The Beris-Edwards system for nematic liquid crystal flows

Zhewen Feng (Joint work with Min-Chun Hong and Yu Mei)

School of Mathematics and Physics The University of Queensland

2023

▶ Liquid crystals are intermediate states of matter

- Liquid crystals are intermediate states of matter
- ▶ They may flow slowly like a liquid with solid-like alignment

- Liquid crystals are intermediate states of matter
- ▶ They may flow slowly like a liquid with solid-like alignment

- Liquid crystals are intermediate states of matter
- ▶ They may flow slowly like a liquid with solid-like alignment

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Leslie explored the theoretical aspects for naturally twisted nematics.

Applications of the anisotropic property

Xiao, el al. (2011). Displays. 32. 17-23.

Leslie explored the theoretical aspects for naturally twisted nematics.

In 1970, Schadt and Helfrich discovered TN-effect for LCDs.

• Let $u = (u^1, u^2, u^3)$ represent a preferred molecular direction.

Let u = (u¹, u², u³) represent a preferred molecular direction.
 Molecular orientations:

▶ the x-z cross-section views:

<</td><</td><</td><</td><</td><</td>

Let u = (u¹, u², u³) represent a preferred molecular direction.
 Molecular orientations:

the x-z cross-section views:

Let u = (u¹, u², u³) represent a preferred molecular direction.
 Molecular orientations:

the x-z cross-section views:

The first continuum theory

 Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

 $W(u, \nabla u),$

The first continuum theory

 Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

$W(u, \nabla u),$

▶ The energy is frame-indifference and rotational invariant.

 Frank developed a continuum theory in 1958, building upon Oseen's approach from the 1920s. The theory includes the following energy density

$W(u, \nabla u),$

- ▶ The energy is frame-indifference and rotational invariant.
- For u = (0, 0, 1) at the origin, we have a vector notation on the molecular orientations, for instance,

the splay type:
$$\frac{\partial u^1}{\partial x} + \frac{\partial u^2}{\partial y} = \operatorname{div} u.$$

The Oseen–Frank energy

▶ For $u \in H^1(\Omega; S^2), \Omega \in \mathbb{R}^3$, the associated energy is

$$E(u) = \int_{\Omega} W(u, \nabla u) \, \mathrm{d}x$$

The Oseen–Frank energy

▶ For $u \in H^1(\Omega; S^2), \Omega \in \mathbb{R}^3$, the associated energy is

$$E(u) = \int_{\Omega} W(u,
abla u) \, \mathrm{d} x$$

The coordinate free form of the energy density is

$$W(u, \nabla u) = k_1 (\operatorname{div} u)^2 + k_2 (u \cdot \operatorname{curl} u)^2 + k_3 |u \times \operatorname{curl} u|^2 + (k_2 + k_4) [\operatorname{tr}(\nabla u)^2 - (\operatorname{div} u)^2]$$

The Oseen–Frank energy

For $u \in H^1(\Omega; S^2), \Omega \in \mathbb{R}^3$, the associated energy is $E(u) = \int_{\Omega} W(u, \nabla u) \, \mathrm{d}x$

The coordinate free form of the energy density is

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

$$CH_3 - O - CH_3$$

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

$$\mathrm{CH}_3\!-\!\mathrm{O}\!-\!\!\overline{\mathrm{CH}_3}\!-\!\mathrm{O}\!-\!\mathrm{CH}_3$$

at 125 degrees Celsius has

$$k_1 = 9$$
, $k_2 = 5.8$ and $k_3 = 19$ (unit: 10^{-12} Newtons)

Generally, Frank constants are unequal, i.e., $k_1 \neq k_2 \neq k_3$.

Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

at 125 degrees Celsius has

$$k_1 = 9, \quad k_2 = 5.8$$
 and $k_3 = 19$ (unit: 10^{-12} Newtons)

Generally, Frank constants are unequal, i.e., $k_1 \neq k_2 \neq k_3$.

Hardt-Kinderlehrer-Lin (CMP, '86) proved that a minimizer u of the energy E(u) is smooth away from a closed set $\Sigma \subset \Omega$ which has Hausdorff dimension strictly less than one (the set Σ may not be finite).

 During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

 During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

▶ Let the director field, fluid velocity and pressure be

 $(u, v, P) : [0, T] \times \mathbb{R}^3 \to S^2 \times \mathbb{R}^3 \times \mathbb{R}.$

 During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

▶ Let the director field, fluid velocity and pressure be

 $(u, v, P) : [0, T] \times \mathbb{R}^3 \to S^2 \times \mathbb{R}^3 \times \mathbb{R}.$

w

 During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

▶ Let the director field, fluid velocity and pressure be

$$(u, v, P): [0, T] \times \mathbb{R}^3 \to S^2 \times \mathbb{R}^3 \times \mathbb{R}.$$

The Ericksen–Leslie system (ELS)

$$\partial_t v^i + v^j \nabla_j v^i + \nabla_i P - \Delta v = \nabla_j \sigma^E_{ij}$$
$$\nabla_j v^j = 0$$
$$\partial_t u^i + v^j \nabla_j u^i = (\delta_{ik} - u^i u^k) (\nabla_j W_{p_j^k}(u, \nabla u) - W_{u^k}(u, \nabla u))$$
here $p_i^i := \nabla_i u^i, \sigma^E$ is the Ericksen tensor.

 During the 60's, Ericksen and Leslie generalised the static theory to a hydrodynamic theory.

▶ Let the director field, fluid velocity and pressure be

$$(u, v, P): [0, T] \times \mathbb{R}^3 \to S^2 \times \mathbb{R}^3 \times \mathbb{R}.$$

The Ericksen–Leslie system (ELS)

$$\partial_t v^i + v^j \nabla_j v^i + \nabla_i P - \Delta v = \nabla_j \sigma^E_{ij}$$

$$\nabla_j v^j = 0$$

$$\partial_t u^i + v^j \nabla_j u^i = (\delta_{ik} - u^i u^k) (\nabla_j W_{p_j^k}(u, \nabla u) - W_{u^k}(u, \nabla u))$$

where $p_j^i := \nabla_j u^i$, σ^E is the Ericksen tensor.

Physics background for ELS: conservation laws for linear momentum, mass and angular momentum respectively.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv |\nabla u|^2$.

$$\partial_t v^i + v^j \nabla_j v^i + \nabla_i P = \Delta v^i - \nabla_j (\nabla_i u^k \nabla_j u^k)$$
$$\nabla_j v^j = 0$$
$$\partial_t u^i + v^j \nabla_j u = \Delta u^i + |\nabla u|^2 u^i$$

If v ≡ 0, OCM reduces to a constrained heat flow of harmonic maps into spheres.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv |\nabla u|^2$.

$$\partial_t v^i + v^j \nabla_j v^i + \nabla_i P = \Delta v^i - \nabla_j (\nabla_i u^k \nabla_j u^k)$$
$$\nabla_j v^j = 0$$
$$\partial_t u^i + v^j \nabla_j u = \Delta u^i + |\nabla u|^2 u^i$$

- If v ≡ 0, OCM reduces to a constrained heat flow of harmonic maps into spheres.
- For the harmonic map flow, Chen–Struwe (Math. Z. '89) proved the existence and the partial regularity of global weak solutions between manifolds using the Ginzburg–Landau approximation.

The Dirichlet energy

The one-constant model (OCM): $W(u, \nabla u) \equiv |\nabla u|^2$.

$$\partial_t v^i + v^j \nabla_j v^i + \nabla_i P = \Delta v^i - \nabla_j (\nabla_i u^k \nabla_j u^k)$$
$$\nabla_j v^j = 0$$
$$\partial_t u^i + v^j \nabla_j u = \Delta u^i + |\nabla u|^2 u^i$$

- If v ≡ 0, OCM reduces to a constrained heat flow of harmonic maps into spheres.
- For the harmonic map flow, Chen–Struwe (Math. Z. '89) proved the existence and the partial regularity of global weak solutions between manifolds using the Ginzburg–Landau approximation.
- Such method was initially appeared in the study the phase transition in superconductivity in the 50's.

▶ The main idea is to relax the constrain

$$u \in S^2 \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^3,$$

at the cost of a penalized energy

$$E(u) = \int_{\Omega} |\nabla u|^2 dx \quad \Rightarrow \quad E(u_{\varepsilon}) = \int_{\Omega} |\nabla u_{\varepsilon}|^2 + \frac{(1 - |u_{\varepsilon}|^2)^2}{2\varepsilon^2} dx.$$

▶ The main idea is to relax the constrain

$$u \in S^2 \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^3,$$

at the cost of a penalized energy

$$E(u) = \int_{\Omega} |\nabla u|^2 dx \quad \Rightarrow \quad E(u_{\varepsilon}) = \int_{\Omega} |\nabla u_{\varepsilon}|^2 + \frac{(1 - |u_{\varepsilon}|^2)^2}{2\varepsilon^2} dx.$$

 Then it leads to the Ginzburg–Landau approximation for ELS proposed by Lin–Liu (CPAM '95) ▶ The main idea is to relax the constrain

$$u \in S^2 \quad \Rightarrow \quad u_{\varepsilon} \in \mathbb{R}^3,$$

at the cost of a penalized energy

$$E(u) = \int_{\Omega} |\nabla u|^2 dx \quad \Rightarrow \quad E(u_{\varepsilon}) = \int_{\Omega} |\nabla u_{\varepsilon}|^2 + \frac{(1 - |u_{\varepsilon}|^2)^2}{2\varepsilon^2} dx.$$

 Then it leads to the Ginzburg–Landau approximation for ELS proposed by Lin–Liu (CPAM '95)

The Ginzburg–Landau system (OCM case)

$$\partial_t v^i_{\varepsilon} + v^j_{\varepsilon}
abla_j v^i_{\varepsilon} +
abla_i P_{\varepsilon} =
abla v^i_{\varepsilon} -
abla_j (
abla_i u^k_{\varepsilon}
abla_j u^j_{\varepsilon}) = 0$$

 $\partial_t u^i_{\varepsilon} + v^j_{\varepsilon}
abla_j u_{\varepsilon} = \Delta u^i_{\varepsilon} + rac{u^i_{\varepsilon} (1 - |u_{\varepsilon}|^2)}{\varepsilon^2}.$

The Lin-Liu problem

Does $(u_{\varepsilon}, v_{\varepsilon})$ converge to functions that solve ELS as $\varepsilon \to 0$?

Significant research and study have been dedicated to the topic of convergence:

- Lin-Liu (ARMA '00)
- Hong (CVPDE '10)
- Hong-Xin (Adv Math '12)
- Hong-Li-Xin (CPDE '14)
- F.-Hong-Mei (SIAM Math Anal '20)

This problem provides further motivation for the generalisation of the ELS, which is known as the Beris-Edwards system.

Some background for the Beris-Edwards system

The most general elastic theory for nematics, which describes all reorientation types, is

the Landau-de Gennes theory.

Some background for the Beris-Edwards system

Photo from the Nobel Foundation archive

The most general elastic theory for nematics, which describes all reorientation types, is

the Landau-de Gennes theory.

Pierre-Gilles de Gennes was awarded a Nobel prize for physics in 1991 for his work on liquid crystals and polymers.

A problem for vector representation in S^2

Non-simply-connected domains (Ball '17)
A problem for vector representation in S^2

The Landau-de Gennes model is a tensor representation. (isomorphic to the projective plane $\mathbb{R}P2$ up to a scaling)

Non-simply-connected domains (Ball '17)

Biaxial substances for nematics

Madsen el al. '04.

Biaxial substances for nematics

The Landau-de Gennes model works for both uniaxials and biaxials.

Madsen el al. '04.

▶ de Gennes '71 introduced the Q-tensor order parameter in

$$\mathcal{S}_0=\{ Q\in \mathbb{M}^{3 imes 3}; Q_{ij}=Q_{ji}, Q_{ii}=0 \}.$$

de Gennes '71 introduced the Q-tensor order parameter in

$$\mathcal{S}_0=\{ Q\in \mathbb{M}^{3 imes 3}; extsf{Q}_{ij}= extsf{Q}_{ji}, extsf{Q}_{ii}=0 \}.$$

► For $Q \in W^{1,2}(\Omega; S_0)$, the Landau–de Gennes energy

$$E_{LG}(Q;\Omega) = \int_{\Omega} f_E(Q,\nabla Q) + f_B(Q) \, dx.$$

de Gennes '71 introduced the Q-tensor order parameter in

$$\mathcal{S}_0=\{ Q\in \mathbb{M}^{3 imes 3}; extsf{Q}_{ij}= extsf{Q}_{ji}, extsf{Q}_{ii}=0 \}.$$

For $Q \in W^{1,2}(\Omega; S_0)$, the Landau–de Gennes energy

$$E_{LG}(Q;\Omega) = \int_{\Omega} f_E(Q,\nabla Q) + f_B(Q) \, dx.$$

► The elastic energy density $f_E(Q, \nabla Q)$ is given by $\frac{L_1}{2} |\nabla Q|^2 + \frac{L_2}{2} \frac{\partial Q_{ij}}{\partial x_j} \frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2} \frac{\partial Q_{ik}}{\partial x_j} \frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2} Q_{lk} \frac{\partial Q_{ij}}{\partial x_l} \frac{\partial Q_{ij}}{\partial x_k}.$

de Gennes '71 introduced the Q-tensor order parameter in

$$\mathcal{S}_0=\{ Q\in \mathbb{M}^{3 imes 3}; extsf{Q}_{ij}= extsf{Q}_{ji}, extsf{Q}_{ii}=0 \}.$$

For $Q \in W^{1,2}(\Omega; S_0)$, the Landau–de Gennes energy

$$E_{LG}(Q;\Omega) = \int_{\Omega} f_{E}(Q,\nabla Q) + f_{B}(Q) dx.$$

► The elastic energy density $f_E(Q, \nabla Q)$ is given by $\frac{L_1}{2} |\nabla Q|^2 + \frac{L_2}{2} \frac{\partial Q_{ij}}{\partial x_i} \frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2} \frac{\partial Q_{ik}}{\partial x_i} \frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2} Q_{lk} \frac{\partial Q_{ij}}{\partial x_k} \frac{\partial Q_{ij}}{\partial x_k}.$

Landau's expansion for phase transitions

$$f_B(Q) = -rac{a}{2}\operatorname{tr}(Q^2) - rac{b}{3}\operatorname{tr}(Q^3) + rac{c}{4}\left[\operatorname{tr}(Q^2)
ight]^2, \quad a, b, c > 0$$

In his most cited paper, de Gennes '71 established the first two terms

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k}.$$

In his most cited paper, de Gennes '71 established the first two terms

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k}$$

Schiele-Trimper '83 revealed that de Gennes's representation requires $k_1 = k_3$.

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}, \quad L_4 = \frac{k_3 - k_1}{2s_+^3}.$$

In his most cited paper, de Gennes '71 established the first two terms

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k}$$

Schiele-Trimper '83 revealed that de Gennes's representation requires k₁ = k₃.

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}, \quad L_4 = \frac{k_3 - k_1}{2s_+^3}.$$

Dickmann '94 derived the additional L₃ term (from the Oseen-Frank theory), which correlates with the blue phase theory.

 In his most cited paper, de Gennes '71 established the first two terms

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k}$$

Schiele-Trimper '83 revealed that de Gennes's representation requires k₁ = k₃.

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}, \quad L_4 = \frac{k_3 - k_1}{2s_+^3}.$$

Dickmann '94 derived the additional L₃ term (from the Oseen-Frank theory), which correlates with the blue phase theory.

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2}\frac{\partial Q_{ik}}{\partial x_j}\frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}$$

 $\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2}\frac{\partial Q_{ik}}{\partial x_j}\frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}.$

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2}\frac{\partial Q_{ik}}{\partial x_j}\frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2}\frac{Q_{lk}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}$$

Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L₄ term is problematic.

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2}\frac{\partial Q_{ik}}{\partial x_j}\frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}$$

Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L₄ term is problematic.

An example from Ball-Majumdar '10

$$\begin{aligned} Q(x) = &\eta(|x|) \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3}I \right), \eta(1) = 0, x \in B(0, 1). \\ \eta(r) = \begin{cases} \eta_0(2 + \sin(kr)), & 0 < r < \frac{1}{2} \\ 2\eta_0(2 + \sin(\frac{k}{2}))(1 - r), & \frac{1}{2} \le r < 1. \end{cases} \end{aligned}$$

$$\frac{L_1}{2}|\nabla Q|^2 + \frac{L_2}{2}\frac{\partial Q_{ij}}{\partial x_j}\frac{\partial Q_{ik}}{\partial x_k} + \frac{L_3}{2}\frac{\partial Q_{ik}}{\partial x_j}\frac{\partial Q_{ij}}{\partial x_k} + \frac{L_4}{2}Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k}$$

Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20 pointed out the L₄ term is problematic.

An example from Ball-Majumdar '10

The energy density can be arbitrarily large and negative.

$$\begin{aligned} Q(x) = &\eta(|x|) \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3}I \right), \eta(1) = 0, x \in B(0, 1). \\ \eta(r) = \begin{cases} \eta_0(2 + \sin(kr)), & 0 < r < \frac{1}{2} \\ 2\eta_0(2 + \sin(\frac{k}{2}))(1 - r), & \frac{1}{2} \le r < 1. \end{cases} \end{aligned}$$

Existence of minimizers cannot be guaranteed.

For uniaxial Q-tensors

$$Q \in S_* = \{Q \in S_0 : Q_{ij} = s_+(u_i u_j - \frac{1}{3}\delta_{ij}), u \in S^2\},$$

For uniaxial Q-tensors

$$Q \in S_* = \{Q \in S_0 : Q_{ij} = s_+(u_iu_j - \frac{1}{3}\delta_{ij}), u \in S^2\},$$

we recently discovered the L_4 term is a linear combination of a fourth order and a second order term.

$$Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k} = \frac{3}{2s_+}\sum_{i,j,n=1}^3 \left(\sum_{k=1}^3 Q_{kn}\frac{\partial Q_{ij}}{\partial x_k}\right)^2 - \frac{2s_+}{3}|\nabla Q|^2.$$

For uniaxial Q-tensors

$$Q \in S_* = \{Q \in S_0 : Q_{ij} = s_+(u_iu_j - \frac{1}{3}\delta_{ij}), u \in S^2\},$$

we recently discovered the L_4 term is a linear combination of a fourth order and a second order term.

$$Q_{lk}\frac{\partial Q_{ij}}{\partial x_l}\frac{\partial Q_{ij}}{\partial x_k} = \frac{3}{2s_+}\sum_{i,j,n=1}^3 \left(\sum_{k=1}^3 Q_{kn}\frac{\partial Q_{ij}}{\partial x_k}\right)^2 - \frac{2s_+}{3}|\nabla Q|^2.$$

We suggest a new representation

F.-Hong (CVPDE '22)

$$f_{E}(Q, \nabla Q) = \left(\frac{L_{1}}{2} - \frac{s_{+}L_{4}}{3}\right) |\nabla Q|^{2} + \frac{L_{2}}{2} \frac{\partial Q_{ij}}{\partial x_{j}} \frac{\partial Q_{ik}}{\partial x_{k}} + \frac{L_{3}}{2} \frac{\partial Q_{ik}}{\partial x_{j}} \frac{\partial Q_{ij}}{\partial x_{k}} + \frac{3L_{4}}{2s_{+}} Q_{ln} Q_{kn} \frac{\partial Q_{ij}}{\partial x_{l}} \frac{\partial Q_{ij}}{\partial x_{k}}$$

In the case $L_2 = L_3 = L_4 = 0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$\int_{\Omega} \frac{1}{2} |\nabla Q_L|^2 + \frac{\tilde{f}_B(Q_L)}{L} \, dx,$$

where $\tilde{f}_B(Q_L) = f_B(Q_L) - \min_{S_0} f_B$.

In the case $L_2 = L_3 = L_4 = 0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$\int_{\Omega} \frac{1}{2} |\nabla Q_L|^2 + \frac{\tilde{f}_B(Q_L)}{L} \, dx,$$

where $\tilde{f}_B(Q_L) = f_B(Q_L) - \min_{S_0} f_B$.

Let $Q^* \in S_*$ be a global minimizer of the Dirichlet energy. They proved that $Q_L \to Q^*$ in $W^{1,2}$ up to a subsequence as $L \to 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_L away from the singular set of Q_* .

In the case $L_2 = L_3 = L_4 = 0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$\int_{\Omega} \frac{1}{2} |\nabla Q_L|^2 + \frac{\tilde{f}_B(Q_L)}{L} \, dx,$$

where $\tilde{f}_B(Q_L) = f_B(Q_L) - \min_{S_0} f_B$.

Let $Q^* \in S_*$ be a global minimizer of the Dirichlet energy. They proved that $Q_L \to Q^*$ in $W^{1,2}$ up to a subsequence as $L \to 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_L away from the singular set of Q_* .

Relevance in Physics: the constant L is small $\sim 10^{-11} J \backslash M$.

In the case $L_2 = L_3 = L_4 = 0$, Majumdar-Zarnescu (ARMA '10) introduced a rescaled energy:

$$\int_{\Omega} \frac{1}{2} |\nabla Q_L|^2 + \frac{\tilde{f}_B(Q_L)}{L} \, dx,$$

where $\tilde{f}_B(Q_L) = f_B(Q_L) - \min_{S_0} f_B$.

Let $Q^* \in S_*$ be a global minimizer of the Dirichlet energy. They proved that $Q_L \to Q^*$ in $W^{1,2}$ up to a subsequence as $L \to 0$. Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence of minimizers Q_L away from the singular set of Q_* .

Relevance in Physics: the constant L is small $\sim 10^{-11} J \backslash M$.

The limit $L \rightarrow 0$ is analogous to the Ginzburg–Landau functional.

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x.$$

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x.$$

▶ We rescale $Q \in S_*$ to $Q_L \in S_0$ at the cost of the penalty term.

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + rac{ ilde{f}_B(Q_L)}{L} \,\mathrm{d}x.$$

- ▶ We rescale $Q \in S_*$ to $Q_L \in S_0$ at the cost of the penalty term.
- Q_L is uniaxial with a small biaxial perturbation.

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + rac{ ilde{f}_B(Q_L)}{L} \,\mathrm{d}x.$$

- ▶ We rescale $Q \in S_*$ to $Q_L \in S_0$ at the cost of the penalty term.
- Q_L is uniaxial with a small biaxial perturbation.
- ► F.-Hong (CVPDE '22) proved that

the weak solutions Q_L of the EL equation for $E_L(Q; \Omega)$ solve the EL equation for uniaxial Q-tensors as $L \to 0$ (Assuming strong convergence on Q_L).

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x.$$

- We rescale $Q \in S_*$ to $Q_L \in S_0$ at the cost of the penalty term.
- Q_L is uniaxial with a small biaxial perturbation.
- F.-Hong (CVPDE '22) proved that the weak solutions Q_L of the EL equation for E_L(Q; Ω) solve the EL equation for uniaxial Q-tensors as L → 0 (Assuming strong convergence on Q_L).

The case of $L_2 = L_3 = L_4 = 0$:

$$s_+ \Delta Q_{ij} - 2 \nabla_k Q_{il} \nabla_k Q_{jl} + 2(s_+^{-1} Q_{ij} + \frac{1}{3} \delta_{ij}) |\nabla Q|^2 = 0.$$

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.

The Beris-Edwards system for uniaxial $Q \in S_*$

$$(\partial_t + \mathbf{v} \cdot \nabla - \Delta)\mathbf{v} + \nabla P = \nabla \cdot ([Q, H] + \sigma(Q, \nabla Q)),$$

 $\nabla \cdot \mathbf{v} = 0,$
 $(\partial_t + \mathbf{v} \cdot \nabla)Q + [Q, \Omega] = H(Q, \nabla Q).$

The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.

The Beris-Edwards system for uniaxial $Q \in S_*$

$$(\partial_t + \mathbf{v} \cdot \nabla - \Delta)\mathbf{v} + \nabla P = \nabla \cdot \left([Q, H] + \sigma(Q, \nabla Q) \right),$$
$$\nabla \cdot \mathbf{v} = 0,$$
$$(\partial_t + \mathbf{v} \cdot \nabla)Q + [Q, \Omega] = H(Q, \nabla Q).$$

▶ $H(Q, \nabla Q)$ is the first variation for $Q \in S_*$

- σ is a distortion stress tensor
- $[\cdot, \cdot]$ is the Lie bracket

Recall the rescaled Landau-de Gennes energy

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x, \quad Q_L \in S_0$$

Recall the rescaled Landau-de Gennes energy

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x, \quad Q_L \in S_0$$

We construct a rescaled Beris-Edwards system from E_L(Q; Ω) with solutions (Q_L, v_L)

Recall the rescaled Landau-de Gennes energy

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x, \quad Q_L \in S_0$$

- We construct a rescaled Beris-Edwards system from E_L(Q; Ω) with solutions (Q_L, v_L)
- Does (Q_L, v_L) converge to functions that solve the Beris-Edwards system for uniaxials as L → 0? (c.f. Lin-Liu's problem for ELS)

Recall the rescaled Landau-de Gennes energy

$$E_L(Q;\Omega) = \int_{\Omega} f_E(Q_L, \nabla Q_L) + \frac{\tilde{f}_B(Q_L)}{L} \, \mathrm{d}x, \quad Q_L \in S_0$$

- We construct a rescaled Beris-Edwards system from E_L(Q; Ω) with solutions (Q_L, v_L)
- Does (Q_L, v_L) converge to functions that solve the Beris-Edwards system for uniaxials as L → 0? (c.f. Lin-Liu's problem for ELS)
- Gartland (MMA '18): This scaling analysis is analogous to
 "London limit" in the Ginzburg-Landau theory of superconductivity

- "large-body limit" in the Landau-Lifshitz theory of ferromagnetism

F.-Hong-Mei (arXiv:2112.04074)

F.-Hong (CVPDE '22)

$$f_{E}(Q, \nabla Q) = \left(\frac{L_{1}}{2} - \frac{s_{+}L_{4}}{3}\right) |\nabla Q|^{2} + \frac{L_{2}}{2} \frac{\partial Q_{ij}}{\partial x_{j}} \frac{\partial Q_{ik}}{\partial x_{k}} + \frac{L_{3}}{2} \frac{\partial Q_{ik}}{\partial x_{j}} \frac{\partial Q_{ij}}{\partial x_{k}} + \frac{3L_{4}}{2s_{+}} Q_{ln} Q_{kn} \frac{\partial Q_{ij}}{\partial x_{l}} \frac{\partial Q_{ij}}{\partial x_{k}}$$

For the initial condition

$$(Q_0, v_0) \in H^2_{Q_e}(\mathbb{R}^3; S_*) imes H^1(\mathbb{R}^3; \mathbb{R}^3), \operatorname{div} v_0 = 0,$$

in the limit of (Q_L, v_L) , we prove the existence of a unique strong solution (Q, v) to the Beris-Edwards system for uniaxials up to some maximal time T^* .

F.-Hong-Mei (arXiv:2112.04074)

F.-Hong (CVPDE '22)

$$f_{E}(Q, \nabla Q) = \left(\frac{L_{1}}{2} - \frac{s_{+}L_{4}}{3}\right) |\nabla Q|^{2} + \frac{L_{2}}{2} \frac{\partial Q_{ij}}{\partial x_{j}} \frac{\partial Q_{ik}}{\partial x_{k}} + \frac{L_{3}}{2} \frac{\partial Q_{ik}}{\partial x_{j}} \frac{\partial Q_{ij}}{\partial x_{k}} + \frac{3L_{4}}{2s_{+}} Q_{ln} Q_{kn} \frac{\partial Q_{ij}}{\partial x_{l}} \frac{\partial Q_{ij}}{\partial x_{k}}$$

For the initial condition

$$(\mathcal{Q}_0, v_0) \in H^2_{\mathcal{Q}_e}(\mathbb{R}^3; \mathcal{S}_*) imes H^1(\mathbb{R}^3; \mathbb{R}^3), \, {
m div} \, v_0 = 0,$$

in the limit of (Q_L, v_L) , we prove the existence of a unique strong solution (Q, v) to the Beris-Edwards system for uniaxials up to some maximal time T^* .

• Moreover, for any
$$T < T^*$$
, we prove that
 $(\nabla Q_L, v_L) \rightarrow (\nabla Q, v)$ in $C^{\infty}(\tau, T; C^{\infty}_{loc}(\mathbb{R}^3))$ for any $\tau > 0$
Ideas from ELS

Recall the first variation in ELS:

$$\nabla_{\alpha} W_{\boldsymbol{p}_{\alpha}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) - W_{\boldsymbol{u}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) + \frac{\boldsymbol{u}_{\varepsilon}^{i}(1-|\boldsymbol{u}_{\varepsilon}|^{2})}{\varepsilon^{2}}.$$

Ideas from ELS

Recall the first variation in ELS:

$$\nabla_{\alpha} W_{\boldsymbol{p}_{\alpha}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) - W_{\boldsymbol{u}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) + \frac{\boldsymbol{u}_{\varepsilon}^{i}(1-|\boldsymbol{u}_{\varepsilon}|^{2})}{\varepsilon^{2}}.$$

► Hong-Li-Xin '14: To obtain $\|\nabla^2 u_{\varepsilon}\|_{L^2}^2$ type estimate (uniform in ε), we multiply the equation by $-\Delta u_{\varepsilon}$ and have

$$\begin{split} &-\int_{\mathbb{R}^{3}} \Delta u_{\varepsilon}^{i} \frac{u_{\varepsilon}^{i}(1-|u_{\varepsilon}|^{2})}{\varepsilon^{2}} dx \\ &\leq \int_{\mathbb{R}^{3}} C|\nabla u_{\varepsilon}|^{2} \frac{(1-|u_{\varepsilon}|^{2})}{\varepsilon^{2}} - \frac{1}{4} \frac{|\nabla(|u_{\varepsilon}|^{2})|^{2}}{\varepsilon^{2}} dx \\ &\leq \int_{\mathbb{R}^{3}} -\frac{1}{4} \frac{|\nabla(|u_{\varepsilon}|^{2})|^{2}}{\varepsilon^{2}} + \eta \frac{|1-|u_{\varepsilon}|^{2}|^{2}}{\varepsilon^{4}} + C(\eta)|\nabla u_{\varepsilon}|^{4} dx \end{split}$$

Ideas from ELS

Recall the first variation in ELS:

$$\nabla_{\alpha} W_{\boldsymbol{p}_{\alpha}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) - W_{\boldsymbol{u}^{i}}(\boldsymbol{u}_{\varepsilon}, \nabla \boldsymbol{u}_{\varepsilon}) + \frac{\boldsymbol{u}_{\varepsilon}^{i}(1-|\boldsymbol{u}_{\varepsilon}|^{2})}{\varepsilon^{2}}$$

► Hong-Li-Xin '14: To obtain $\|\nabla^2 u_{\varepsilon}\|_{L^2}^2$ type estimate (uniform in ε), we multiply the equation by $-\Delta u_{\varepsilon}$ and have

$$\begin{split} &-\int_{\mathbb{R}^{3}} \Delta u_{\varepsilon}^{i} \frac{u_{\varepsilon}^{i}(1-|u_{\varepsilon}|^{2})}{\varepsilon^{2}} dx \\ &\leq \int_{\mathbb{R}^{3}} C|\nabla u_{\varepsilon}|^{2} \frac{(1-|u_{\varepsilon}|^{2})}{\varepsilon^{2}} - \frac{1}{4} \frac{|\nabla(|u_{\varepsilon}|^{2})|^{2}}{\varepsilon^{2}} dx \\ &\leq \int_{\mathbb{R}^{3}} -\frac{1}{4} \frac{|\nabla(|u_{\varepsilon}|^{2})|^{2}}{\varepsilon^{2}} + \eta \frac{|1-|u_{\varepsilon}|^{2}|^{2}}{\varepsilon^{4}} + C(\eta)|\nabla u_{\varepsilon}|^{4} dx \end{split}$$

The first variation in BES:

$$\mathcal{H}(Q_L, \nabla Q_L) + \frac{1}{L} g_B(Q_L), \quad g_B(Q_L) := \frac{\delta f_B(Q_L)}{\delta Q_L}$$

with $f_B(Q_L) = -\frac{a}{2} \operatorname{tr}(Q_L^2) - \frac{b}{3} \operatorname{tr}(Q_L^3) + \frac{c}{4} \left[\operatorname{tr}(Q_L^2) \right]^2.$

Ideas for the proof

The substitution technique does not apply for

$$\int_{\mathbb{R}^3} \left\langle \Delta Q_L, \, g_B(Q_L) \right\rangle \, dx.$$

The substitution technique does not apply for

$$\int_{\mathbb{R}^3} \langle \Delta Q_L, \, g_B(Q_L) \rangle \, dx.$$

A new idea for uniform in L estimates: define a set 'close to' S_{*}

$$\mathcal{S}_{\delta} := \left\{ \mathcal{Q} \in \mathcal{S}_0 : \quad \textit{dist}(\mathcal{Q}; \mathcal{S}_*) \leq \delta
ight\}.$$

The substitution technique does not apply for

$$\int_{\mathbb{R}^3} \langle \Delta Q_L, \, g_B(Q_L) \rangle \, dx.$$

A new idea for uniform in L estimates: define a set 'close to' S_{*}

$$S_{\delta} := \{Q \in S_0 : \quad \textit{dist}(Q; S_*) \leq \delta\}.$$

For each smooth Q ∈ S_δ, the nearest point projection π(Q) ∈ S_{*} has a constant number of distinct eigenvalues, so there exists a smooth rotation R_Q := R(π(Q)) ∈ SO(3) (Nomizu '73) such that

$$R_Q^T \pi(Q) R_Q = \begin{pmatrix} rac{-s_+}{3} & 0 & 0 \ 0 & rac{-s_+}{3} & 0 \ 0 & 0 & rac{2s_+}{3} \end{pmatrix} =: Q^+.$$

$$R_Q^T \pi(Q) R_Q = \begin{pmatrix} \frac{-s_+}{3} & 0 & 0\\ 0 & \frac{-s_+}{3} & 0\\ 0 & 0 & \frac{2s_+}{3} \end{pmatrix} =: Q^+.$$

▶ Nguyen-Zarnescu '13: $\pi(Q)$ commutes with Q for any $Q \in S_{\delta}$. Then we find

$$\tilde{Q} = R_Q^T Q R_Q = \begin{pmatrix} \tilde{Q}_{11} & \tilde{Q}_{12} & 0 \\ \tilde{Q}_{21} & \tilde{Q}_{22} & 0 \\ 0 & 0 & \tilde{Q}_{33} \end{pmatrix}$$

$$R_Q^T \pi(Q) R_Q = \begin{pmatrix} \frac{-s_+}{3} & 0 & 0\\ 0 & \frac{-s_+}{3} & 0\\ 0 & 0 & \frac{2s_+}{3} \end{pmatrix} =: Q^+.$$

Nguyen-Zarnescu '13: $\pi(Q)$ commutes with Q for any $Q \in S_{\delta}$. Then we find

$$\tilde{Q} = R_Q^T Q R_Q = \begin{pmatrix} \tilde{Q}_{11} & \tilde{Q}_{12} & 0\\ \tilde{Q}_{21} & \tilde{Q}_{22} & 0\\ 0 & 0 & \tilde{Q}_{33} \end{pmatrix}$$

.

▶ F.-Hong-Mei: The Hessian of the bulk density *f*_B satisfies

$$\lambda |\xi|^2 \leq \partial^2_{ ilde{Q}_{ij} ilde{Q}_{kl}} f_B(Q^+) \xi_{ij} \xi_{kl}, \,\, ext{for some } \lambda > 0.$$

For any $Q_L \in S_\delta$, we derive

$$\left\langle rac{1}{L}
abla g_B(ilde{Q}_L),
abla ilde{Q}_L
ight
angle \\ \geq rac{\lambda}{2} rac{|
abla (Q_L - \pi(Q_L))|^2}{L} - C |
abla Q_L|^2 rac{|Q_L - \pi(Q_L)|^2}{L}.$$

▶ For any $Q_L \in S_\delta$, we derive

$$\left\langle \frac{1}{L} \nabla g_B(\tilde{Q}_L), \nabla \tilde{Q}_L \right\rangle \\ \geq \frac{\lambda}{2} \frac{|\nabla (Q_L - \pi(Q_L))|^2}{L} - C |\nabla Q_L|^2 \frac{|Q_L - \pi(Q_L)|^2}{L}.$$

Similarly, we prove the high-order estimate of the kind

 $\nabla Q_L \in L^2(0, T; H^2(\mathbb{R}^3)).$

▶ For any $Q_L \in S_\delta$, we derive

$$\left\langle \frac{1}{L} \nabla g_B(\tilde{Q}_L), \nabla \tilde{Q}_L \right\rangle$$

 $\geq \frac{\lambda}{2} \frac{|\nabla (Q_L - \pi(Q_L))|^2}{L} - C |\nabla Q_L|^2 \frac{|Q_L - \pi(Q_L)|^2}{L}.$

Similarly, we prove the high-order estimate of the kind

$$abla Q_L \in L^2(0, T; H^2(\mathbb{R}^3)).$$

► A local *L*³ criteria

$$\sup_{t,x_0}\int_{B_{R_0}(x_0)}|\nabla Q|^3+\left|\frac{Q-\pi(Q)}{L^{\frac{1}{2}}}\right|^3dx\leq\varepsilon_0^3.$$

• Assume that (Q_{L,T_0}, v_{L,T_0}) satisfies

$$\|Q_{L,T_0}\|_{H^2_{Q_e}(\mathbb{R}^3)}^2 + \|v_{L,T_0}\|_{H^1(\mathbb{R}^3)}^2 + \frac{\|Q_{L,T_0} - \pi(Q_{L,T_0})\|_{H^1(\mathbb{R}^3)}^2}{L} \le M.$$

• Assume that (Q_{L,T_0}, v_{L,T_0}) satisfies

$$\|Q_{L,T_0}\|_{H^2_{Q_e}(\mathbb{R}^3)}^2 + \|v_{L,T_0}\|_{H^1(\mathbb{R}^3)}^2 + \frac{\|Q_{L,T_0} - \pi(Q_{L,T_0})\|_{H^1(\mathbb{R}^3)}^2}{L} \leq M.$$

The Gagliardo–Nirenberg interpolation:

$$\begin{aligned} \|Q_L - \pi(Q_L)\|_{L^{\infty}(\mathbb{R}^3)} \\ \leq C \|Q_L - \pi(Q_L)\|_{L^2(\mathbb{R}^3)}^{\frac{1}{4}} \|\nabla^2(Q_L - \pi(Q_L))\|_{L^2(\mathbb{R}^3)}^{\frac{3}{4}} \leq \frac{\delta}{2}, \end{aligned}$$

and

$$\sup_{t,x_0} \int_{B_{R_0}(x_0)} |\nabla Q_L|^3 \, dx \le C \sup_{t,x_0} \left(\frac{1}{R_0} \int_{B_{R_0}(x_0)} |\nabla Q_L|^2 \, dx \right)^{3/2} \\ + C \sup_{t,x_0} \left(R_0 \int_{B_{R_0}(x_0)} |\nabla^2 Q_L|^2 \, dx \right)^{3/2} \le \frac{\varepsilon_0^3}{2}$$

for sufficiently small L and some uniform constants T, R_0 in L.

► We show the existence of a unique strong solution to the Beris-Edwards system up to some T.

- ► We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- ▶ For T < T* (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L³ criteria).

- ► We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- ▶ For T < T* (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L³ criteria).
- Prove inductively on an estimate of the form

$$abla Q\in \ L^2(au, au_{\mathcal{M}}; extsf{H}^{k+1}(\mathbb{R}^3)), \quad orall au > 0, k \geq 2.$$

- ► We show the existence of a unique strong solution to the Beris-Edwards system up to some T.
- ▶ For T < T* (maximal time), we use the extension technique from Hong-Li-Xin '14 (using the local L³ criteria).
- Prove inductively on an estimate of the form

$$abla Q \in L^2(au, T_M; \boldsymbol{H}^{k+1}(\mathbb{R}^3)), \quad \forall au > 0, k \geq 2.$$

▶ Prove the convergence up to a uniform short time T_M and extend the result to maximal time T^* .