The Field of Moduli of a Polarized Abelian Variety

David Gruenewald

15th September 2005

1 Preliminaries

Let A be an abelian variety. Let $\mathrm{Div}(A)$ denote the group of divisors on A and $\mathrm{Div}^0(A)$ the subgroup of divisors algebraically equivalent to zero. One has

$$Div^{0}(A) = \{ X \in Div(A) | \forall x : t_{x}^{*}X \sim_{lin} X \}$$

Let

$$Prin(A) = {div(f)|f \in k(A)}$$

be the set of divisors linearly equivalent to zero. We set

$$\operatorname{Pic}^{0}(A) = \operatorname{Div}^{0}(A)/\operatorname{Prin}(A).$$

Over an algebraically closed field, the group $\operatorname{Pic}^0(A)$ can be given the structure of an abelian variety. It is called the *dual abelian variety* associated to A. Let X be a divisor on A. Define

$$\varphi_X: A \to \operatorname{Pic}^0(A)$$

by

$$x \mapsto [t_x^* X - X]$$
.

Definition 1.1 The divisor X is called non-degnerate if φ_X is an isogeny.

Proposition 1.2 An effective divisor X is ample if and only if X is non-degenerate.

Lemma 1.3 Two divisors X and Y are algebraically equivalent if and only if $\varphi_X = \varphi_Y$.

Proof. Using the above definitions,

$$\begin{split} \varphi_X &= \varphi_Y &\Leftrightarrow & \varphi_X(x) = \varphi_Y(x) \; \forall x \in A \\ &\Leftrightarrow & [t_x^*X - X] = [t_x^*Y - Y] \\ &\Leftrightarrow & [t_x^*X - t_x^*Y - X + Y] = [t_x^*(X - Y) - (X - Y)] = [0] \\ &\Leftrightarrow & t_x^*(X - Y) \sim_{lin} (X - Y) \\ &\Leftrightarrow & X - Y \sim_{alg} 0 \\ &\Leftrightarrow & X \sim_{alg} Y \; . \end{split}$$

Definition 1.4 A polarized abelian variety is a pair (A, \mathcal{C}) where A is an abelian variety and there exists an ample divisor X such that

$$\mathcal{C} = \mathcal{C}(X) = \{ Y \in \text{Div}(A) | \exists m, n > 0 : mX \sim_{alg} nY \}.$$

Let (A_1, \mathcal{C}_1) and (A_2, \mathcal{C}_2) be two polarized abelian varieties of the same dimension. A morphism $\lambda: A_1 \to A_2$ is said to be a morphism of polarized abelian varieties $\lambda: (A_1, \mathcal{C}_1) \to (A_2, \mathcal{C}_2)$ if there exists an $X_2 \in \mathcal{C}_2$ such that $\lambda^{-1}(X_2) \in \mathcal{C}_1$.

Proposition 1.5 Suppose (A, \mathcal{C}) is a polarized abelian variety. There exists a $Y \in \mathcal{C}$ such that every divisor in \mathcal{C} is algebraically equivalent to mY for some m > 0.

Such a Y is called a basic polar divisor.

Proof. For each $X \in \mathcal{C}$ consider $\varphi_X : A \to \operatorname{Pic}^0(A)$ as above. By Proposition 1.2 every $X \in \mathcal{C}$ is nondegenerate which means that φ_X is an isogeny, so $\deg(\varphi_X)$ is a positive integer. Choose a divisor $Y \in \mathcal{C}$ such that $\deg(\varphi_X)$ is minimal. We proceed to show that Y is a basic polar divisor. By definition of \mathcal{C} , there exist integers a, b > 0 such that $aX \sim_{alg} bY$. By Lemma 1.3 we have $\varphi_{aX} = \varphi_{bY}$. Note that $\varphi_{aX} = [a] \circ \varphi_X$ and $\varphi_{X+Y} = \varphi_X + \varphi_Y$. Applying the division algorithm, there exist integers q, r such that b = aq + r with $0 \le r < a$. Suppose (by way of contradiction) that r > 0. Then, putting Z = X - qY we have

$$[a] \circ \varphi_Z = \varphi_{aZ} = \varphi_{aX-aqY} = \varphi_{bY-aqY} = \varphi_{rY} = [r] \circ \varphi_{Y}.$$

By Lemma 1.3, $aZ \sim_{alg} rY$ and so $Z \in \mathcal{C}$. Taking degrees of the equation $a\varphi_Z = r\varphi_Y$ where 0 < r < a, shows that $\deg(\varphi_Z) < \deg(\varphi_Y)$. This contradicts the definition of Y. This proves that X is algebraically equivalent to qY. \square

2 Field of Moduli

Let A be an abelian variety over the complex numbers and $\mathcal C$ a polarization of A.

Definition 2.1 We say that $\sigma: k \hookrightarrow \mathbb{C}$ is a field of definition for A if there exists an abelian variety A' over k such that $A' \otimes_{\sigma} \mathbb{C} \cong A$. The pair (A', σ) is called a k-model. Similarly, we say that $\sigma: k \hookrightarrow \mathbb{C}$ is a field of definition for (A, \mathcal{C}) if there exists a polarized abelian variety (A', \mathcal{C}') defined over k such that $(A', \mathcal{C}') \otimes_{\sigma} \mathbb{C} \cong (A, \mathcal{C})$.

Proposition 2.2 Let A be an abelian variety which can be defined over k. Then every polarization C of A can be defined over a finite algebraic extension of k.

Proposition 2.3 Let A be an abelian variety over \mathbb{C} . If A can be defined over k, (ie. there exists an abelian variety A' over k such that $A' \otimes_{\sigma} \mathbb{C} \cong A$) and A' is polarizable, then there exists a polarization on A'

Proposition 2.4 Every abelian variety over an algebraically closed field is polarizable.

Corollary 2.5 Every abelian variety is polarizable.

Proof. Follows from Propositions 2.2, 2.3 and 2.4.

Theorem 2.6 Let (A, \mathcal{C}) be a polarized abelian variety over k. There exists a unique field $k_0 \hookrightarrow k$ having the property that for all $\sigma \in \operatorname{End}(k)$ we have

$$(A^{\sigma}, \mathcal{C}^{\sigma}) \cong (A, \mathcal{C}) \Leftrightarrow \sigma|_{k_0} = \mathrm{id}$$

where $(A^{\sigma}, \mathcal{C}^{\sigma}) = (A, \mathcal{C}) \otimes_{\sigma} \mathbb{C}$

The field k_0 is called the *field of moduli* of (A, \mathcal{C}) .

Proof. Proof of Theorem 2.6 We restrict to the case where (A, \mathcal{C}) can be defined over a number field. A general proof can be found in Shimura. By Proposition 2.2, (A, \mathcal{C}) can be defined over a finite algebraic extension k' of k. Take a Galois extension k'' of \mathbb{Q} containing k' and write $G = \operatorname{Gal}(k''/\mathbb{Q})$. Let

$$H = \{ \sigma \in G | (A^{\sigma}, \mathcal{C}^{\sigma}) \cong (A, \mathcal{C}) \}.$$

Then the field of moduli k_0 is given by the fixed field

$$(k'')^H = \{x \in k'' | \sigma(x) = x \ \forall \sigma \in H\}.$$

3 Example

In the following we will work on the following example. Let E be the complex elliptic curve given by

$$y^2 = f(x)$$

where $f(x) \in \mathbb{C}[x]$ is of degree 3 and the discriminant of f is non-zero. The field of moduli of E will turn out to be the 'minimal' field of definition of E. Let j_E (or j(E)) denote the j-invariant of E. Consider the divisor $X = (0_E) \in \text{Div}(E)$ where 0_E is the identity element of the elliptic curve. The divisor X is ample since $\varphi_X(P) = [(P) - (0_E)]$ is non-zero for any point $P \neq 0_E$. The divisor X defines a polarization on E. We claim that $k_0 = \mathbb{Q}(j_E)$ is the field of moduli of (E, \mathcal{C}) . Clearly E can be defined over E if and only if E is a field of definition for E if any if E is a field of definition for E if E is a field of definition for E if E