A nonlinear Brascamp-Lieb inequality

Neal Bez
Saitama University
Joint with Jonathan Bennett, Stefan Buschenhenke, Michael
Cowling, Taryn Flock

Asia-Pacific Analysis and PDE Seminar 26 June 2023

The Brascamp-Lieb inequality

The Brascamp-Lieb inequality

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \\
& f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{aligned}
$$

The Brascamp-Lieb inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x \leq \mathrm{B}(\mathrm{~L}) \prod_{j=1}^{m}(& \left.\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \\
& f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{aligned}
$$

$L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
linear
$c_{j} \in(0,1]$
(L, c): Brascamp-Lieb data

$$
\mathbf{L}=\left(L_{j}\right)_{j=1}^{m}, \mathbf{c}=\left(c_{j}\right)_{j=1}^{m}
$$

Brascamp-Lieb constant
$\mathrm{B}(\mathrm{L})<\infty \Rightarrow n=\sum_{j=1}^{m} c_{j} n_{j}$ and each L_{j} is surjective

The Brascamp-Lieb inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x \leq \mathrm{B}(\mathrm{~L}) \prod_{j=1}^{m}(& \left.\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \\
& f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{aligned}
$$

$L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
linear
$c_{j} \in(0,1]$
(L, c): Brascamp-Lieb data
$\mathbf{L}=\left(L_{j}\right)_{j=1}^{m}, \mathbf{c}=\left(c_{j}\right)_{j=1}^{m}$
$\mathrm{B}(\mathrm{L}) \in[0, \infty]$: Brascamp-Lieb constant
best constant

$$
\mathrm{B}(\mathbf{L})=\sup _{\int f_{j}=1} \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x
$$

$\mathrm{B}(\mathrm{L})<\infty \Rightarrow n=\sum_{j=1}^{m} c_{j} n_{j}$ and each L_{j} is surjective

The Brascamp-Lieb inequality

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x \leq \mathrm{B}(\mathrm{~L}) \prod_{j=1}^{m}(& \left.\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \\
& f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{aligned}
$$

$L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
linear
$c_{j} \in(0,1]$
$(\mathbf{L}, \mathbf{c}):$ Brascamp-Lieb data
$\mathbf{L}=\left(L_{j}\right)_{j=1}^{m}, \mathbf{c}=\left(c_{j}\right)_{j=1}^{m}$
$\mathrm{B}(\mathrm{L}) \in[0, \infty]$: Brascamp-Lieb constant
best constant

$$
\mathrm{B}(\mathbf{L})=\sup _{\int f_{j}=1} \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x
$$

$\mathrm{B}(\mathbf{L})<\infty \Rightarrow n=\sum_{j=1}^{m} c_{j} n_{j}$ and each L_{j} is surjective

Characterisation of finiteness

Theorem (Bennett-Carbery-Christ-Tao)
$\mathrm{B}(\mathrm{L})<\infty$ if and only if
(i) $n=\sum_{j=1}^{m} c_{j} n_{j}$
(ii) $\operatorname{dim}(V) \leq \sum_{j=1}^{m} c_{j} \operatorname{dim}\left(L_{j} V\right)$ for all $V \leq \mathbb{R}^{n}$

Special role of gaussians

Theorem (Lieb)

$$
\mathrm{B}(\mathbf{L})=\sup _{A_{j}>0} \frac{\prod_{j=1}^{m} \operatorname{det}\left(A_{j}\right)^{c_{j} / 2}}{\operatorname{det}\left(\sum_{j=1}^{m} c_{j} L_{j}^{*} A_{j} L_{j}\right)^{1 / 2}}
$$

Note

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x=\frac{\prod_{j=1}^{m} \operatorname{det}\left(A_{j}\right)^{c_{j} / 2}}{\operatorname{det}\left(\sum_{j=1}^{m} c_{j} L_{j}^{*} A_{j} L_{j}\right)^{1 / 2}}
$$

where

$$
f_{j}(x)=\left(\operatorname{det} A_{j}\right)^{\frac{1}{2}} \exp \left(-\pi\left\langle A_{j} x, x\right\rangle\right)
$$

The Loomis-Whitney inequality

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\Pi_{j} x\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Here $\Pi_{j} x=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$
$\triangleright \operatorname{ker} \Pi_{j}=\operatorname{span}\left(e_{j}\right)$
$>$ If ker $\widetilde{\Pi}_{j}=\operatorname{span}\left(v_{j}\right)$ and $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=\mathbb{R}^{n}$ then

The Loomis-Whitney inequality

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\Pi_{j} x\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Here $\Pi_{j} x=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$
$>\operatorname{ker} \Pi_{j}=\operatorname{span}\left(e_{j}\right)$

- If $\operatorname{ker} \widetilde{\Pi}_{j}=\operatorname{span}\left(v_{j}\right)$ and $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=\mathbb{R}^{n}$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\tilde{\Pi}_{j} x\right)^{\frac{1}{n-1}} \mathrm{~d} x \leq C \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Stability of the Brascamp-Lieb constant

Recall

$$
\mathrm{B}(\mathbf{L})=\sup _{\int f_{j}=1} \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(L_{j} x\right)^{c_{j}} \mathrm{~d} x
$$

Theorem (Bennett-B-Cowling-Flock)
$\mathrm{L} \mapsto \mathrm{B}(\mathrm{L})$ is continuous

The nonlinear Brascamp-Lieb inequality

The nonlinear Brascamp-Lieb inequality

$$
\begin{array}{r}
\int_{U} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(x)\right)^{c_{j}} \mathrm{~d} x \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}} \quad(\mathrm{NBL}) \\
f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right), f_{j} \geq 0
\end{array}
$$

$\varphi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$
C^{2} submersion near 0
$U \subseteq \mathbb{R}^{n}$

Conjecture (local version)
If $\mathrm{B}\left(\mathrm{L}^{0}\right)<\infty$ where $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$, then there exists a neighbourhood $U \ni 0$ and $C<\infty$ such that (NBL) holds

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)

Conjecture holds with $L_{j}^{0}=\Pi_{j}$

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)

Conjecture holds with $L_{j}^{0}=\Pi_{j}$
D B-C-W proof: Christ's method of refinements + tensorisation Further proofs: Bejenaru-Herr-Tataru (induction-on-scales),
Koch-Steinerberger, Carbery-Hänninen-Valdimarsson (under C^{1}
regularity, holds with $C=1+\varepsilon$ on a neighbourhood U_{ε})
Nonlinear LW yields multilinear singular convolution estimates
and these were applied to wellposedness of Zakharov system on
$\mathbb{R}^{2} \times \mathbb{R}$

by Bejenaru-Herr-Holmer-Tataru

- Further applications of nonlinear LW (type) : Bejenaru-Herr, Kinoshita, Hirayama-Kinoshita, Kinoshita-Schippa,

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)
Conjecture holds with $L_{j}^{0}=\Pi_{j}$

- B-C-W proof: Christ's method of refinements + tensorisation
- Further proofs: Bejenaru-Herr-Tataru (induction-on-scales), Koch-Steinerberger, Carbery-Hänninen-Valdimarsson (under C^{1} regularity, holds with $C=1+\varepsilon$ on a neighbourhood U_{ε})
Nonlinear LW yields multilinear singular convolution estimates
and these were applied to wellposedness of Zakharov system on
$i \partial_{t} u+\Delta u=v u$
by Bejenaru-Herr-Holmer-Tataru
Further applications of nonlinear LW (type) :
Bejenaru-Herr,

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)
Conjecture holds with $L_{j}^{0}=\Pi_{j}$

- B-C-W proof: Christ's method of refinements + tensorisation
- Further proofs: Bejenaru-Herr-Tataru (induction-on-scales), Koch-Steinerberger, Carbery-Hänninen-Valdimarsson (under C^{1} regularity, holds with $C=1+\varepsilon$ on a neighbourhood U_{ε})
- Nonlinear LW yields multilinear singular convolution estimates and these were applied to wellposedness of Zakharov system on $\mathbb{R}^{2} \times \mathbb{R}$

$$
\begin{aligned}
i \partial_{t} u+\Delta u & =v u \\
\square v & =\Delta|u|^{2}
\end{aligned}
$$

by Bejenaru-Herr-Holmer-Tataru

Nonlinear Loomis-Whitney inequality (Bennett-Carbery-Wright)

Conjecture holds with $L_{j}^{0}=\Pi_{j}$

- B-C-W proof: Christ's method of refinements + tensorisation
- Further proofs: Bejenaru-Herr-Tataru (induction-on-scales), Koch-Steinerberger, Carbery-Hänninen-Valdimarsson (under C^{1} regularity, holds with $C=1+\varepsilon$ on a neighbourhood U_{ε})
- Nonlinear LW yields multilinear singular convolution estimates and these were applied to wellposedness of Zakharov system on $\mathbb{R}^{2} \times \mathbb{R}$

$$
\begin{aligned}
i \partial_{t} u+\Delta u & =v u \\
\square v & =\Delta|u|^{2}
\end{aligned}
$$

by Bejenaru-Herr-Holmer-Tataru

- Further applications of nonlinear LW (type) : Bejenaru-Herr, Kinoshita, Hirayama-Kinoshita, Kinoshita-Schippa,...

Induction-on-scales argument

Define $\Lambda(\mathbf{f})=\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{c_{j}} \div \prod_{j=1}^{m}\left(\int f_{j}\right)^{c_{j}}$
Suppose $\int f_{j}=\int g_{j}=1$, and setting $h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right)$,

$$
\begin{aligned}
\Lambda(\mathrm{f}) \Lambda(\mathrm{g}) & =\int \prod_{j} f_{j}\left(L_{j} y\right)^{c_{j}} \int \prod_{j} g_{j}\left(L_{j}(x-y)\right)^{c_{j}} \mathrm{~d} x \mathrm{~d} y \\
& =\int\left(\prod_{j}\left(h_{j}^{x}\left(L_{j} y\right)\right)^{c_{j}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int \Lambda\left(\mathbf{h}^{x}\right) \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \int \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& =\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})
\end{aligned}
$$

Define $\Lambda(\mathbf{f})=\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{c_{j}} \div \prod_{j=1}^{m}\left(\int f_{j}\right)^{c_{j}}$
Suppose $\int f_{j}=\int g_{j}=1$, and setting $h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right)$,

$$
\begin{aligned}
\Lambda(\mathbf{f}) \Lambda(\mathbf{g}) & =\int \prod_{j} f_{j}\left(L_{j} y\right)^{c_{j}} \int \prod_{j} g_{j}\left(L_{j}(x-y)\right)^{c_{j}} \mathrm{~d} x \mathrm{~d} y \\
& =\int\left(\int \prod_{j}\left(h_{j}^{x}\left(L_{j} y\right)\right)^{c_{j}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int \Lambda\left(\mathbf{h}^{x}\right) \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \int \prod_{j}\left(f_{j} * g_{j}\left(L_{j} x\right)\right)^{c_{j}} \mathrm{~d} x \\
& =\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})
\end{aligned}
$$

Ball's inequality

If $h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right)$ then

$$
\Lambda(\mathbf{f}) \leq \frac{\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})}{\Lambda(\mathbf{g})}
$$

- If we additionally assume that g is a maximiser then

$$
\Lambda(\mathrm{f}) \leq \sup \Lambda\left(\mathrm{h}^{x}\right)
$$

h^{x} is a certain "localised" version f (w.r.t. maximiser g)
If g_{j} has compact (tiny) support near 0 , then $h_{j}^{x} \approx f_{j}$ near $L_{j} x$ Strong indication we should try to induct on size of supp f

Or, $\Lambda(\mathrm{f}) \leq \Lambda(\mathrm{f} * \mathrm{~g}) \rightsquigarrow$ induct on scale of constancy of f

Ball's inequality

$$
\begin{aligned}
& \text { If } h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right) \text { then } \\
& \qquad \Lambda(\mathbf{f}) \leq \frac{\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})}{\Lambda(\mathbf{g})}
\end{aligned}
$$

- If we additionally assume that \mathbf{g} is a maximiser then

$$
\Lambda(\mathbf{f}) \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right)
$$

- \mathbf{h}^{x} is a certain "localised" version \mathbf{f} (w.r.t. maximiser \mathbf{g})
- If g_{j} has compact (tiny) support near 0 , then $h_{j}^{x} \approx f_{j}$ near $L_{j} x$
- Strong indication we should try to induct on size of supp f

Ball's inequality

$$
\text { If } h_{j}^{x}(z)=f_{j}(z) g_{j}\left(L_{j} x-z\right) \text { then }
$$

$$
\Lambda(\mathbf{f}) \leq \frac{\sup _{x} \Lambda\left(\mathbf{h}^{x}\right) \Lambda(\mathbf{f} * \mathbf{g})}{\Lambda(\mathbf{g})}
$$

- If we additionally assume that \mathbf{g} is a maximiser then

$$
\Lambda(\mathbf{f}) \leq \sup _{x} \Lambda\left(\mathbf{h}^{x}\right)
$$

- \mathbf{h}^{x} is a certain "localised" version \mathbf{f} (w.r.t. maximiser \mathbf{g})
- If g_{j} has compact (tiny) support near 0 , then $h_{j}^{x} \approx f_{j}$ near $L_{j} x$
- Strong indication we should try to induct on size of supp f
$>$ Or, $\Lambda(\mathrm{f}) \leq \Lambda(\mathrm{f} * \mathrm{~g}) \rightsquigarrow$ induct on scale of constancy of f

$$
\text { Define } \mathcal{C}(\delta)=\sup _{\int f_{j}=1} \int_{B(0, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}
$$

Optimistic hope: Something like...

$\mathcal{C}(\delta) \leq\left(1+\delta^{\beta}\right) \mathcal{C}\left(\delta^{\alpha}\right) \quad($ some $\alpha \in(1,2), \beta>0)$

Recall $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$, and let's normalise $\varphi_{j}(0)=0, \int f_{j}=1$
As in the proof of Ball's inequality

$$
\left(F=\prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}\right)
$$

if g is a gaussian maximiser for L^{0}, and

$$
g_{\delta, j}(w)=\delta^{-\alpha^{\prime} n_{j}} g_{j}\left(\delta^{-\alpha^{\prime}} w\right) \quad\left(\alpha^{\prime}>\alpha, \int g_{j}=1\right)
$$

Define $\mathcal{C}(\delta)=\sup _{\int f_{j}=1} \int_{B(0, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$
Optimistic hope: Something like...
$\mathcal{C}(\delta) \leq\left(1+\delta^{\beta}\right) \mathcal{C}\left(\delta^{\alpha}\right)$
(some $\alpha \in(1,2), \beta>0)$

Recall $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$, and let's normalise $\varphi_{j}(0)=0, \int f_{j}=1$
As in the proof of Ball's inequality

if g is a gaussian maximiser for L^{0}, and

Define $\mathcal{C}(\delta)=\sup _{\int f_{j}=1} \int_{B(0, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$
Optimistic hope: Something like...

$$
\mathcal{C}(\delta) \leq\left(1+\delta^{\beta}\right) \mathcal{C}\left(\delta^{\alpha}\right)
$$

$$
\text { (some } \alpha \in(1,2), \beta>0)
$$

Recall $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$, and let's normalise $\varphi_{j}(0)=0, \int f_{j}=1$
As in the proof of Ball's inequality

$$
\left(F=\prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}\right)
$$

$$
\mathrm{B}\left(\mathrm{~L}^{0}\right) \int_{B(0, \delta)} F(y) \mathrm{d} y=\int_{B(0, \delta)} F(y) \mathrm{d} y \int_{\mathbb{R}^{n}} \prod_{j} g_{\delta, j}\left(L_{j}^{0} x\right)^{c_{j}} \mathrm{~d} x
$$

if \mathbf{g} is a gaussian maximiser for \mathbf{L}^{0}, and

$$
g_{\delta, j}(w)=\delta^{-\alpha^{\prime} n_{j}} g_{j}\left(\delta^{-\alpha^{\prime}} w\right) \quad\left(\alpha^{\prime}>\alpha, \int g_{j}=1\right)
$$

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~L}^{0}\right) \int_{B(0, \delta)} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \\
& =\int_{B(0, \delta)} F(y) \mathrm{d} y \int_{\mathbb{R}^{n}} \prod_{j} g_{\delta, j}\left(L_{j}^{0} x\right)^{c_{j}} \mathrm{~d} x \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(0, \delta)} F(y) \mathrm{d} y \int_{B\left(0, \delta^{\alpha}\right)} \prod_{j} g_{\delta, j}\left(L_{j}^{0} x\right)^{c_{j}} \mathrm{~d} x \\
& =\left(1+\delta^{\beta}\right) \int_{B(0, \delta)} F(y) \int_{B\left(y, \delta^{\alpha}\right)} \prod_{j} g_{\delta, j}\left(L_{j}^{0}(x-y)\right)^{c_{j}} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Now $L_{j}^{0}(x-y)=L_{j}^{0} x-\varphi_{j}(y)+O\left(\delta^{2}\right)$ so

$$
\cdots \leq\left(1+\delta^{\beta}\right)^{2} \int_{B(0,2 \delta)} \int_{B\left(x, \delta^{\alpha}\right)} \prod_{j} h_{j}^{x}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \mathrm{~d} x
$$

where $h_{j}^{x}(z)=f_{j}(z) g_{\delta, j}\left(L_{j}^{0} x-z\right)$

So, with $h_{j}^{x}(z)=f_{j}(z) g_{\delta, j}\left(L_{j}^{0} x-z\right)$,

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~L}^{0}\right) \int_{B(0, \delta)} \prod_{j=1}^{m} f_{j}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(0,2 \delta)} \int_{B\left(x, \delta^{\alpha}\right)} \prod_{j} h_{j}^{x}\left(\varphi_{j}(y)\right)^{c_{j}} \mathrm{~d} y \mathrm{~d} x \\
& \leq\left(1+\delta^{\beta}\right) \int_{B(0,2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right) \prod_{j}\left(\int h_{j}^{x}\right)^{c_{j}} \mathrm{~d} x
\end{aligned}
$$

where

$$
\mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}
$$

Note $\int h_{j}^{x}=f_{j} * g_{\delta, j}\left(L_{j}^{0} x\right)$, so

$$
\int \prod_{j}\left(\int h_{j}^{x}\right)^{c_{j}} \mathrm{~d} x \leq \mathrm{B}\left(\mathrm{~L}^{0}\right)
$$

An argument like the above gives

$$
\int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

and thus

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

Big issues to deal with

> At the very start we assumed gaussian maximisers exist - not
> always the case!
> Lieb's theorem guarantees gaussian near-maximisers but to keep
> the argument tight, we need a quantitative version of Lieb's
> theorem

An argument like the above gives

$$
\int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

and thus

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \sup _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

Big issues to deal with

- At the very start we assumed gaussian maximisers exist - not always the case!
Lieb's theorem guarantees gaussian near-maximisers but to keep the argument tight, we need a quantitative version of Lieb's theorem
> Using

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \max _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

want to zoom in enough to do something like

$$
f_{j}\left(\varphi_{j}(x)\right) \leq \kappa f_{j}\left(\mathrm{~d} \varphi_{j}(u) x\right) \quad(x \in B(u, \delta))
$$

Recall $\mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$
For this, need f_{j} "locally constant" so ... need more parameters (functions κ-constant at scale μ) and keep track of how these evolve during the induction

[^0]> Using
$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \max _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$
want to zoom in enough to do something like
$$
f_{j}\left(\varphi_{j}(x)\right) \leq \kappa f_{j}\left(\mathrm{~d} \varphi_{j}(u) x\right) \quad(x \in B(u, \delta))
$$

Recall $\mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$

- For this, need f_{j} "locally constant" so ... need more parameters (functions κ-constant at scale μ) and keep track of how these evolve during the induction
To keep things tight, we use continuity of the Brascamp-Lieb constant
> Using

$$
\mathcal{C}(u, \delta) \leq\left(1+\delta^{\beta}\right) \max _{x \in B(u, 2 \delta)} \mathcal{C}\left(x, \delta^{\alpha}\right)
$$

want to zoom in enough to do something like

$$
f_{j}\left(\varphi_{j}(x)\right) \leq \kappa f_{j}\left(\mathrm{~d} \varphi_{j}(u) x\right) \quad(x \in B(u, \delta))
$$

Recall $\mathcal{C}(u, \delta)=\sup _{\int f_{j}=1} \int_{B(u, \delta)} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}}$

- For this, need f_{j} "locally constant" so ... need more parameters (functions κ-constant at scale μ) and keep track of how these evolve during the induction
- To keep things tight, we use continuity of the Brascamp-Lieb constant

Theorem (Bennett-B-Buschenhenke-Cowling-Flock)
Suppose $\varphi_{j}: \mathbb{R} \rightarrow \mathbb{R}^{n_{j}}$ is a C^{2} submersion near 0 s.t. $\mathrm{B}\left(\mathrm{L}^{\mathbf{0}}\right)<\infty$, where $L_{j}^{0}=\mathrm{d} \varphi_{j}(0)$.
Then $\forall \varepsilon>0, \exists U \ni 0$ s.t.

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ \varphi_{j}\right)^{c_{j}} \leq(1+\varepsilon) \mathrm{B}\left(\mathbf{L}^{0}\right) \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{c_{j}}
$$

[^0]: To keep things tight, we use continuity of the Brascamp-Lieb constant

