{i} P_{\varepsilon} & =\nabla v_{\varepsilon}^{i}-\nabla_{j}\left(\nabla_{i} u_{\varepsilon}^{k} \nabla_{j} u_{\varepsilon}^{k}\right) \\
\nabla_{j} v_{\varepsilon}^{j} & =0 \\
\partial_{t} u_{\varepsilon}^{i}+v_{\varepsilon}^{j} \nabla_{j} u_{\varepsilon} & =\Delta u_{\varepsilon}^{i}+\frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}
\end{aligned}
$$

The Lin-Liu problem

Does $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ converge to functions that solve ELS as $\varepsilon \rightarrow 0$?
Significant research and study have been dedicated to the topic of convergence:

- Lin-Liu (ARMA '00)
- Hong (CVPDE '10)
- Hong-Xin (Adv Math '12)
- Hong-Li-Xin (CPDE '14)
- F.-Hong-Mei (SIAM Math Anal '20)

This problem provides further motivation for the generalisation of the ELS, which is known as the Beris-Edwards system.

Some background for the Beris-Edwards system

The most general elastic theory for nematics, which describes all reorientation types, is
the Landau-de Gennes theory.

Some background for the Beris-Edwards system

The most general elastic theory for nematics, which describes all reorientation types, is
the Landau-de Gennes theory.
Pierre-Gilles de Gennes was awarded a Nobel prize for physics in 1991 for his work on liquid crystals and polymers.

Photo from the Nobel Foundation archive

A problem for vector representation in S^{2}

Non-simply-connected domains (Ball '17)

A problem for vector representation in S^{2}

The Landau-de Gennes model is a tensor representation. (isomorphic to the projective plane $\mathbb{R} P 2$ up to a scaling)

Non-simply-connected domains (Ball '17)

Biaxial substances for nematics

Biaxial substances for nematics

The Landau-de Gennes model works for both uniaxials and biaxials.

Madsen el al. '04.

The Landau-de Gennes Energy

- de Gennes '71 introduced the Q-tensor order parameter in

$$
S_{0}=\left\{Q \in \mathbb{M}^{3 \times 3} ; Q_{i j}=Q_{j i}, Q_{i i}=0\right\}
$$

The Landau-de Gennes Energy

- de Gennes '71 introduced the Q-tensor order parameter in

$$
S_{0}=\left\{Q \in \mathbb{M}^{3 \times 3} ; Q_{i j}=Q_{j i}, Q_{i i}=0\right\}
$$

- For $Q \in W^{1,2}\left(\Omega ; S_{0}\right)$, the Landau-de Gennes energy

$$
E_{L G}(Q ; \Omega)=\int_{\Omega} f_{E}(Q, \nabla Q)+f_{B}(Q) d x
$$

The Landau-de Gennes Energy

- de Gennes '71 introduced the Q-tensor order parameter in

$$
S_{0}=\left\{Q \in \mathbb{M}^{3 \times 3} ; Q_{i j}=Q_{j i}, Q_{i i}=0\right\}
$$

- For $Q \in W^{1,2}\left(\Omega ; S_{0}\right)$, the Landau-de Gennes energy

$$
E_{L G}(Q ; \Omega)=\int_{\Omega} f_{E}(Q, \nabla Q)+f_{B}(Q) d x
$$

- The elastic energy density $f_{E}(Q, \nabla Q)$ is given by

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

The Landau-de Gennes Energy

- de Gennes '71 introduced the Q-tensor order parameter in

$$
S_{0}=\left\{Q \in \mathbb{M}^{3 \times 3} ; Q_{i j}=Q_{j i}, Q_{i i}=0\right\}
$$

- For $Q \in W^{1,2}\left(\Omega ; S_{0}\right)$, the Landau-de Gennes energy

$$
E_{L G}(Q ; \Omega)=\int_{\Omega} f_{E}(Q, \nabla Q)+f_{B}(Q) d x
$$

- The elastic energy density $f_{E}(Q, \nabla Q)$ is given by

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

- Landau's expansion for phase transitions

$$
f_{B}(Q)=-\frac{a}{2} \operatorname{tr}\left(Q^{2}\right)-\frac{b}{3} \operatorname{tr}\left(Q^{3}\right)+\frac{c}{4}\left[\operatorname{tr}\left(Q^{2}\right)\right]^{2}, \quad a, b, c>0 .
$$

Extension to the Landau-de Gennes energy density

- In his most cited paper, de Gennes '71 established the first two terms

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} .
$$

Extension to the Landau-de Gennes energy density

- In his most cited paper, de Gennes '71 established the first two terms

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} .
$$

- Schiele-Trimper '83 revealed that de Gennes's representation requires $k_{1}=k_{3}$.

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}, \quad L_{4}=\frac{k_{3}-k_{1}}{2 s_{+}^{3}}
$$

Extension to the Landau-de Gennes energy density

- In his most cited paper, de Gennes '71 established the first two terms

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} .
$$

- Schiele-Trimper '83 revealed that de Gennes's representation requires $k_{1}=k_{3}$.

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}, \quad L_{4}=\frac{k_{3}-k_{1}}{2 s_{+}^{3}}
$$

- Dickmann '94 derived the additional L_{3} term (from the Oseen-Frank theory), which correlates with the blue phase theory.

Extension to the Landau-de Gennes energy density

- In his most cited paper, de Gennes '71 established the first two terms

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} .
$$

- Schiele-Trimper '83 revealed that de Gennes's representation requires $k_{1}=k_{3}$.

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}, \quad L_{4}=\frac{k_{3}-k_{1}}{2 s_{+}^{3}}
$$

- Dickmann '94 derived the additional L_{3} term (from the Oseen-Frank theory), which correlates with the blue phase theory.

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}
$$

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

- Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L_{4} term is problematic.

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

- Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L_{4} term is problematic.

An example from Ball-Majumdar '10

$$
\begin{aligned}
Q(x) & =\eta(|x|)\left(\frac{x}{|x|} \otimes \frac{x}{|x|}-\frac{1}{3} I\right), \eta(1)=0, x \in B(0,1) \\
\eta(r) & = \begin{cases}\eta_{0}(2+\sin (k r)), & 0<r<\frac{1}{2} \\
2 \eta_{0}\left(2+\sin \left(\frac{k}{2}\right)\right)(1-r), & \frac{1}{2} \leq r<1\end{cases}
\end{aligned}
$$

$$
\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}}+\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{L_{4}}{2} Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
$$

- Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L_{4} term is problematic.

An example from Ball-Majumdar '10

The energy density can be arbitrarily large and negative.

$$
\begin{aligned}
Q(x) & =\eta(|x|)\left(\frac{x}{|x|} \otimes \frac{x}{|x|}-\frac{1}{3} I\right), \eta(1)=0, x \in B(0,1) \\
\eta(r) & = \begin{cases}\eta_{0}(2+\sin (k r)), & 0<r<\frac{1}{2} \\
2 \eta_{0}\left(2+\sin \left(\frac{k}{2}\right)\right)(1-r), & \frac{1}{2} \leq r<1\end{cases}
\end{aligned}
$$

- Existence of minimizers cannot be guaranteed.

For uniaxial Q-tensors

$$
Q \in S_{*}=\left\{Q \in S_{0}: Q_{i j}=s_{+}\left(u_{i} u_{j}-\frac{1}{3} \delta_{i j}\right), u \in S^{2}\right\}
$$

For uniaxial Q-tensors

$$
Q \in S_{*}=\left\{Q \in S_{0}: Q_{i j}=s_{+}\left(u_{i} u_{j}-\frac{1}{3} \delta_{i j}\right), u \in S^{2}\right\}
$$

we recently discovered the L_{4} term is a linear combination of a fourth order and a second order term.

$$
Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}=\frac{3}{2 s_{+}} \sum_{i, j, n=1}^{3}\left(\sum_{k=1}^{3} Q_{k n} \frac{\partial Q_{i j}}{\partial x_{k}}\right)^{2}-\frac{2 s_{+}}{3}|\nabla Q|^{2} .
$$

For uniaxial Q-tensors

$$
Q \in S_{*}=\left\{Q \in S_{0}: Q_{i j}=s_{+}\left(u_{i} u_{j}-\frac{1}{3} \delta_{i j}\right), u \in S^{2}\right\}
$$

we recently discovered the L_{4} term is a linear combination of a fourth order and a second order term.

$$
Q_{l k} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}}=\frac{3}{2 s_{+}} \sum_{i, j, n=1}^{3}\left(\sum_{k=1}^{3} Q_{k n} \frac{\partial Q_{i j}}{\partial x_{k}}\right)^{2}-\frac{2 s_{+}}{3}|\nabla Q|^{2} .
$$

We suggest a new representation

F.-Hong (CVPDE '22)

$$
\begin{aligned}
f_{E}(Q, \nabla Q)= & \left(\frac{L_{1}}{2}-\frac{s_{+} L_{4}}{3}\right)|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} \\
& +\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{3 L_{4}}{2 s_{+}} Q_{I n} Q_{k n} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
\end{aligned}
$$

Existence of minimizers through scaling analysis

In the case $L_{2}=L_{3}=L_{4}=0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$
\int_{\Omega} \frac{1}{2}\left|\nabla Q_{L}\right|^{2}+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} d x
$$

where $\tilde{f}_{B}\left(Q_{L}\right)=f_{B}\left(Q_{L}\right)-\min _{S_{0}} f_{B}$.

Existence of minimizers through scaling analysis

In the case $L_{2}=L_{3}=L_{4}=0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$
\int_{\Omega} \frac{1}{2}\left|\nabla Q_{L}\right|^{2}+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} d x
$$

where $\tilde{f}_{B}\left(Q_{L}\right)=f_{B}\left(Q_{L}\right)-\min _{S_{0}} f_{B}$.
Let $Q^{*} \in S_{*}$ be a global minimizer of the Dirichlet energy. They proved that $Q_{L} \rightarrow Q^{*}$ in $W^{1,2}$ up to a subsequence as $L \rightarrow 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_{L} away from the singular set of Q_{*}.

Existence of minimizers through scaling analysis

In the case $L_{2}=L_{3}=L_{4}=0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$
\int_{\Omega} \frac{1}{2}\left|\nabla Q_{L}\right|^{2}+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} d x
$$

where $\tilde{f}_{B}\left(Q_{L}\right)=f_{B}\left(Q_{L}\right)-\min _{S_{0}} f_{B}$.
Let $Q^{*} \in S_{*}$ be a global minimizer of the Dirichlet energy. They proved that $Q_{L} \rightarrow Q^{*}$ in $W^{1,2}$ up to a subsequence as $L \rightarrow 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_{L} away from the singular set of Q_{*}.

Relevance in Physics: the constant L is small $\sim 10^{-11} J \backslash M$.

Existence of minimizers through scaling analysis

In the case $L_{2}=L_{3}=L_{4}=0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$
\int_{\Omega} \frac{1}{2}\left|\nabla Q_{L}\right|^{2}+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} d x
$$

where $\tilde{f}_{B}\left(Q_{L}\right)=f_{B}\left(Q_{L}\right)-\min _{S_{0}} f_{B}$.
Let $Q^{*} \in S_{*}$ be a global minimizer of the Dirichlet energy. They proved that $Q_{L} \rightarrow Q^{*}$ in $W^{1,2}$ up to a subsequence as $L \rightarrow 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_{L} away from the singular set of Q_{*}.

Relevance in Physics: the constant L is small $\sim 10^{-11} J \backslash M$.
The limit $L \rightarrow 0$ is analogous to the Ginzburg-Landau functional.

In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled Landau-de Gennes energy:

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x
$$

In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled Landau-de Gennes energy:

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x
$$

- We rescale $Q \in S_{*}$ to $Q_{L} \in S_{0}$ at the cost of the penalty term.

In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled Landau-de Gennes energy:

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x
$$

- We rescale $Q \in S_{*}$ to $Q_{L} \in S_{0}$ at the cost of the penalty term.
- Q_{L} is uniaxial with a small biaxial perturbation.

In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled Landau-de Gennes energy:

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x
$$

- We rescale $Q \in S_{*}$ to $Q_{L} \in S_{0}$ at the cost of the penalty term.
- Q_{L} is uniaxial with a small biaxial perturbation.
- F.-Hong (CVPDE '22) proved that the weak solutions Q_{L} of the $E L$ equation for $E_{L}(Q ; \Omega)$ solve the EL equation for uniaxial Q-tensors as $L \rightarrow 0$ (Assuming strong convergence on Q_{L}).

In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled Landau-de Gennes energy:

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x
$$

- We rescale $Q \in S_{*}$ to $Q_{L} \in S_{0}$ at the cost of the penalty term.
- Q_{L} is uniaxial with a small biaxial perturbation.
- F.-Hong (CVPDE '22) proved that the weak solutions Q_{L} of the EL equation for $E_{L}(Q ; \Omega)$ solve the EL equation for uniaxial Q-tensors as $L \rightarrow 0$ (Assuming strong convergence on Q_{L}).

The case of $L_{2}=L_{3}=L_{4}=0$:

$$
s_{+} \Delta Q_{i j}-2 \nabla_{k} Q_{i l} \nabla_{k} Q_{j l}+2\left(s_{+}^{-1} Q_{i j}+\frac{1}{3} \delta_{i j}\right)|\nabla Q|^{2}=0
$$

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.
The Beris-Edwards system for uniaxial $Q \in S_{*}$

$$
\begin{aligned}
\left(\partial_{t}+v \cdot \nabla-\Delta\right) v+\nabla P & =\nabla \cdot([Q, H]+\sigma(Q, \nabla Q)), \\
\nabla \cdot v & =0 \\
\left(\partial_{t}+v \cdot \nabla\right) Q+[Q, \Omega] & =H(Q, \nabla Q)
\end{aligned}
$$

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.
The Beris-Edwards system for uniaxial $Q \in S_{*}$

$$
\begin{aligned}
\left(\partial_{t}+v \cdot \nabla-\Delta\right) v+\nabla P & =\nabla \cdot([Q, H]+\sigma(Q, \nabla Q)), \\
\nabla \cdot v & =0 \\
\left(\partial_{t}+v \cdot \nabla\right) Q+[Q, \Omega] & =H(Q, \nabla Q)
\end{aligned}
$$

- $H(Q, \nabla Q)$ is the first variation for $Q \in S_{*}$
- σ is a distortion stress tensor
- $[\cdot, \cdot]$ is the Lie bracket

A scaling analysis

- Recall the rescaled Landau-de Gennes energy

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x, \quad Q_{L} \in S_{0}
$$

A scaling analysis

- Recall the rescaled Landau-de Gennes energy

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x, \quad Q_{L} \in S_{0}
$$

- We construct a rescaled Beris-Edwards system from $E_{L}(Q ; \Omega)$ with solutions $\left(Q_{L}, v_{L}\right)$

A scaling analysis

- Recall the rescaled Landau-de Gennes energy

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x, \quad Q_{L} \in S_{0}
$$

- We construct a rescaled Beris-Edwards system from $E_{L}(Q ; \Omega)$ with solutions $\left(Q_{L}, v_{L}\right)$
- Does $\left(Q_{L}, v_{L}\right)$ converge to functions that solve the Beris-Edwards system for uniaxials as $L \rightarrow 0$? (c.f. Lin-Liu's problem for ELS)

A scaling analysis

- Recall the rescaled Landau-de Gennes energy

$$
E_{L}(Q ; \Omega)=\int_{\Omega} f_{E}\left(Q_{L}, \nabla Q_{L}\right)+\frac{\tilde{f}_{B}\left(Q_{L}\right)}{L} \mathrm{~d} x, \quad Q_{L} \in S_{0}
$$

- We construct a rescaled Beris-Edwards system from $E_{L}(Q ; \Omega)$ with solutions $\left(Q_{L}, v_{L}\right)$
- Does $\left(Q_{L}, v_{L}\right)$ converge to functions that solve the Beris-Edwards system for uniaxials as $L \rightarrow 0$? (c.f. Lin-Liu's problem for ELS)
- Gartland (MMA '18): This scaling analysis is analogous to - "London limit" in the Ginzburg-Landau theory of superconductivity
- "large-body limit" in the Landau-Lifshitz theory of ferromagnetism

F.-Hong-Mei (arXiv:2112.04074)

F.-Hong (CVPDE '22)

$$
\begin{aligned}
f_{E}(Q, \nabla Q)= & \left(\frac{L_{1}}{2}-\frac{s_{+} L_{4}}{3}\right)|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} \\
& +\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{3 L_{4}}{2 s_{+}} Q_{I n} Q_{k n} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
\end{aligned}
$$

- For the initial condition

$$
\left(Q_{0}, v_{0}\right) \in H_{Q_{e}}^{2}\left(\mathbb{R}^{3} ; S_{*}\right) \times H^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right), \operatorname{div} v_{0}=0
$$

in the limit of $\left(Q_{L}, v_{L}\right)$, we prove the existence of a unique strong solution (Q, v) to the Beris-Edwards system for uniaxials up to some maximal time T^{*}.

F.-Hong-Mei (arXiv:2112.04074)

F.-Hong (CVPDE '22)

$$
\begin{aligned}
f_{E}(Q, \nabla Q)= & \left(\frac{L_{1}}{2}-\frac{s_{+} L_{4}}{3}\right)|\nabla Q|^{2}+\frac{L_{2}}{2} \frac{\partial Q_{i j}}{\partial x_{j}} \frac{\partial Q_{i k}}{\partial x_{k}} \\
& +\frac{L_{3}}{2} \frac{\partial Q_{i k}}{\partial x_{j}} \frac{\partial Q_{i j}}{\partial x_{k}}+\frac{3 L_{4}}{2 s_{+}} Q_{l n} Q_{k n} \frac{\partial Q_{i j}}{\partial x_{l}} \frac{\partial Q_{i j}}{\partial x_{k}} .
\end{aligned}
$$

- For the initial condition

$$
\left(Q_{0}, v_{0}\right) \in H_{Q_{e}}^{2}\left(\mathbb{R}^{3} ; S_{*}\right) \times H^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right), \operatorname{div} v_{0}=0
$$

in the limit of $\left(Q_{L}, v_{L}\right)$, we prove the existence of a unique strong solution (Q, v) to the Beris-Edwards system for uniaxials up to some maximal time T^{*}.

- Moreover, for any $T<T^{*}$, we prove that

$$
\left(\nabla Q_{L}, v_{L}\right) \rightarrow(\nabla Q, v) \text { in } C^{\infty}\left(\tau, T ; C_{\text {loc }}^{\infty}\left(\mathbb{R}^{3}\right)\right) \text { for any } \tau>0
$$

Ideas from ELS

- Recall the first variation in ELS:

$$
\nabla_{\alpha} W_{p_{\alpha}^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-W_{u^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)+\frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}
$$

Ideas from ELS

- Recall the first variation in ELS:

$$
\nabla_{\alpha} W_{p_{\alpha}^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-W_{u^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)+\frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}
$$

- Hong-Li-Xin '14: To obtain $\left\|\nabla^{2} u_{\varepsilon}\right\|_{L^{2}}^{2}$ type estimate (uniform in ε), we multiply the equation by $-\Delta u_{\varepsilon}$ and have

$$
\begin{aligned}
& -\int_{\mathbb{R}^{3}} \Delta u_{\varepsilon}^{i} \frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}} d x \\
\leq & \int_{\mathbb{R}^{3}} C\left|\nabla u_{\varepsilon}\right|^{2} \frac{\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}-\frac{1}{4} \frac{\left|\nabla\left(\left|u_{\varepsilon}\right|^{2}\right)\right|^{2}}{\varepsilon^{2}} d x \\
\leq & \int_{\mathbb{R}^{3}}-\frac{1}{4} \frac{\left|\nabla\left(\left|u_{\varepsilon}\right|^{2}\right)\right|^{2}}{\varepsilon^{2}}+\eta \frac{\left|1-\left|u_{\varepsilon}\right|^{2}\right|^{2}}{\varepsilon^{4}}+C(\eta)\left|\nabla u_{\varepsilon}\right|^{4} d x
\end{aligned}
$$

Ideas from ELS

- Recall the first variation in ELS:

$$
\nabla_{\alpha} W_{p_{\alpha}^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)-W_{u^{i}}\left(u_{\varepsilon}, \nabla u_{\varepsilon}\right)+\frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}
$$

- Hong-Li-Xin '14: To obtain $\left\|\nabla^{2} u_{\varepsilon}\right\|_{L^{2}}^{2}$ type estimate (uniform in ε), we multiply the equation by $-\Delta u_{\varepsilon}$ and have

$$
\begin{aligned}
& -\int_{\mathbb{R}^{3}} \Delta u_{\varepsilon}^{i} \frac{u_{\varepsilon}^{i}\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}} d x \\
\leq & \int_{\mathbb{R}^{3}} C\left|\nabla u_{\varepsilon}\right|^{2} \frac{\left(1-\left|u_{\varepsilon}\right|^{2}\right)}{\varepsilon^{2}}-\frac{1}{4} \frac{\left|\nabla\left(\left|u_{\varepsilon}\right|^{2}\right)\right|^{2}}{\varepsilon^{2}} d x \\
\leq & \int_{\mathbb{R}^{3}}-\frac{1}{4} \frac{\left|\nabla\left(\left|u_{\varepsilon}\right|^{2}\right)\right|^{2}}{\varepsilon^{2}}+\eta \frac{\left|1-\left|u_{\varepsilon}\right|^{2}\right|^{2}}{\varepsilon^{4}}+C(\eta)\left|\nabla u_{\varepsilon}\right|^{4} d x
\end{aligned}
$$

- The first variation in BES:

$$
\mathcal{H}\left(Q_{L}, \nabla Q_{L}\right)+\frac{1}{L} g_{B}\left(Q_{L}\right), \quad g_{B}\left(Q_{L}\right):=\frac{\delta f_{B}\left(Q_{L}\right)}{\delta Q_{L}}
$$

with $f_{B}\left(Q_{L}\right)=-\frac{a}{2} \operatorname{tr}\left(Q_{L}^{2}\right)-\frac{b}{3} \operatorname{tr}\left(Q_{L}^{3}\right)+\frac{c}{4}\left[\operatorname{tr}\left(Q_{L}^{2}\right)\right]^{2}$.

Ideas for the proof

- The substitution technique does not apply for

$$
\int_{\mathbb{R}^{3}}\left\langle\Delta Q_{L}, g_{B}\left(Q_{L}\right)\right\rangle d x
$$

Ideas for the proof

- The substitution technique does not apply for

$$
\int_{\mathbb{R}^{3}}\left\langle\Delta Q_{L}, g_{B}\left(Q_{L}\right)\right\rangle d x
$$

- A new idea for uniform in L estimates: define a set 'close to' S_{*}

$$
S_{\delta}:=\left\{Q \in S_{0}: \quad \operatorname{dist}\left(Q ; S_{*}\right) \leq \delta\right\}
$$

Ideas for the proof

- The substitution technique does not apply for

$$
\int_{\mathbb{R}^{3}}\left\langle\Delta Q_{L}, g_{B}\left(Q_{L}\right)\right\rangle d x
$$

- A new idea for uniform in L estimates: define a set 'close to' S_{*}

$$
S_{\delta}:=\left\{Q \in S_{0}: \quad \operatorname{dist}\left(Q ; S_{*}\right) \leq \delta\right\}
$$

- For each smooth $Q \in S_{\delta}$, the nearest point projection $\pi(Q) \in S_{*}$ has a constant number of distinct eigenvalues, so there exists a smooth rotation $R_{Q}:=R(\pi(Q)) \in S O(3)$ (Nomizu '73) such that

$$
R_{Q}^{T} \pi(Q) R_{Q}=\left(\begin{array}{ccc}
\frac{-s_{+}}{3} & 0 & 0 \\
0 & \frac{-s_{+}}{3} & 0 \\
0 & 0 & \frac{2 s_{+}}{3}
\end{array}\right)=: Q^{+} .
$$

$$
R_{Q}^{T} \pi(Q) R_{Q}=\left(\begin{array}{ccc}
\frac{-s_{+}}{3} & 0 & 0 \\
0 & \frac{-s_{+}}{3} & 0 \\
0 & 0 & \frac{2 s_{+}}{3}
\end{array}\right)=: Q^{+} .
$$

- Nguyen-Zarnescu '13: $\pi(Q)$ commutes with Q for any $Q \in S_{\delta}$. Then we find

$$
\tilde{Q}=R_{Q}^{T} Q R_{Q}=\left(\begin{array}{ccc}
\tilde{Q}_{11} & \tilde{Q}_{12} & 0 \\
\tilde{Q}_{21} & \tilde{Q}_{22} & 0 \\
0 & 0 & \tilde{Q}_{33}
\end{array}\right) .
$$

$$
R_{Q}^{T} \pi(Q) R_{Q}=\left(\begin{array}{ccc}
\frac{-s_{+}}{3} & 0 & 0 \\
0 & \frac{-s_{+}}{3} & 0 \\
0 & 0 & \frac{2 s_{+}}{3}
\end{array}\right)=: Q^{+} .
$$

- Nguyen-Zarnescu '13: $\pi(Q)$ commutes with Q for any $Q \in S_{\delta}$. Then we find

$$
\tilde{Q}=R_{Q}^{T} Q R_{Q}=\left(\begin{array}{ccc}
\tilde{Q}_{11} & \tilde{Q}_{12} & 0 \\
\tilde{Q}_{21} & \tilde{Q}_{22} & 0 \\
0 & 0 & \tilde{Q}_{33}
\end{array}\right) .
$$

- F.-Hong-Mei: The Hessian of the bulk density f_{B} satisfies

$$
\lambda|\xi|^{2} \leq \partial_{\tilde{Q}_{j j} \tilde{Q}_{k}}^{2} f_{B}\left(Q^{+}\right) \xi_{j j} \xi_{k l}, \text { for some } \lambda>0 .
$$

- For any $Q_{L} \in S_{\delta}$, we derive

$$
\begin{aligned}
& \left\langle\frac{1}{L} \nabla g_{B}\left(\tilde{Q}_{L}\right), \nabla \tilde{Q}_{L}\right\rangle \\
\geq & \frac{\lambda}{2} \frac{\left|\nabla\left(Q_{L}-\pi\left(Q_{L}\right)\right)\right|^{2}}{L}-C\left|\nabla Q_{L}\right|^{2} \frac{\left|Q_{L}-\pi\left(Q_{L}\right)\right|^{2}}{L} .
\end{aligned}
$$

- For any $Q_{L} \in S_{\delta}$, we derive

$$
\begin{aligned}
& \left\langle\frac{1}{L} \nabla g_{B}\left(\tilde{Q}_{L}\right), \nabla \tilde{Q}_{L}\right\rangle \\
\geq & \frac{\lambda}{2} \frac{\left|\nabla\left(Q_{L}-\pi\left(Q_{L}\right)\right)\right|^{2}}{L}-C\left|\nabla Q_{L}\right|^{2} \frac{\left|Q_{L}-\pi\left(Q_{L}\right)\right|^{2}}{L} .
\end{aligned}
$$

- Similarly, we prove the high-order estimate of the kind

$$
\nabla Q_{L} \in L^{2}\left(0, T ; H^{2}\left(\mathbb{R}^{3}\right)\right)
$$

- For any $Q_{L} \in S_{\delta}$, we derive

$$
\begin{aligned}
& \left\langle\frac{1}{L} \nabla g_{B}\left(\tilde{Q}_{L}\right), \nabla \tilde{Q}_{L}\right\rangle \\
\geq & \frac{\lambda}{2} \frac{\left|\nabla\left(Q_{L}-\pi\left(Q_{L}\right)\right)\right|^{2}}{L}-C\left|\nabla Q_{L}\right|^{2} \frac{\left|Q_{L}-\pi\left(Q_{L}\right)\right|^{2}}{L} .
\end{aligned}
$$

- Similarly, we prove the high-order estimate of the kind

$$
\nabla Q_{L} \in L^{2}\left(0, T ; H^{2}\left(\mathbb{R}^{3}\right)\right)
$$

- A local L^{3} criteria

$$
\sup _{t, x_{0}} \int_{B_{R_{0}\left(x_{0}\right)}}|\nabla Q|^{3}+\left|\frac{Q-\pi(Q)}{L^{\frac{1}{2}}}\right|^{3} d x \leq \varepsilon_{0}^{3}
$$

- Assume that $\left(Q_{L, T_{0}}, v_{L, T_{0}}\right)$ satisfies

$$
\left\|Q_{L, T_{0}}\right\|_{H_{Q_{e}}^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left\|v_{L, T_{0}}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}+\frac{\left\|Q_{L, T_{0}}-\pi\left(Q_{L, T_{0}}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}}{L} \leq M
$$

- Assume that $\left(Q_{L, T_{0}}, v_{L, T_{0}}\right)$ satisfies

$$
\left\|Q_{L, T_{0}}\right\|_{H_{Q_{e}}^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left\|v_{L, T_{0}}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}+\frac{\left\|Q_{L, T_{0}}-\pi\left(Q_{L, T_{0}}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}}{L} \leq M
$$

- The Gagliardo-Nirenberg interpolation:

$$
\begin{aligned}
& \left\|Q_{L}-\pi\left(Q_{L}\right)\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \\
\leq & C\left\|Q_{L}-\pi\left(Q_{L}\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{\frac{1}{4}}\left\|\nabla^{2}\left(Q_{L}-\pi\left(Q_{L}\right)\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{\frac{3}{4}} \leq \frac{\delta}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sup _{t, x_{0}} \int_{B_{R_{0}}\left(x_{0}\right)}\left|\nabla Q_{L}\right|^{3} d x \leq C \sup _{t, x_{0}}\left(\frac{1}{R_{0}} \int_{B_{R_{0}\left(x_{0}\right)}}\left|\nabla Q_{L}\right|^{2} d x\right)^{3 / 2} \\
& +C \sup _{t, x_{0}}\left(R_{0} \int_{B_{R_{0}\left(x_{0}\right)}}\left|\nabla^{2} Q_{L}\right|^{2} d x\right)^{3 / 2} \leq \frac{\varepsilon_{0}^{3}}{2}
\end{aligned}
$$

for sufficiently small L and some uniform constants T, R_{0} in L.

- We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- For $T<T^{*}$ (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L^{3} criteria).
- We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- For $T<T^{*}$ (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L^{3} criteria).
- Prove inductively on an estimate of the form

$$
\nabla Q \in L^{2}\left(\tau, T_{M} ; H^{k+1}\left(\mathbb{R}^{3}\right)\right), \quad \forall \tau>0, k \geq 2
$$

- We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- For $T<T^{*}$ (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L^{3} criteria).
- Prove inductively on an estimate of the form

$$
\nabla Q \in L^{2}\left(\tau, T_{M} ; H^{k+1}\left(\mathbb{R}^{3}\right)\right), \quad \forall \tau>0, k \geq 2
$$

- Prove the convergence up to a uniform short time T_{M} and extend the result to maximal time T^{*}.

