Kummer varieties of polarised abelian varieties

Robert Carls

November 1, 2005

In this talk we discuss the material presented in [1, §4.3-4.4]. We construct the *quotient variety* of a projective variety under the action of a finite group of automorphisms. We prove that the automorphism group G of a polarised abelian variety (A, \mathcal{C}) is finite. The quotient variety A/G is called the *Kummer variety* of (A, \mathcal{C}) .

1 Quotients under a finite group of automorphisms

Let X be a projective k-variety, where k is a field, and let G be a finite group acting on X, i.e. we are given a homomorphism $\rho: G \to \operatorname{Aut}_k(X)$. We set $\rho_g = \rho(g)$.

Theorem 1.1 There exists a k-variety Y and a k-morphism $\pi: X \to Y$ which is finite surjective and G-invariant, i.e. $\forall g \in G$ one has $\pi \circ \rho_g = \pi$. The morphism π has the following universal property: For every G-invariant k-morphism $\alpha: X \to Z$, where Z is a k-variety, there exists a unique k-morphism $\tau: Y \to Z$ such that $\alpha = \tau \circ \pi$.

Proof. In the following we sketch a proof of Theorem 1.1. We claim that we can cover X by finitely many affine open subvarieties U such that g(U) = U for all $g \in G$. We can assume that X is embedded in \mathbb{P}^n_k for some $n \geq 1$. Let x be a point of X. We choose a hyperplane H_x contained in \mathbb{P}^n_k such that $\rho_g(x) \notin H_x \cap X$ for all $g \in G$. We denote the complement of $H_x \cap X$ in X by V_x . We set

$$U_x = \bigcap_{g \in G} \rho_g(V_x).$$

Then U_x is an open affine subvariety of X such that $g(U_x) = U_x$ and $\rho_g(x) \in U_x$ for all $g \in G$. We have $X = \bigcup_{x \in X} U_x$. The claim now follows from the quasi-compactness of X with respect to the Zariski topology.

By the above we can construct the quotient locally and obtain a global quotient by gluing affine pieces. Now assume that X is an affine variety. Let $A = \Gamma(X, \mathcal{O}_X)$. The morphism ρ induces an action of G on A. Let $B = A^G$

denote the subring of G-invariant elements of A. We claim that A is integral over B. For $a \in A$ we define

$$\chi_a(T) = \prod_{g \in G} (T - g(a)).$$

Obviously we have $\chi_a(T) \in B[T]$ and $\chi_a(a) = 0$. This proves the above claim.

We claim that B is of finite type over k. We have $A = k[a_1, \ldots, a_n]$ with $a_1, \ldots, a_n \in A$. Let B' be the k-algebra generated by the coefficients of the polynomials $\{\chi_{a_i}\}_{i=1,\ldots,n}$. The k-algebra A is integral and of finite type over B'. It follows that A is a finitely generated B'-module. The ring B' is noetherian. We conclude that the submodule B is a finitely generated B'-module. This proves our claim

By general theory the ring B equals the ring of global sections of the structure sheaf of an affine variety Y. The natural inclusion $B \subseteq A$ of k-algebras induces a k-morphism $\pi: X \to Y$. The universal property of π follows from the following observation. The set of G-invariant k-morphisms $X \to Z$, where Z is affine, is in bijection with the set of k-algebra morphisms $C \to A$ such that the image of C lies in B.

The ring A is a finite B-module since A is integral and of finite type over B. Hence the morphism π is finite.

In the following we prove that π is surjective. We claim that for every prime $\mathfrak{p} \triangleleft B$ there exists a prime $\mathfrak{q} \triangleleft A$ such that $\mathfrak{p} = \mathfrak{q} \cap B$. Suppose $\mathfrak{p} \triangleleft B$ is prime. The ring extension $B_{\mathfrak{p}} \hookrightarrow A_{\mathfrak{p}}$ induced by the natural inclusion $B \subseteq A$ is integral. Let \mathfrak{m} be a maximal ideal of $A_{\mathfrak{p}}$. We set $\mathfrak{n} = \mathfrak{m} \cap B_{\mathfrak{p}}$. Then \mathfrak{n} is a prime ideal. The extension $B_{\mathfrak{p}}/\mathfrak{n} \hookrightarrow A_{\mathfrak{p}}/\mathfrak{m}$ is integral. Let $0 \neq x \in B_{\mathfrak{p}}/\mathfrak{n}$. Since $x^{-1} \in A_{\mathfrak{p}}/\mathfrak{m}$ it follows that there exist $b_1, \ldots, b_k \in B_{\mathfrak{p}}/\mathfrak{n}$, where $k \geq 1$, such that

$$x^{-k} + b_1 x^{-(k-1)} + \ldots + b_k = 0.$$

As a consequence we have

$$x^{-1} = -(b_1 + \ldots + b_k x^{k-1}) \in B_{\mathfrak{p}}/\mathfrak{n}.$$

We conclude that $B_{\mathfrak{p}}/\mathfrak{n}$ is a field and that the ideal \mathfrak{n} is maximal. Hence $\mathfrak{n} = B_{\mathfrak{p}}\mathfrak{p}$. We set $\mathfrak{q} = \mathfrak{m} \cap A$. It follows that $\mathfrak{q} \cap B = \mathfrak{p}$. This proves our claim and completes the proof of the theorem.

Note that the universal property of the quotient implies that it is unique up to isomorphism.

Remark 1.2 We use the notation of Theorem 1.1. Assume that the action of G on X is free, i.e. all orbits have length #G. Then the quotient morphism $\pi: X \to Y$ is étale.

2 The Kummer variety

Let (A, \mathcal{C}) be a polarised abelian variety over a field k. We write $\mathrm{Aut}_k(A, \mathcal{C})$ for the k-automorphisms of A which preserve the polarisation \mathcal{C} .

Proposition 2.1 The group $Aut_k(A, C)$ is finite.

Proof. Let D be an ample divisor which is contained in C. Let $\varphi_D : A \to \check{A}$ be the unique isogeny having as kernel the finite group

$$K(D) = \{ x \in A | t_x^* D \stackrel{\text{lin}}{\sim} D \}$$

Let

$$(\gamma \mapsto \gamma^*) \in \operatorname{End}_{\mathbb{Q}}(\operatorname{End}_k^0(A))$$

denote the Rosati involution (compare Alex' talk). Let $m = \deg(\varphi_D)$ and $\gamma \in \operatorname{Aut}_k(A, \mathcal{C})$. Then we have

$$[m] \circ \check{\gamma} \circ \varphi_D \circ \gamma = [m] \circ \varphi_D.$$

We conclude that $\gamma \gamma^* = 1$ in $\operatorname{End}_k^0(A)$. As a consequence we have

$$\operatorname{tr}(\gamma \gamma^*) = 2g$$

where $g = \dim A$. Here we take the trace with respect to the l-adic representation for some prime $l \neq \operatorname{char}(k)$. We claim that there exist only finitely many $\beta \in \operatorname{End}_k(A)$ satisfying $\operatorname{tr}(\beta\beta^*) = 2g$. Our claim follows from the following two facts which we state without proof.

- The quadratic form $\gamma \mapsto \operatorname{tr}(\gamma \gamma^*)$ is positive definite.
- The ring End(A) is a free \mathbb{Z} -module of finite rank.

This completes the proof of the proposition.

Now assume that $k = \mathbb{C}$. Since A is projective (compare David's talk) the quotient W_A of A under the action of the finite group $\operatorname{Aut}(A,\mathcal{C})$ exists by Theorem 1.1. The variety W_A is called the *Kummer variety* of (A,\mathcal{C}) . Let $\pi:A\to W_A$ denote the quotient morphism.

Proposition 2.2 The Kummer variety W_A has the following properties:

- 1. The variety W_A can be defined over the field of moduli k_0 of (A, \mathcal{C}) .
- 2. The morphism π is defined over every field of definition for (A, \mathcal{C}) containing k_0 .
- 3. Assume we are given a field of definition k for (A, \mathcal{C}) containing k_0 , a $\sigma \in \operatorname{End}(\mathbb{C})$ and an isomorphism of polarised abelian varieties

$$\eta: (A, \mathcal{C}) \xrightarrow{\sim} (A^{\sigma}, \mathcal{C}^{\sigma}).$$

Then the equality $F = F^{\sigma} \circ \eta$ holds.

3 Example

Consider the complex elliptic curve E given by

$$y^2 = x(x-1)(x-\lambda)$$

where $\lambda \in \mathbb{C} \setminus \{0,1\}$. Let j_E denote the j-invariant of E and assume that $j_E \neq 0,1728$. The zero section 0_E gives an ample divisor on E. Let \mathcal{C} denote the induced polarisation. We claim that the Kummer variety W_E equals $\mathbb{P}^1_{\mathbb{C}}$ and the quotient map $\pi: E \to W_E = \mathbb{P}^1_{\mathbb{C}}$ is given by the rational map $(x,y) \mapsto (x:1)$. The morphism π is of degree 2 and is ramified at all points contained in E[2]. Since $j \notin 0,1728$ it follows that

$$\operatorname{Aut}_{\mathbb{C}}(E,\mathcal{C}) = \operatorname{Aut}_{\mathbb{C}}(E) = \{\pm \operatorname{id}\}.$$

Note that the morphism π is invariant under the action of $\{\pm \mathrm{id}\}$. It remains to prove that π has the universal property of a quotient. Let $\alpha: E \to Z$ be a non-constant morphism of varieties which is invariant under the automorphism –id. We can assume that Z is a non-singular curve. It follows by Hurwitz' theorem that $g(Z) \leq 1$. Here g(Z) denotes the genus of Z. We claim that g(Z) = 0. Suppose g(Z) = 1. Then α decomposes as an isogeny followed up by a translation and hence cannot be invariant under the automorpism –id. This contradicts our assumptions and implies the claim. By the above we can assume that $Z = \mathbb{P}^1_{\mathbb{C}}$. Let α be given by

$$(x,y) \mapsto \left(\frac{s(x,y)}{t(x,y)}:1\right)$$

where $s,t \in \mathbb{C}[X,Y]$. Since s(x,y) = s(x,-y) and t(x,y) = t(x,-y) for all points $(x,y) \in E(\mathbb{C})$ we conclude that the polynomials s and t contain only even powers of Y. Substituting $x(x-1)(x-\lambda)$ for y^2 we can assume that $s,t \in \mathbb{C}[X]$. We define a morphism $\tau: \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$ by setting

$$(w:1) \mapsto \left(\frac{s(w)}{t(w)}:1\right).$$

It follows that $\tau \circ \pi = \alpha$.

In David's talk it was proven that the field of moduli k_0 of (E, \mathcal{C}) equals $\mathbb{Q}(j_E)$. The polarised abelian variety (E, \mathcal{C}) , the Kummer variety W_E and the morphism π can be defined over k_0 since the latter is a field of definition for E and $\mathrm{Aut}_{\mathbb{C}}(E, \mathcal{C})$.

References

[1] G. Shimura. Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, 1998.