Automorphisms of Coxeter Groups

William N. Franzsen

School of Mathematics and Statistics
University of Sydney
January, 2001

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

Dedicated to

R. A. Franzsen
V. T. Franzsen
F. A. Wawryk
and the memory of

A. B. Franzsen (1930-1995)

Acknowledgements

Firstly I must thank my friend, colleague and supervisor Bob Howlett for his constant help and support and criticism when I needed it.

Secondly, thanks to my friends and colleagues at the Australian Catholic University for their support and encouragement. Especially to John Murray for reading this thesis and correcting my (frequent) grammatical mistakes.

Thanks also to the people who have supported me emotionally during this time. In particular Bill Unger (who also asked "why" whenever I said "clearly") and Peter Lawrie (who introduced me to Rosemary).

Finally, thanks to my father, mother and sister, sorry it took so long. And to my wife Rosemary for her unfailing love and support and for turning up when least expected.

Contents

Introduction

Chapter 1 Properties of Coxeter Groups 1
1.1 Some Basic Facts 1
1.2 Longest Elements 6
1.3 Finite Subgroups of Infinite Coxeter Groups 11
1.4 Automorphisms That Preserve Reflections 14
Chapter 2 Automorphisms of Finite Coxeter Groups 18
2.1 Type A 20
2.2 Types B and D 21
2.3 Type E 28
2.4 Type F 30
2.5 Type H 31
2.6 The Dihedral Groups 33
2.7 Automorphisms of Infinite Coxeter Groups 34
Chapter 3 Nearly Finite Coxeter Groups 35
3.1 Automorphisms That Preserve Reflections 35
3.2 Reflections and Components 39
3.3 Graph Automorphisms and Unusual Labels 43
3.4 Nearly Finite Coxeter Groups 52
3.5 Some Examples 55
Chapter 4 Affine Weyl Groups, Hyperbolic Groups and 60 Other Infinite Coxeter Groups
4.1 Preliminaries 60
4.2 Affine Weyl Groups 61
4.3 Hyperbolic Coxeter Groups 62
4.4 Automorphisms 66
4.5 Other Simple Diagrams 68
Tables I to V 70
Chapter 5 Rank 3 Coxeter Groups 77
5.1 Groups with Finite Bonds 77
5.2 Groups With Infinite Bonds 77
References 89
Index and Notation 90

Introduction

There are surprisingly few results known about the automorphisms of infinite Coxeter groups. The only complete results are for finite rank graph universal Coxeter groups. A Coxeter group is graph universal if the labels on all edges in the Coxeter diagram are ∞. In the paper [Jam88], James found the automorphism groups of graph universal Coxeter groups whose diagrams have the form:

$$
. \infty . \infty .
$$

This result was extended by Tits, [Tit88], to include all irreducible graph universal Coxeter groups whose diagrams do not contain triangles. Finally Mühlherr, [Mü98], found the automorphism group of any graph universal Coxeter group. In that paper Mühlherr gives a presentation for this automorphism group.

For the most part I will be looking at the automorphism group of a Coxeter group with finite labels. The only paper that I could find that deals with the finite label case is [HRT97]. In this paper Howlett, Rowley and Taylor show that the outer automorphism group of a Coxeter group of finite rank whose diagram has no infinite bonds is itself finite. The automorphisms of the finite irreducible Coxeter groups are well known.

In the following it will be shown that for a large class of finite rank Coxeter groups all automorphisms are inner by graph. That is $\operatorname{Aut}(W)$, the automorphism group of the Coxeter group W, is generated by the inner automorphisms and automorphisms arising from symmetries of the Coxeter diagram. Indeed, in most cases, $\operatorname{Aut}(W)$ is the semidirect product of $\operatorname{Inn}(W)$ and the group of graph automorphisms.

In the first chapter some basic properties of Coxeter groups are established. In particular it is shown that maximal finite standard parabolic subgroups are maximal finite subgroups. Finally it is shown that if the diagram of a given infinite Coxeter group, W, is a forest with labels in the set $\{2,3,4,6\}$, then any automorphism of W that preserves the set of reflections is inner by graph.

The second chapter deals mainly with the automorphism groups of the irreducible finite Coxeter groups. In the finite case it is possible for a graph automorphism to be inner; for example, conjugation by the longest element in type A_{n} induces the obvious graph automorphism. The final section in Chapter 2 shows that this cannot happen if the Coxeter group has no finite irreducible components.

Nearly finite Coxeter groups are then defined; these are infinite Coxeter groups of rank n that have a finite standard parabolic subgroup of rank $n-1$. When W is a non-degenerate irreducible nearly finite Coxeter group then all reflection-preserving automorphisms are inner by graph. If this subgroup is of type $A_{n-1}(n \neq 6), D_{2 k+1}, E_{6}$ or E_{7} and W only has one conjugacy class of reflections, then all automorphisms are inner by graph.

Chapter 4 deals completely with the affine Weyl groups and the hyperbolic groups (in the sense of [Hum90]). Using the methods developed in previous chapters it is shown that in all cases the automorphism group is the semidirect product of $\operatorname{Inn}(W)$ and the group of graph automorphisms.

Finally the rank 3 Coxeter groups are considered in full. Having shown in Chapter 4 that if all the bonds are finite then the automorphisms are inner by graph the groups with infinite bonds are considered. The automorphisms of the rank 3 graph universal Coxeter groups are found. Finally the rank 3 groups with both finite and infinite bonds are considered. The case of rank 3 Coxeter groups with finite bonds is also covered in [FH].

Chapter 1

Properties of Coxeter Groups

We recall that a Coxeter group is a group with a presentation of the form

$$
\left.W=\operatorname{gp}\left\langle\left\{r_{a} \mid a \in \Pi\right\}\right|\left(r_{a} r_{b}\right)^{m_{a b}}=1 \text { for all } a, b \in \Pi\right\rangle
$$

where Π is some indexing set, whose cardinality is called the rank of W, and the parameters $m_{a b}$ satisfy the following conditions: $m_{a b}=m_{b a}, m_{a b}=1$ if and only if $a=b$ and each $m_{a b}$ lies in the set $\{m \in \mathbb{Z} \mid m \geq 1\} \cup\{\infty\}$. The relation $\left(r_{a} r_{b}\right)^{m_{a b}}=1$ is omitted if $m_{a b}=\infty$.

§1.1 Some Basic Facts

The (Coxeter) diagram of W is a graph with vertex set Π in which an edge (or bond) labelled $m_{a b}$ joins $a, b \in \Pi$ whenever $m_{a b} \geq 3$. We say that the group is irreducible if this graph is connected.

Let V be the real vector space with basis Π and let B be a bilinear form on V with

$$
B(a, b)=-\cos \left(\pi / m_{a b}\right) \quad \text { if } m_{a b} \neq \infty,
$$

and

$$
B(a, b) \leq-1 \quad \text { if } m_{a b}=\infty
$$

for all $a, b \in \Pi$. There is clearly a unique such form with $B(a, b)=-1$ whenever $m_{a b}=\infty$ and unless otherwise stated we assume that B is defined in this manner. For each $a \in V$ such that $B(a, a)=1$ we define $\sigma_{a}: V \rightarrow V$ by $\sigma_{a} v=v-2 B(a, v) a$; it is well known (see, for example, Corollary 5.4 of [Hum90]) that W has a faithful representation on V given by $r_{a} \mapsto \sigma_{a}$ for all $a \in \Pi$. We shall identify elements of W with their images in this representation; thus $r_{a}=\sigma_{a}$ is the reflection in the hyperplane perpendicular to a. We also call this the reflection along the root a. The action of W on V preserves the form B. If the form B is degenerate, non-degenerate or positive definite then we will often just say that W is degenerate, non-degenerate or positive definite respectively.

The elements of the basis Π are called simple roots, and the reflections r_{a} for $a \in \Pi$ are called simple reflections. We call $\Phi=\{w a \mid w \in W, a \in \Pi\}$ the root system of W. Usually the reflection along the simple root a_{i} will be denoted by r_{i} to simplify subscripts.

The following lemma collects together some facts which will be useful later.
1.1 Lemma Given the above representation of the Coxeter group W, the following are true.
(1) If $v \in \Phi$ and $v=\sum_{a \in \Pi} \lambda_{a} a$, then either $\lambda_{a} \geq 0$ for all $a \in \Pi$ or $\lambda_{a} \leq 0$ for all $a \in \Pi$. In the former case we call v a positive root, in the latter case a negative root, and we define Φ^{+}and Φ^{-}to be the set of all positive roots and the set of all negative roots respectively.
(2) If $w \in W$ is a reflection, then $w=r_{\alpha}$ for some $\alpha \in \Phi$. Furthermore, $\alpha=x a$ for some $x \in W$ and $a \in \Pi$, whence $w=x r_{a} x^{-1}$ is conjugate to a simple reflection.
(3) W is a finite group if and only if the bilinear form B is positive definite.

Proof Section 5.4 in [Hum90] contains a proof of 1, while 2 appears as Proposition 1.14. Theorem 4.1 in [Deo82] contains a proof of 3.
1.2 Definition If w is an element of the Coxeter group W, then the length of w is the length of the shortest expression of w as a product of simple reflections. We denote this length by $l(w)$. Any expression of w as a product of $l(w)$ simple roots will be called a reduced expression for w.

Regarding w as a linear transformation of V we see that $\operatorname{det}(w)=(-1)^{l(w)}$, since all reflections have determinant -1 .

It is easily seen that $l(w)=0$ if and only if $w=1$ and $l\left(w^{-1}\right)=l(w)$. If w can be expressed as a product of l simple reflections then it is obvious that for any $a \in \Pi$ the element $w^{\prime}=w r_{a}$ can be expressed as a product of $l+1$ simple reflections. So $l\left(w^{\prime}\right) \leq l(w)+1$. Since also $w=w^{\prime} r_{a}$ the same reasoning shows that $l(w) \leq l\left(w^{\prime}\right)+1$. But since

$$
(-1)^{l(w)}=\operatorname{det} w=\left(\operatorname{det} w^{\prime}\right)\left(\operatorname{det} r_{a}\right)=-\operatorname{det} w^{\prime}=(-1)^{l\left(w^{\prime}\right)+1}
$$

it follows that $l\left(w^{\prime}\right) \neq l(w)$. So we have proved.
1.3 Lemma If $w \in W$ and $a \in \Pi$, then

$$
l\left(w r_{a}\right)=l(w) \pm 1
$$

1.4 Lemma If $w, w^{\prime} \in W$, then

$$
l\left(w w^{\prime}\right) \equiv l(w)+l\left(w^{\prime}\right)(\bmod 2)
$$

Proof We have $(-1)^{l\left(w w^{\prime}\right)}=\operatorname{det}\left(w w^{\prime}\right)=\operatorname{det} w \operatorname{det} w^{\prime}=(-1)^{l(w)+l\left(w^{\prime}\right)}$.
1.5 Definition If $w \in W$, then let

$$
N(w)=\left\{a \in \Phi^{+} \mid w a \in \Phi^{-}\right\}
$$

Define also $n(w)=|N(w)|$, the cardinality of the set $N(w)$. (It is shown below that the set $N(w)$ is always finite.)
1.6 Lemma If $a \in \Pi$ is a simple root, then $N(a)=\left\{r_{a}\right\}$, in particular

$$
r_{a}\left(\Phi^{+} \backslash\{a\}\right)=\Phi^{+} \backslash\{a\}
$$

Proof As $r_{a} a=-a$ it remains to show that

$$
r_{a}\left(\Phi^{+} \backslash\{a\}\right)=\Phi^{+} \backslash\{a\}
$$

Assuming that $c \in \Phi^{+} \backslash\{a\}$, then $c=\sum_{\Pi} \lambda_{b} b$ where $\lambda_{b} \geq 0$ for all b, and there is a $b_{0} \neq a$ such that $\lambda_{b_{0}}>0$, as the only multiples of a in Φ are $\pm a$. Then

$$
\begin{aligned}
r_{a} c & =c-2 B(a, c) a \\
& =\left(\lambda_{a}-2 B(a, c)\right) a+\lambda_{b_{0}} b_{0}+\sum_{\Pi^{\prime}} \lambda_{b} b .
\end{aligned}
$$

Now $\lambda_{b_{0}}>0$ and so $r_{a} c \in \Phi^{+}$and is clearly not a.
1.7 Lemma If $w \in W$ and $a \in \Pi$, then
(a) If $w a \in \Phi^{+}$, then $N\left(w r_{a}\right)=r_{a} N(w) \dot{\cup}\{a\}$.
(b) If $w a \in \Phi^{-}$, then $N\left(w r_{a}\right)=r_{a}(N(w) \backslash\{a\})$.
(c) If $w^{-1} a \in \Phi^{+}$, then $N\left(r_{a} w\right)=N(w) \dot{\cup}\left\{w^{-1} a\right\}$.
(d) If $w^{-1} a \in \Phi^{-}$, then $N\left(r_{a} w\right)=N(w) \backslash\left\{-w^{-1} a\right\}$.
(Here the symbol $\dot{\cup}$ stands for the disjoint union.)

Proof Let $w \in W$ and $a \in \Pi$. If $w a \in \Phi^{+}$then $a \notin N(w)$, while $w r_{a} a=w(-a)=-w a \in \Phi^{-}$, and so $a \in N\left(w r_{a}\right)$. By Lemma 1.6, $r_{a} N(w) \subset \Phi^{+}$and $w r_{a}\left(r_{a} N(w)\right)=w N(w) \subset \Phi^{-}$and so $r_{a} N(w) \subset N\left(w r_{a}\right)$. Now, if $b \in N\left(w r_{a}\right)$ and $b \neq a$, then $b \in \Phi^{+}$but $w\left(r_{a} b\right)=w r_{a} b \in \Phi^{-}$ and so $r_{a} b \in N(w)$. Hence

$$
N\left(w r_{a}\right)=r_{a} N(w) \dot{\cup}\{a\} .
$$

A similar argument proves the second claim.
Looking at the last claim, we have been given that $w^{-1} a \in \Phi^{-}$and so $-w^{-1} a \in \Phi^{+}$, but $w\left(-w^{-1} a\right)=-a \in \Phi^{-}$. Thus $-w^{-1} a \in N(w)$. Notice however, that

$$
r_{a} w\left(-w^{-1} a\right)=r_{a}(-a)=a \in \Phi^{+}
$$

and so $-w^{-1} a \notin N\left(r_{a} w\right)$. Now if $b \in N\left(r_{a} w\right)$, then $r_{a} w b=-c \in \Phi^{-}$where $c \in \Phi^{+}$. Observe that $c \neq a$, since $c=a$ would imply that $b=w^{-1} a$, contrary to the fact that $w^{-1} a \in \Phi^{-}$and $b \in \Phi^{+}$. Thus

$$
w b=-r_{a} c \in \Phi^{-} .
$$

Therefore $b \in N(w)$. Now $b \neq-w^{-1} a$ and so we have

$$
N\left(r_{a} w\right) \subseteq N(w) \backslash\left\{-w^{-1} a\right\} .
$$

The reverse inclusion is clear, since if $b \in N(w) \backslash\left\{-w^{-1} a\right\}$, then

$$
r_{a} w b \in r_{a}\left(\Phi^{-} \backslash\{a\}\right)=\Phi^{-} \backslash\{-a\}
$$

and so $b \in N\left(r_{a} w\right)$. Thus:

$$
N\left(r_{a} w\right)=N(w) \backslash\left\{-w^{-1} a\right\} .
$$

A similar argument proves the third claim.
Suppose that $w=r_{1} r_{2} \ldots r_{t}$, where $l(w)=t$. Using Lemma 1.7, if we build up $N(w)$ starting from $N\left(r_{1}\right)$, then

$$
N\left(r_{1} r_{2}\right) \subseteq r_{2} N\left(r_{1}\right) \dot{\cup}\left\{a_{2}\right\}=\left\{r_{2} a_{1}, a_{2}\right\}
$$

where a_{i} is the simple root associated with the reflection r_{i}. An induction proof completes the proof of the following.
1.8 Corollary If $w \in W$, then $n(w) \leq t=l(w)$. In particular $N(w)$ is always a finite set.

The following is Theorem 1.7 of [Hum90], Part 3 being called the Deletion Condition there.
1.9 Theorem Suppose that $w=r_{1} r_{2} \ldots r_{t}$ and $n(w)<t$. Then we can find $1 \leq i<j \leq t$ such that

$$
\begin{align*}
& a_{i}=r_{i+1} \ldots r_{j-1} a_{j} . \tag{1}\\
& r_{i+1} r_{i+2} \ldots r_{j}=r_{i} r_{i+1} \ldots r_{j-1} . \tag{2}\\
& w=r_{1} \ldots \hat{r}_{i} \ldots \hat{r}_{j} \ldots r_{t} . \tag{3}
\end{align*}
$$

As before r_{i} denotes the reflection along the simple root a_{i}.
Proof Following the steps in the proof of Corollary 1.8, it can be seen that if $n(w)<t$, then we can find a j such that $r_{1} r_{2} \ldots r_{j-1} a_{j} \in \Phi^{-}$. Now $a_{j} \in \Phi^{+}$and so we can find an index i such that

$$
\begin{array}{r}
r_{i+1} \ldots r_{j-1} a_{j} \in \Phi^{+} \\
r_{i} r_{i+1} \ldots r_{j-1} a_{j} \in \Phi^{-} .
\end{array}
$$

But $N\left(r_{i}\right)=\left\{a_{i}\right\}$ and so

$$
a_{i}=r_{i+1} \ldots r_{j-1} a_{j} .
$$

It is easily seen that $w r_{v} w^{-1}=r_{w v}$ and so

$$
\left(r_{i+1} \ldots r_{j-1}\right) r_{j}\left(r_{j-1} \ldots r_{i+1}\right)=r_{r_{i+1} \ldots r_{j-1} a_{j}}=r_{a_{i}}=r_{i}
$$

Thus $r_{i+1} \ldots r_{j}=r_{i} \ldots r_{j-1}$ and therefore $r_{i} \ldots r_{j}=r_{i+1} \ldots r_{j-1}$. Using this equation in the expression for w :

$$
\begin{aligned}
w & =r_{1} \ldots\left(r_{i} \ldots r_{j}\right) \ldots r_{t} \\
& =r_{1} \ldots\left(r_{i+1} \ldots r_{j-1}\right) \ldots r_{t} \\
& =r_{1} \ldots \hat{r}_{i} \ldots \hat{r}_{j} \ldots r_{t}
\end{aligned}
$$

1.10 Corollary If $w \in W$, then $n(w)=l(w)$.

Proof If $l(w)=t$, then by the above we cannot have $n(w)<t$ or else we can shorten a reduced expression for w as a product of simple reflections. Thus $n(w) \geq l(w)$ and hence, by Corollary 1.8,

$$
n(w)=l(w)
$$

1.11 Lemma The Coxeter group W is finite if and only if the associated root system, Φ, is also finite.
Proof If W is finite then the set of simple reflections is finite, and so Π is finite. As $\Phi=\{w a \mid w \in W, a \in \Pi\}$ it follows that Φ is also finite.

Conversely, suppose that Φ is finite. For $w \in W$ define $\rho_{w} \in \operatorname{Sym}(\Phi)$ by

$$
\rho_{w}: a \mapsto w a .
$$

If $\rho_{w}=\rho_{w^{\prime}}$, then $w^{-1} w^{\prime}$ fixes all roots $a \in \Phi$, in particular all positive roots. Thus

$$
l\left(w^{-1} w^{\prime}\right)=n\left(w^{-1} w^{\prime}\right)=0
$$

and so $w^{-1} w^{\prime}=1$. Thus $\rho: W \rightarrow \operatorname{Sym}(\Phi)$ is injective. Hence, if Φ is finite,

$$
|W| \leq|\operatorname{Sym}(\Phi)|=|\Phi|!
$$

For each $I \subseteq \Pi$ we define $W_{I}=\operatorname{gp}\left\langle\left\{r_{a} \mid a \in I\right\}\right\rangle$; these subgroups are called the standard parabolic subgroups of W. Clearly W_{I} preserves the subspace V_{I} spanned by I; furthermore it acts on this subspace as a Coxeter group with root system $\Phi_{I}=\Phi \cap V_{I}$. A parabolic subgroup of W is any subgroup of the form $w W_{I} w^{-1}$ for some $w \in W$ and $I \subseteq \Pi$.

To save space in our later calculations we shall write $\mathrm{s}(\theta)$ for $\sin \theta$ and $\mathrm{c}(\theta)$ for $\cos \theta$. We shall also use π_{k} for π / k (for any positive integer k) and $u \cdot v$ for $B(u, v)$. It is readily checked that if $I=\{a, b\}$ is a two-element subset of Π, then Φ_{I} consists of all vectors v of the form

$$
\begin{equation*}
\frac{\mathrm{s}\left((h-1) \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{1}+\frac{\mathrm{s}\left(h \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{2} \tag{1.12}
\end{equation*}
$$

where $h \in \mathbb{Z}$. Observe that $v \cdot a_{1}=-\mathrm{c}\left(h \pi_{m}\right)$ and $v \cdot a_{2}=\mathrm{c}\left((h-1) \pi_{m}\right)$. Replacing h by $m-h+1$ gives the equivalent formula

$$
\begin{equation*}
\frac{\mathrm{s}\left(h \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{1}+\frac{\mathrm{s}\left((h-1) \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{2} \tag{1.13}
\end{equation*}
$$

where now $v \cdot a=\mathrm{c}\left((h-1) \pi_{m}\right)$ and $v \cdot b=-\mathrm{c}\left(h \pi_{m}\right)$. The positive roots in Φ_{I} are the vectors of the form 1.12 or 1.13 with $1 \leq h \leq m$. We see that positive numbers appearing as coefficients of a or b in roots $v \in \Phi_{\{a, b\}}^{+}$are never less than 1 . This result in fact extends to the entire root system. First a technical lemma.
1.14 Lemma Suppose that $v \in \Phi^{+}$and $w=r_{1} r_{2} \ldots r_{l}$ has minimal length such that $w^{-1} v=b \in \Pi$. Then $r_{i} \ldots r_{l} b$ is positive for all i.
Proof Suppose, to the contrary, that $r_{j} \ldots r_{l} b \in \Phi^{-}$for some j. Then we can find i such that $r_{i+1} \ldots r_{l} b \in \Phi^{-}$but $x=r_{i} \ldots r_{l} b \in \Phi^{+}$. So, $x \in \Phi^{+}$while $r_{i} x \in \Phi^{-}$, and therefore $x \in N\left(r_{i}\right)=\left\{a_{i}\right\}$. Hence

$$
a_{i}=\left(r_{1} \ldots r_{i-1}\right)^{-1} x \in \Pi
$$

which contradicts the minimality of l.
1.15 Lemma (Brink [Bri98]) Suppose that $v=\sum_{a \in \Pi} \lambda_{a} a \in \Phi^{+}$. For each $a \in \Pi$, if $\lambda_{a}>0$, then $\lambda_{a} \geq 1$.
Proof Choose w with minimal length such that $w^{-1} v=b \in \Pi$, say $l(w)=l$. We prove this lemma by induction on l.

If $l=0$, then $v \in \Pi$ and the result is trivial. If $l=1$, then

$$
v=r_{a} b=b-2(a \cdot b) a
$$

where $a \cdot b=-1$ or $-\cos \left(\pi_{m}\right)$ for some $m \geq 2$. (Note that this formula corresponds to $h=2$ in 1.12.) If $m=2$, then $r_{a} b=b$. Otherwise the coefficient of a in v is either 2 or

$$
2 \cos \left(\pi_{m}\right) \geq 2 \cos \pi_{3}=1
$$

Assuming that $l \geq 2$, let $r_{1} r_{2} \ldots r_{l}$ be a reduced expression for w. Thus $v=r_{1} r_{2} \ldots r_{l} b$. By Lemma 1.14, $r_{2} \ldots r_{l} b \in \Phi^{+}$, say $r_{2} \ldots r_{l} b=\sum_{a \in \Pi} \mu_{a} a$. By induction the μ 's are all zero or at least 1. Then

$$
\begin{aligned}
v & =r_{1} r_{2} \ldots r_{l} b \\
& =r_{1} \sum_{a \in \Pi} \mu_{a} a \\
& =\sum_{a \in \Pi} \mu_{a} r_{1} a .
\end{aligned}
$$

The only coefficient we need to check is the coefficient of a_{1} which is

$$
\mu_{a_{1}}+\sum_{a \in \Pi-\left\{a_{1}\right\}}\left(-2\left(a \cdot a_{1}\right)\right) .
$$

Now $\mu_{a_{1}}$ is zero or at least 1 , as are all the terms of the form $-2\left(a \cdot a_{1}\right)$, and so the result follows.
1.16 Definitions In a Coxeter group W let $\operatorname{Ref}(W)$ denote the set of reflections in W.

Clearly symmetries of the Coxeter diagram give rise to automorphisms which permute the simple reflections; we call these graph automorphisms. Let $\operatorname{Gr}(W)$ denote the group of graph automorphisms of W.
1.17 Lemma Let W be a rank n Coxeter group with simple roots Π. If I and J are disjoint subsets of Π such that no edge of the Coxeter diagram joins a root in I with a root in J, then

$$
\operatorname{Ref}\left(W_{I \cup J}\right)=\operatorname{Ref}\left(W_{I}\right) \dot{\cup} \operatorname{Ref}\left(W_{J}\right)
$$

Proof It is clear that

$$
\operatorname{Ref}\left(W_{I}\right) \cup \operatorname{Ref}\left(W_{J}\right) \subseteq \operatorname{Ref}\left(W_{I \cup J}\right)
$$

Suppose that r is a reflection in $W_{I \cup J}$. Then r is conjugate to a simple reflection by Lemma 1.1. Without loss we can find $w \in W_{I \cup J}$ and $a_{i} \in I$ such that

$$
r=w r_{i} w^{-1}
$$

Now $W_{I \cup J}=W_{I} \times W_{J}$ and so $w=w_{i} w_{j}=w_{j} w_{i}$ for some $w_{i} \in W_{I}$ and $w_{j} \in W_{J}$. Thus

$$
\begin{aligned}
r & =w r_{i} w^{-1} \\
& =w_{i} w_{j} r_{i} w_{j}^{-1} w_{i}^{-1} \\
& =w_{i} r_{i} w_{i}^{-1} \in W_{I} .
\end{aligned}
$$

Hence r is a reflection in W_{I}.
Now if $r \in \operatorname{Ref}\left(W_{I}\right) \cap \operatorname{Ref}\left(W_{J}\right)$, then following the above proof we can find $r_{i}, w_{i} \in W_{I}$ and $r_{j}, w_{j} \in W_{J}$ such that

$$
w_{i} r_{i} w_{i}^{-1}=r=w_{j} r_{j} w_{j}^{-1}
$$

and hence $r_{i}=w_{j}^{-1} r_{i} w_{j}=w_{i}^{-1} r_{j} w_{i}=r_{j}$, which contradicts the fact that I and J are disjoint.
1.18 Corollary If W is a rank n Coxeter group, $I \subset \Pi$ and we can find a simple root $a \in \Pi \backslash I$ such that $a \cdot b=0$ for all $b \in I$, then

$$
\operatorname{Ref}\left(W_{I \cup\{a\}}\right)=\operatorname{Ref}\left(W_{I}\right) \dot{\cup}\left\{r_{a}\right\} .
$$

§1.2 Longest Elements

Let W be a finite Coxeter group and $w \in W$ have maximal length in W. If $N(w) \neq \Phi^{+}$, then we can find a simple root $a \notin N(w)$. (If $\Pi \subset N(w)$, all positive linear combinations of Π which are roots will be in $N(w)$, by Lemma 1.1, and this means $\Phi^{+} \subset N(w)$.) Thus $w a \in \Phi^{+}$and so, by Lemma 1.7, $l\left(w r_{a}\right)=n\left(w r_{a}\right)=n(w)+1=l(w)+1$, which contradicts the maximality of $l(w)$. Hence if w has maximal length, then $l(w)=\left|\Phi^{+}\right|$.

Furthermore, if $u \in W$ is any element, then using an appropriate simple root at each step we may find an element $v \in W$ such that $u v$ has maximal length and $l(u v)=l(u)+l(v)$. We denote by w_{0} the element of maximal length in the finite Coxeter group, W.
1.19 Lemma The element of maximal length in a finite Coxeter group is uniquely defined and is an involution.
Proof Suppose that $u, v \in W$ have maximal length. Then $N(u)=N(v)=\Phi^{+}$. If $a \in \Pi$, then $v a \in-\Phi^{+}$and $u v a \in \Phi^{+}$. Thus $l(u v)=0$ and therefore $u v=1$. If we note that $l\left(u^{-1}\right)=l(u)$ is also maximal we can see that $u^{-1} v=1$ implying that $u=v$. Similarly, if w_{0} is the (unique) element of maximal length, then $w_{0} w_{0}=1$, and therefore w_{0} is an involution.
1.20 Lemma If W is finite with longest element w_{0}, then for $w \in W$

$$
l\left(w w_{0}\right)=l\left(w_{0}\right)-l(w) .
$$

Proof We have seen that for any $w \in W$ we can find a $u \in W$ such that $u w=w_{0}=w_{0}^{-1}$ and $l\left(w_{0}\right)=l(u)+l(w)$. But, then

$$
l\left(w w_{0}\right)=l\left(u^{-1}\right)=l(u)=l\left(w_{0}\right)-l(w) .
$$

1.21 Definition If W is a possibly infinite Coxeter group and $I \subset \Pi$ such that the parabolic subgroup W_{I} is finite, then we denote the longest element of W_{I} by w_{I}.

Now consider the the irreducible finite Coxeter groups.
A_{n} : Let W be a Coxeter group of type A_{n} with diagram

$$
\dot{i} \quad \dot{i} \quad \dot{3} \cdots{ }_{n-1} \dot{n}
$$

It is well known that the number of positive roots is $n(n+1) / 2$. Let $w_{i}=r_{1} r_{2} \cdots r_{i}$ where r_{j} is the reflection in the hyperplane perpendicular to the simple root a_{j}. Then

$$
w_{0}=w_{n} w_{n-1} \cdots w_{2} w_{1} .
$$

Observe that this expression for w_{0} has length $n(n+1) / 2$ which is equal to $\left|\Phi^{+}\right|$. Therefore this will be a reduced expression for w_{0} if it does equal w_{0}. Note that if $j<i-1$, then $w_{j} a_{i}=a_{i}$, thus

$$
w_{n} w_{n-1} \cdots w_{2} w_{1} a_{i}=w_{n} w_{n-1} \cdots w_{i-1} a_{i}
$$

provided $i>1$. Now

$$
\begin{aligned}
w_{i-1} a_{i} & =r_{1} r_{2} \cdots r_{i-1} a_{i} \\
& =r_{1} r_{2} \cdots r_{i-2}\left(a_{i-1}+a_{i}\right) \\
& =a_{1}+a_{2}+\cdots+a_{i}
\end{aligned}
$$

by induction, and therefore

$$
\begin{aligned}
w_{i} w_{i-1} a_{i} & =w_{i}\left(a_{1}+\cdots a_{i}\right) \\
& =r_{1} r_{2} \cdots r_{i}\left(a_{1}+\cdots+a_{i}\right) \\
& =r_{1} \cdots r_{i-1}\left(a_{1}+\cdots a_{i-1}\right) \\
& =r_{1} a_{1} \quad \text { (by induction) } \\
& =-a_{1} .
\end{aligned}
$$

Thus $w_{n} w_{n-1} \ldots w_{1} a_{i}=w_{n} w_{n-1} \cdots w_{i+1} a_{i}$. Note that this is also valid for $i=1$. Then

$$
\begin{aligned}
w_{i+1}\left(-a_{1}\right) & =r_{1} r_{2}\left(-a_{1}\right) \\
& =r_{1}\left(-a_{1}-a_{2}\right) \\
& =-a_{2}
\end{aligned}
$$

and another induction will show that $w_{n} \cdots w_{2} w_{1} a_{i}=-a_{n-i+1}$. Therefore $w_{n} \cdots w_{1}$ does indeed send each positive root to a negative root and so must equal w_{0}. Unless $n=1$ the longest element w_{0} is not central, in fact conjugation by w_{0} is the graph automorphism that interchanges r_{i} and r_{n-i+1}.
B_{n} : Let W be a Coxeter group of type B_{n} with diagram

$$
\dot{1}^{4} \quad \dot{2} \quad \dot{3} \quad \cdots \underset{n-1}{ } \quad \underset{n}{ }
$$

In this case $\left|\Phi^{+}\right|=n^{2}$. This time we let $w_{i}=r_{i} r_{i-1} \cdots r_{2} r_{1} r_{2} \cdots r_{i}$. Observe that this is the reflection along the root $b_{i}=r_{i} r_{i-1} \cdots r_{2}\left(a_{1}\right)$. A short calculation shows that

$$
b_{i}=a_{1}+\sqrt{2} a_{2}+\cdots+\sqrt{2} a_{i} .
$$

Now if $i>j>1$ we find that

$$
\begin{aligned}
b_{i} \cdot b_{j} & =\left(b_{j}+\sqrt{2} a_{j+1}+\cdots+\sqrt{2} a_{i}\right) \cdot b_{j} \\
& =1+\left(\sqrt{2} a_{j+1}+\cdots+\sqrt{2} a_{i}\right) \cdot b_{j} \\
& =1+\left(\sqrt{2} a_{j+1}\right) \cdot\left(\sqrt{2} a_{j}\right) \\
& =1-1=0,
\end{aligned}
$$

and a similar calculation also shows that $b_{i} \cdot b_{1}=0$ for $i>1$. So the n roots $b_{1}, b_{2}, \ldots, b_{n}$ form an orthonormal basis for V, and it follows that $w_{n} w_{n-1} \cdots w_{1}$, the product of the reflections along the b_{i}, is the negative of the identity transformation on V. So $w_{n} w_{n-1} \cdots w_{1}(a)=-a$ for all positive roots a, and it follows that $w_{n} w_{n-1} \cdots w_{1}=w_{0}$, the longest element. Furthermore, the given expression for w_{i} has length $2 i-1$, and so the resulting expression for w_{0} has length $\sum_{i=1}^{n}(2 i-1)=n^{2}=\left|\Phi^{+}\right|$. So this expression is reduced. In these groups w_{0} is central.
D_{n} : Let W be a Coxeter group of type D_{n} with diagram

$$
{ }_{\text {1. }}^{2 .} \dot{i} \quad \dot{4} \cdots{ }_{n-1} \dot{n}
$$

In this case $\left|\Phi^{+}\right|=n(n-1)$. Let $w_{i}=r_{i} r_{i-1} \cdots r_{2} r_{1} r_{3} r_{4} \cdots r_{i}$ for $i>2, w_{2}=r_{2}$ and $w_{1}=r_{1}$ let $w_{0}^{\prime}=w_{n} w_{n-1} \cdots w_{1}$. Then the following lemma holds.
1.22 Lemma Given the notation from above, w_{0}^{\prime} acts as follows on the simple roots

$$
\begin{aligned}
& a_{1} \mapsto \begin{cases}-a_{1} & \text { if } n \text { is even } \\
-a_{2} & \text { if } n \text { is odd }\end{cases} \\
& a_{2} \mapsto \begin{cases}-a_{2} & \text { if } n \text { is even } \\
-a_{1} & \text { if } n \text { is odd }\end{cases} \\
& a_{j} \mapsto-a_{j} \text { if } j>2 .
\end{aligned}
$$

Proof We first prove that w_{i} interchanges a_{1} and a_{2} if $i>2$ and fixes a_{j} for $i>j>2$.

$$
\begin{aligned}
w_{i} a_{1} & =r_{i} \cdots r_{2} r_{1} r_{3} a_{1} \\
& =r_{i} \cdots r_{2} r_{1}\left(a_{1}+a_{3}\right) \\
& =r_{i} \cdots r_{3} r_{2} a_{3} \\
& =r_{i} \cdots r_{3}\left(a_{2}+a_{3}\right) \\
& =r_{i} \cdots r_{4} a_{2} \\
& =a_{2} .
\end{aligned}
$$

As $w_{i}^{2}=1$ we can also see that $w_{i} a_{2}=a_{1}$. If $i>j>2$, then

$$
\begin{aligned}
w_{i} a_{j} & =r_{i} \cdots r_{3} r_{2} r_{1} r_{3} \cdots r_{j+1} a_{j} \\
& =r_{i} \cdots r_{1} \cdots r_{j}\left(a_{j}+a_{j+1}\right) \\
& =r_{i} \cdots r_{1} \cdots r_{j-1} a_{j+1} \\
& =r_{i} \cdots r_{j} a_{j+1} \\
& =r_{i} \cdots r_{j+1}\left(a_{j}+a_{j+1}\right) \\
& =r_{i} \cdots r_{j+2} a_{j} \\
& =a_{j}
\end{aligned}
$$

Now we look at the cases $w_{i} a_{i}$ and $w_{i-1} a_{i}$, where $i>3$.

$$
\begin{aligned}
w_{i-1} a_{i} & =r_{i-1} \cdots r_{1} \cdots r_{i-1} a_{i} \\
& =r_{i-1} \cdots r_{1} \cdots r_{i-2}\left(a_{i-1}+a_{i}\right) \\
& =r_{i-1} a_{i}+r_{i-1} w_{i-2} a_{i-1} \\
& =a_{i}+a_{i-1}+\left(a_{i-1}+2 a_{i-2}+\cdots+2 a_{3}+a_{2}+a_{1}\right) \text { by induction } \\
& =a_{i}+2 a_{i-1}+\cdots+2 a_{3}+a_{2}+a_{1}
\end{aligned}
$$

If we now observe that $a_{i} \cdot\left(a_{i}+2 a_{i-1}+\cdots+2 a_{3}+a_{2}+a_{1}\right)=0$, then
and hence

$$
\begin{aligned}
w_{i} a_{i} & =r_{i} w_{i-1} r_{i} a_{i} \\
& =-r_{i} w_{i-1} a_{i} \\
& =-w_{i-1} a_{i}
\end{aligned}
$$

and hence $\quad w_{i} w_{i-1} a_{i}=-a_{i}$.
If follows that if $i>3$

$$
\begin{aligned}
w_{n} w_{n-1} \cdots w_{1} a_{i} & =w_{n} \cdots w_{i} w_{i-1} a_{i} \\
& =-w_{n} \cdots w_{i+1} a_{i} \\
& =-a_{i}
\end{aligned}
$$

The same is true for $i=3$, as is readily checked. Finally note that

$$
\begin{aligned}
w_{n} w_{n-1} \cdots w_{2} w_{1} a_{1} & =-w_{n} \cdots w_{3} a_{1} \\
& =-w_{n} \cdots w_{4} a_{2}
\end{aligned}
$$

and an induction proof finishes this argument. Similar calculations apply for a_{2}.
Thus $w_{0}^{\prime}=w_{0}$ is central if n is even, while if n is odd, then conjugation by w_{0} is the graph automorphism that interchanges r_{1} and r_{2}. We shall see in Chapter 2 that when n is even this graph automorphism is an outer automorphism. A simple calculation will confirm that the expression given for w_{0} is reduced.
$I_{2}(m)$: Let W be a Coxeter group of type $I_{2}(m)$ with diagram

$$
i_{i}^{m} \dot{i}
$$

In all cases a reduced expression for the longest element is $r_{1} r_{2} \cdots$ where the product extends to m terms. If m is even, then this element is the half-turn η and so is central. If m is odd, then $r_{1} r_{2} \cdots$ is a reflection and so is not central, in fact conjugation by w_{0} is the graph automorphism that interchanges r_{1} and r_{2}.

The longest element and its effect upon the simple roots is merely stated for the remaining finite Coxeter groups.
E_{6} : Let W be a Coxeter group of type E_{6} with diagram

The longest element has length 36 and can be written, for example, as:

$$
\begin{gathered}
w_{0}=r_{6} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{1} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} \\
\\
w_{0} a_{1}=-a_{6} \\
w_{0} a_{2}=-a_{5} \\
w_{0} a_{3}=-a_{3} \\
w_{0} a_{4}=-a_{4} \\
w_{0} a_{5}=-a_{2} \\
w_{0} a_{6}=-a_{1}
\end{gathered}
$$

Thus conjugation by w_{0} induces the obvious graph automorphism.
$E_{7}: \quad$ Let W be a Coxeter group of type E_{7} with diagram

The longest element has length 63 and can be written as:

$$
\begin{aligned}
w_{0}=r_{7} & r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{1} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} \\
& \times r_{7} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{7} r_{6} r_{5} r_{3} r_{2} r_{4} r_{3} r_{5} r_{6}
\end{aligned}
$$

w_{0} is central.
$E_{8}: \quad$ Let W be a Coxeter group of type E_{8} with diagram

The longest element has length 120 and can be written as:

$$
\begin{aligned}
w_{0}=r_{8} & r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{1} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} \\
& \times r_{7} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{7} r_{6} r_{5} r_{3} r_{2} r_{4} r_{3} r_{5} r_{6} r_{7} r_{8} r_{7} r_{6} r_{5} r_{3} r_{2} r_{1} \\
& \times r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} r_{6} r_{5} r_{3} r_{2} r_{1} r_{7} r_{6} r_{5} r_{3} r_{2} r_{4} r_{3} r_{5} r_{6} r_{7} r_{8} r_{7} r_{6} r_{5} r_{3} r_{2} r_{1} r_{4} r_{3} r_{2} r_{5} r_{3} r_{4} \\
& \times r_{6} r_{5} r_{3} r_{2} r_{1} r_{7} r_{6} r_{5} r_{3} r_{2} r_{4} r_{3} r_{5} r_{6} r_{7}
\end{aligned}
$$

w_{0} is central.
$F_{4}: \quad$ Let W be a Coxeter group of type F_{4} with diagram

$$
{ }_{i} \quad \dot{2}^{4} \quad \dot{3}
$$

The longest element has length 24 and can be written as:

$$
w_{0}=r_{4} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{3} r_{2} r_{3} r_{4} r_{3} r_{2} r_{1} r_{3} r_{2} r_{3} r_{4} r_{3} r_{2} r_{1} r_{3} r_{2} r_{3}
$$

w_{0} is central.
H_{3} : Let W be a Coxeter group of type H_{3} with diagram

$$
{ }^{5} \quad . \quad 3
$$

The longest element has length 15 and can be written as:

$$
w_{0}=r_{3} r_{1} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2}
$$

w_{0} is central.
$H_{4}: \quad$ Let W be a Coxeter group of type H_{4} with diagram

$$
\dot{i}^{5} \quad \dot{2} \quad \dot{3}
$$

The longest element has length 60 and can be written as:

$$
\begin{aligned}
w_{0}=r_{4} & r_{1} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{3} r_{4} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{3} r_{4} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} \\
& \times r_{3} r_{4} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{3} r_{4} r_{3} r_{2} r_{1} r_{2} r_{1} r_{3} r_{2} r_{1} r_{2} r_{3}
\end{aligned}
$$

w_{0} is central.

$\S 1.3$ Finite Subgroups of Infinite Coxeter Groups

If α is an automorphism of an infinite Coxeter group, W, then the image of a finite subgroup of W is again finite. In particular a maximal finite subgroup of W must be mapped to a maximal finite subgroup. In this section we characterise these subgroups.

Suppose that W is any Coxeter group with Π as the set of simple roots. We shall make use of the following result, which is due to Tits and appears in [Bou68], Exercise 2d, p. 130.
1.23 Lemma If W is a Coxeter group and $H \leq W$ is finite, then H is contained in a finite parabolic subgroup of W.

Let V^{*} be the dual space of V and $\left\{\delta_{a} \mid a \in \Pi\right\}$ the basis of V^{*} such that for all $a, b \in \Pi$

$$
\delta_{a}(b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}
$$

For each $f \in V^{*}$ define

$$
\zeta(f)=\left\{v \in \Phi^{+} \mid f(v)<0\right\}
$$

and let C be the set of all $f \in V^{*}$ for which $\zeta(f)=\emptyset$; equivalently,

$$
C=\left\{f \in V^{*} \mid f(a) \geq 0 \text { for all } a \in \Pi\right\}
$$

For each $w \in W$ and $f \in V^{*}$, define $f w: V \rightarrow \mathbb{R}$ by $v \mapsto f(w v)$; this gives a right action of W on V^{*}.
1.24 Lemma Let $f \in V^{*}$ with $|\zeta(f)|<\infty$. Then $f w \in C$ for some $w \in W$.

Proof Choose $w \in W$ with $|\zeta(f w)|$ minimal, and let $f^{\prime}=f w$. Assume, for a contradiction, that $\zeta\left(f^{\prime}\right) \neq \emptyset$; that is, $f^{\prime}(v)<0$ for some $v \in \Phi^{+}$. Writing $v=\sum_{a \in \Pi} \lambda_{a} a$, we see that $f(v)=\sum a \in \Pi \lambda_{a} f(a)$, and since the coefficients λ_{a} are all non-negative we must have $f(a)<0$ for at least one $a \in \Pi$. Now

$$
\left(f^{\prime} r_{a}\right)(a)=f^{\prime}\left(r_{a} a\right)=f^{\prime}(-a)=-f^{\prime}(a)>0
$$

and so $a \notin \zeta\left(f_{a}\right)$, writing f_{a} for $f^{\prime} r_{a}$. It follows that $r_{a} c \in \Phi^{+}$for all $c \in \zeta\left(f_{a}\right)$, and furthermore $r_{a} c \in \zeta\left(f^{\prime}\right)$ since

$$
f^{\prime}\left(r_{a}\right)(c)=\left(f_{a}\right)(c)<0
$$

Therefore $v \mapsto r_{a} v$ is a one to one map from $\zeta\left(f_{a}\right)$ to $\zeta\left(f^{\prime}\right)$, and as a is not in the image of this map we deduce that $\left|\zeta\left(f_{a}\right)\right|<\left|\zeta\left(f^{\prime}\right)\right|$, contradicting the minimality of $|\zeta(f w)|$.
1.25 Lemma Let $f \in C$ and define $J=\{a \in \Pi \mid f(a)=0\}$. Then W_{J} is the stabilizer of f in W.
Proof Let $S=\{w \in W \mid f w=f\}$, the stabilizer of f. If $a \in J$, then for all $v \in V$,

$$
\left(f r_{a}\right)(v)=f\left(r_{a} v\right)=f(v-2(v \cdot a) a)=f(v)-2(v \cdot a) f(a)=f(v),
$$

and so $f r_{a}=f$. Thus $W_{J} \subseteq S$.
To prove the reverse inclusion, we use induction on $l(w)$ to show that if $w \in S$ then $w \in W_{J}$. If $l(w)=0$, then $w \in W_{J}$ trivially. If $w \neq 1$, let $w^{\prime} \in W$ and $a \in \Pi$ be such that $w=w^{\prime} r_{a}$ and $l\left(w^{\prime}\right)=l(w)-1$. This tells us, by Lemma 1.7, that $w^{\prime} a \in \Phi^{+}$. Then

$$
0 \leq f(a)=(f w)(a)=f(w a)=f\left(w^{\prime} r_{a} a\right)=-f\left(w^{\prime} a\right) \leq 0
$$

as $w^{\prime} a \in \Phi^{+}$and $f \in C$. Thus $f(a)=0$; that is $a \in J$. Now by the first part of the proof we have $r_{a} \in S$, and so

$$
f w^{\prime}=(f w) r_{a}=f r_{a}=f .
$$

Hence $w^{\prime} \in W_{J}$ by induction, and it follows that $w=w^{\prime} r_{a} \in W_{J}$.
Proof (of 1.23) We use induction on $|\Pi|$. If $|W|<\infty$ we have nothing to prove; so suppose, without loss of generality, that W is infinite. Let $f=\sum_{a \in \Pi} \delta_{a}$, so that $f(a)=1$ for all $a \in \Pi$ and thus $f(v)>0$ for all $v \in \Phi^{+}$, and define $f^{\prime}=\sum_{h \in H} f h$. Note that $f^{\prime} h=f^{\prime}$ for all $h \in H$. Define also $A=\bigcup_{h \in H} N(h)$, observing that A is finite, since H is finite and $N(h)$ is finite for all $h \in H$ (as $|N(w)|=l(w)$ for $w \in W$, by Corollary 1.10).

Let $v \in \Phi^{+} \backslash A$. Then $h v \in \Phi^{+}$for all $h \in H$ and so

$$
f^{\prime}(v)=\sum_{h \in H}(f h)(v)=\sum_{h \in H} f(h v)>0 .
$$

Hence $\zeta\left(f^{\prime}\right) \cap\left(\Phi^{+} \backslash A\right)=\emptyset$; that is $\zeta\left(f^{\prime}\right) \subseteq A$. In particular, $\zeta\left(f^{\prime}\right)$ is finite. By Lemma 1.24 there is a $w \in W$ such that $f^{\prime}=f^{\prime \prime} w$ for some $f^{\prime \prime} \in C$. Then for all $h \in H$,

$$
f^{\prime \prime} w h w^{-1}=\left(f^{\prime \prime} w\right) h w^{-1}=f^{\prime} h w^{-1}=\left(f^{\prime} h\right) w^{-1}=f^{\prime} w^{-1}=f^{\prime \prime} .
$$

Thus, by Lemma $1.25, w h w^{-1} \subseteq W_{J}$, where

$$
J=\left\{a \in \Pi \mid f^{\prime \prime}(a)=0\right\} .
$$

Now Φ^{+}is infinite as W is infinite; so $\Phi^{+} \backslash A \neq \emptyset$, and it follows in particular that $f^{\prime} \neq 0$, since $f(v)>0$ whenever $v \in \Phi^{+} \backslash A$. Hence $f^{\prime \prime} \neq 0$ also and thus $J \neq \Pi$. Now by induction there is $I \subset J$ and $u \in W$ such that W_{I} is finite and $u\left(w h w^{-1}\right) u^{-1} \subseteq W_{I}$.

One immediate consequence of Lemma 1.23 is that every maximal finite subgroup of a Coxeter group is parabolic.

The following can be found as Theorem 2.7.4 of [Car85].
1.26 Lemma (Kilmoyer) Let $I, J \subseteq \Pi$ and suppose that $d \in W$ is the minimal length element of $W_{I} d W_{J}$. Then $W_{I} \cap d W_{J} d^{-1}=W_{K}$, where $K=I \cap d J$.
1.27 Corollary The intersection of a finite number of parabolic subgroups is a parabolic subgroup.
Proof If H and K are parabolic subgroups of W, then we can find $w \in W$ such that $w^{-1} H w$ is a standard parabolic subgroup of W. Using the above lemma we can see that $w^{-1}(H \cap K) w$ is a standard parabolic subgroup of W and hence $H \cap K$ is a parabolic subgroup. Induction completes the proof.
1.28 Corollary Let $I, J \subset \Pi$ and $t \in W$. Then for some $u \in W_{I}$,

$$
W_{I} \cap t W_{J} t^{-1}=u W_{K} u^{-1}
$$

where $K=I \cap d J \subseteq \Pi$, with d the minimal length element of $W_{I} t W_{J}$.
Proof We can write $t=u d v$ where $u \in W_{I}$ and $v \in W_{J}$, and d is the minimal length element in $W_{I} t W_{J}$. By Lemma 1.26

$$
W_{I} \cap t W_{J} t^{-1}=u\left(W_{I} \cap d W_{J} d^{-1}\right) u^{-1}=u W_{K} u^{-1} .
$$

Suppose that $I \subseteq \Pi$ is such that $\left|W_{I}\right|$ is finite while W_{J} is infinite for all J with $I \varsubsetneqq J \subseteq \Pi$. Then W_{I} is a maximal finite standard parabolic subgroup of W.
1.29 Lemma Let W_{I} be a maximal finite standard parabolic subgroup. Then W_{I} is not conjugate to a subgroup of any other finite standard parabolic subgroup.
Proof Suppose that $W_{I} \subseteq t W_{K} t^{-1}$ for some $d \in W$ and some $K \subseteq \Pi$ such that W_{K} is finite. We may assume that t is of minimal length in $W_{I} t W_{K}$, and by Corollary 1.28 it follows that $I \subseteq t K$. Since W_{I} is a maximal finite standard parabolic subgroup, $t \neq 1$. So we may choose a simple root e such that $t^{-1} e=f$ is negative. As t has minimal length in $t W_{K}$ it takes positive roots in the root system of W_{K} to positive roots. But $-f$ is a positive root while $t(-f)=-e$ is negative, and we conclude that f is not in the root system of W_{K}. Thus when $f=t^{-1} e$ is expressed as a linear combination of simple roots some $g \notin K$ appears with a negative coefficient. It follows that if h is any positive root in the root system of $W_{I \cup\{e\}}$ which is not in the root system of W_{I}, then $t^{-1} h$ involves g with a negative coefficient. But $W_{I \cup\{e\}}$ is infinite, while W_{I} is not. So t^{-1} takes an infinite number of positive roots to negative roots, and hence has infinite length, which is a contradiction.
1.30 Corollary If W is any infinite Coxeter group, then all maximal finite standard parabolic subgroups of W are maximal finite subgroups of W.

Proof If W_{I} is a maximal finite standard parabolic subgroup but not a maximal finite subgroup then by Lemma $1.23 W_{I} \leq t W_{J} t^{-1}$ for some $t \in W$ and some $J \subseteq \Pi$ with $\left|W_{I}\right|<\left|W_{J}\right|<\infty$. But this contradicts Lemma 1.29.
1.31 Corollary If W is an infinite Coxeter group, H is a subgroup of W which can be written as the intersection of a finite collection of maximal finite subgroups and $\alpha \in \operatorname{Aut}(W)$, then $\alpha(H)$ is a parabolic subgroup of W.
Proof From Corollary 1.30 if H is the intersection of a finite collection of maximal finite subgroups, then $\alpha(H)$ is the intersection of a finite collection of parabolic subgroups. The result follows from Corollary 1.27.
1.32 Corollary If W is an infinite Coxeter group, $\alpha \in \operatorname{Aut}(W)$ and r_{i} is a simple reflection such that $\left\langle r_{i}\right\rangle$ can be written as an intersection of maximal finite subgroups, then $\alpha\left(r_{i}\right)$ is a reflection.
Proof By the above $\alpha\left\langle r_{i}\right\rangle$ is a parabolic subgroup of W of order 2 .

Thus, if every reflection is conjugate to a simple reflection, r_{i}, such that $\left\langle r_{i}\right\rangle$ can be written as an intersection of maximal finite subgroups, then every automorphism of W preserves reflections.

§1.4 Automorphisms That Preserve Reflections

Let W be a Coxeter group with set of simple roots Π, Coxeter diagram Γ and let α be an automorphism of W such that α preserves $\operatorname{Ref}(W)$, the set of reflections in W.
1.33 Lemma Let W be a Coxeter group of finite rank and α an automorphism of W that preserves reflections, then

$$
\alpha(\operatorname{Ref}(W))=\operatorname{Ref}(W)
$$

and therefore α^{-1} also preserves reflections.
Proof As each reflection is conjugate to a simple reflection, by Lemma 1.1, if W has rank n, then there are at most n conjugacy classes of reflections. Say

$$
\operatorname{Ref}(W)=\mathcal{C}_{1} \dot{\cup} \mathcal{C}_{2} \dot{\cup} \cdots \dot{\cup} \mathcal{C}_{m} .
$$

If α is an automorphism of W with the property that $\alpha(r) \in \operatorname{Ref}(W)$ for all $r \in \operatorname{Ref}(W)$, then it is clear that for each $i \in\{1,2, \ldots, m\}$ there is a $j \in\{1,2, \ldots, m\}$ such that $\alpha\left(\mathcal{C}_{i}\right)=\mathcal{C}_{j}$. As there are only finitely many conjugacy classes of reflections α merely permutes them.

Given a reflection-preserving automorphism α, define a function $\phi_{\alpha}: \Pi \rightarrow V$ as follows. If $a \in \Pi$, then $\alpha\left(r_{a}\right)=r_{x}$ for some $x \in \Phi \subset V$, let $\phi_{\alpha}(a)=x$ or $-x$ making the choice arbitrarily at present. If $a_{i}, a_{j} \in \Pi$ and the bond joining the corresponding vertices in Γ is labelled with an m, then $\left(r_{i} r_{j}\right)^{m}=1$. If $\phi_{\alpha}\left(a_{i}\right)= \pm x_{i}$ and $\phi_{\alpha}\left(a_{j}\right)= \pm x_{j}$, then $r_{x_{i}} r_{x_{j}}$ also has order m and hence

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=\left(\pm x_{i}\right) \cdot\left(\pm x_{j}\right)=\mathrm{c}\left(l \pi_{m}\right)
$$

for some l coprime to m.
1.34 Lemma If Γ is a forest, then we can choose signs so that ϕ_{α} is a function such that

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right) \leq 0
$$

for all simple roots $a_{i} \neq a_{j}$.
Proof By induction on the rank of W. If W has rank 2, then we may choose the sign of $\phi_{\alpha}\left(a_{1}\right)$ at will, and then we can choose the sign of $\phi_{\alpha}\left(a_{2}\right)$ so that

$$
\phi_{\alpha}\left(a_{1}\right) \cdot \phi_{\alpha}\left(a_{2}\right) \leq 0 .
$$

If W is any Coxeter group with Γ a forest, then we choose a vertex, a_{i} say, of degree one. Look at the (parabolic) subgroup $W_{\Pi \backslash\left\{a_{i}\right\}}$; by induction we may choose ϕ_{α} such that $\phi_{\alpha}\left(a_{j}\right) \cdot \phi_{\alpha}\left(a_{k}\right) \leq 0$ for all $a_{j}, a_{k} \neq a_{i}$. If a_{i} is joined to a_{j}, then we may choose the sign of $\phi_{\alpha}\left(a_{i}\right)$ so that

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right) \leq 0
$$

without affecting any of the other inner products.
Much of the time it will not be true that $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j}$ even if they agree in sign. However, if $m=2,3,4$ or 6 , then the only numbers $l \in\{1,2, \ldots, m-1\}$ coprime to m are $l=1$ and $l=m-1$. If we note that $\mathrm{c}\left((m-1) \pi_{m}\right)=-\mathrm{c}\left(\pi_{m}\right)$ then we see that $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)= \pm \mathrm{c}\left(\pi_{m}\right)$. Hence we deduce the following:
1.35 Corollary If W is a Coxeter group whose graph Γ is a forest with labels in the set $\{2,3,4,6\}$, then we can choose ϕ_{α} so that

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j}
$$

for all simple roots a_{i} and a_{j}.
We will see that if the labels are not all from the set $\{2,3,4,6\}$, then B is not necessarily preserved. For Coxeter groups of types H_{3} and H_{4} in particular we will find automorphisms that preserve the signs of the inner products but

$$
\phi_{\alpha}\left(a_{1}\right) \cdot \phi_{\alpha}\left(a_{2}\right)=-\mathrm{c}\left(2 \pi_{5}\right)=\frac{1-\sqrt{5}}{4}
$$

instead of the original value of $-\mathrm{c}\left(\pi_{5}\right)=(-1-\sqrt{5}) / 4$. In fact these are the only possibilities we need to consider if $m=5$.
1.36 Definition From now on any label in a Coxeter diagram which does not come from the set $\{2,3,4,6\}$ will be called unusual. Furthermore the phrase inner by graph will mean that an automorphism lies in the subgroup of $\operatorname{Aut}(W)$ generated by the inner and graph automorphisms. The subgroup of inner automorphisms is a normal subgroup of $\operatorname{Aut}(W)$, therefore any inner by graph automorphism can be written as the product of an inner and a graph automorphism. Finally we will denote by $R(W)$ the subgroup of $\operatorname{Aut}(W)$ consisting of all automorphisms that preserve reflections.

Now Π is a basis for V and so ϕ_{α} can be extended to a linear map $V \rightarrow V$. If $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j}$ for all $a_{i}, a_{j} \in \Pi$, then ϕ_{α} is an orthogonal transformation.
1.37 Lemma If α is an automorphism of W that preserves $\operatorname{Ref}(W)$ and ϕ_{α} is defined as above so that

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j}
$$

for all $a_{i}, a_{j} \in \Pi$, then $\alpha(w)=\phi_{\alpha} w \phi_{\alpha}^{-1}$ for all $w \in W$.
Proof It suffices to prove this when w is a simple reflection, since the general case then follows by a straightforward induction on $l(w)$. Now if $a \in \Pi$ and $v \in V$ we find that

$$
\begin{aligned}
\left(\phi_{\alpha} r_{a} \phi_{\alpha}^{-1}\right)(v) & =\phi_{\alpha}\left(r_{a}\left(\phi_{\alpha}^{-1}(v)\right)\right) \\
& =\phi_{\alpha}\left(\phi_{\alpha}^{-1}(v)-2\left(a \cdot \phi_{\alpha}^{-1}(v)\right) a\right) \\
& =v-2\left(\phi_{\alpha}(a) \cdot v\right) \phi_{\alpha}(a) \\
& =r_{\phi_{\alpha}(a)}(v) \\
& =\alpha\left(r_{a}\right)(v)
\end{aligned}
$$

by the definition of ϕ_{α}. Since this holds for all $v \in V$ we conclude that $\alpha\left(r_{a}\right)=\phi_{\alpha} r_{a} \phi_{\alpha}^{-1}$, as desired.

Note If we have defined ϕ_{α} to satisfy the conditions of Lemma 1.37, then $-\phi_{\alpha}$ also satisfies those conditions.

The next result is Theorem 4.1 in [HRT97], the statement of which requires the following definition.
1.38 Definition Given a Coxeter group W with associated vector space V and bilinear form B a subset $\mathcal{P} \subset V$ is a root basis (relative to B) if
(i) for all $a, b \in \mathcal{P}$

$$
\begin{array}{ll}
B(a, b)=-\mathrm{c} \pi_{m_{a b}} & \text { if } m_{a b} \neq \infty \\
B(a, b) \leq-1 & \text { if } m_{a b}=\infty
\end{array}
$$

(ii) the zero vector is not contained in the set

$$
\left\{\sum_{a \in \mathcal{P}} \lambda_{a} a \mid \lambda_{a} \geq 0 \text { for all } a, \lambda_{a} \neq 0 \text { for some } a\right\} .
$$

In particular, notice that the set of simple roots of a Coxeter group forms a root basis which is in fact linearly independent.
1.39 Theorem (Howlett, Rowley, Taylor [HRT97]) Let Φ_{1} and Φ_{2} be irreducible root systems spanning the spaces V_{1} and V_{2} with root bases Π_{1} and Π_{2} respectively. Suppose that $\varphi: V_{1} \rightarrow V_{2}$ maps Φ_{1} bijectively onto Φ_{2} and takes the bilinear form on V_{1} to that of V_{2}. Then $\Pi_{2}= \pm \varphi w \Pi_{1}$ for some $w \in W_{1}$.

To deal with the problems associated with reducible Coxeter groups we make the following definitions.
1.40 Definition If W is a Coxeter group with r_{1} and r_{2} any two simple reflections, then we say that there is a chain joining r_{1} and r_{2} if there is a path in the Coxeter diagram of W joining the node corresponding to r_{1} to the node corresponding to r_{2}. Furthermore, if $r, r^{\prime} \in \operatorname{Ref}(W)$, then we say that there is a chain joining r and r^{\prime} if there are simple roots r_{1} and r_{2} such that r is conjugate to r_{1}, r^{\prime} is conjugate to r_{2} and there is a chain joining r_{1} and r_{2}.

Let W be a Coxeter group of finite rank with diagram Γ, and suppose that the irreducible components of Γ are Γ_{i} for $1 \leq i \leq m$, say $\Pi=L_{1} \dot{\cup} L_{2} \dot{\cup} \cdots \dot{\cup} L_{m}$ is the corresponding decomposition of Π. Then, by Lemma 1.17

$$
\operatorname{Ref}(W)=\operatorname{Ref}\left(W_{L_{1}}\right) \dot{\cup} \cdots \dot{\cup} \operatorname{Ref}\left(W_{L_{m}}\right)
$$

and the following lemma is clear.
1.41 Lemma If $r, r^{\prime} \in \operatorname{Ref}(W)$, then there is a chain joining r and r^{\prime} if and only if $r, r^{\prime} \in \operatorname{Ref}\left(W_{L_{i}}\right)$ for some i.
1.42 Lemma Let α be an automorphism that preserves $\operatorname{Ref}(W)$ and $r, r^{\prime} \in \operatorname{Ref}(W)$. Then there is a chain joining r and r^{\prime} if and only if there is a chain joining $\alpha(r)$ and $\alpha\left(r^{\prime}\right)$.
Proof Without loss we may assume that $r=r_{1}$ and $r^{\prime}=r_{2}$ are simple reflections. Suppose that r_{1} and r_{2} correspond to adjacent nodes in the diagram of W; then r_{1} and r_{2} do not commute and hence $\alpha\left(r_{1}\right)$ and $\alpha\left(r_{2}\right)$ are reflections which do not commute. Therefore $\alpha\left(r_{1}\right)$ and $\alpha\left(r_{2}\right) \in \operatorname{Ref}\left(W_{L_{i}}\right)$ for some i, as if they were in different components they would commute. Hence there is a chain joining $\alpha\left(r_{1}\right)$ and $\alpha\left(r_{2}\right)$. Induction on the length of the chain joining r_{1} and r_{2} finishes the proof of one of the implications. The reverse implication follows by applying the same argument to α^{-1}.
1.43 Theorem Let W be a finite rank Coxeter group and suppose that α is an automorphism that preserves reflections and we can define ϕ_{α} so that $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j}$ for all i and j. Then α is inner by graph.
Proof Using the notation developed above, $\Pi=L_{1} \dot{\cup} \cdots \dot{\cup} L_{m}$ and

$$
W=W_{L_{1}} \times W_{L_{2}} \times \cdots \times W_{L_{m}}
$$

Let $\alpha\left(r_{1}\right) \in \operatorname{Ref}\left(W_{L_{t}}\right)$ where $a_{1} \in L_{1}$. Then for all $a_{i} \in L_{1}$ there is a chain joining r_{1} and r_{i} and so there is a chain joining $\alpha\left(r_{1}\right)$ and $\alpha\left(r_{i}\right)$ and hence

$$
\alpha\left(W_{L_{1}}\right) \subseteq W_{L_{t}}
$$

If $r \in \operatorname{Ref}\left(W_{L_{t}}\right) \backslash \alpha\left(W_{L_{1}}\right)$, then there is a chain joining r and $\alpha\left(r_{1}\right)$ as both lie in $W_{L_{t}}$. But $\alpha^{-1}(r) \notin W_{L_{1}}$ and so there is no chain joining $\alpha^{-1}(r)$ and r_{1}, a contradiction, by Lemma 1.42. Thus we have $\alpha\left(W_{L_{1}}\right)=W_{L_{t}}$.

Looking at $\left.\phi_{\alpha}\right|_{\Phi_{L_{1}}}$ the conditions of Theorem 1.39 are satisfied and so there is a $w \in W_{L_{1}}$ such that

$$
\Pi_{L_{t}}= \pm \phi_{\alpha} w \Pi_{L_{1}}
$$

Now we can change the sign of ϕ_{α} on L_{1} without affecting the value of any inner products and can therefore ignore the possible negative. Furthermore if $L_{j} \neq L_{1}$, then $w \Pi_{L_{j}}=\Pi_{L_{j}}$ is fixed elementwise and so preceding α by conjugation by w^{-1} we may assume

$$
\Pi_{L_{t}}=\phi_{\alpha} \Pi_{L_{1}}
$$

Repeating this for each component we find that, up to inner automorphisms

$$
\phi_{\alpha} \Pi=\Pi
$$

Thus ϕ_{α} is a permutation of Π. Now if the nodes corresponding to a_{i} and a_{j} in Γ are joined by an edge labelled m, then $a_{i} \cdot a_{j}=-\mathrm{c}\left(\pi_{m}\right)$ and hence $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=-\mathrm{c}\left(\pi_{m}\right)$. Therefore the nodes corresponding to $\phi_{\alpha}\left(a_{i}\right)$ and $\phi_{\alpha}\left(a_{j}\right)$ must be joined by an edge labelled m. Thus ϕ_{α} induces an automorphism of Γ and hence a graph automorphism of W. It is easily seen that this automorphism is α which is therefore a graph automorphism.
1.44 Proposition If W is a Coxeter group whose Coxeter diagram is a forest with no unusual labels, then all automorphisms of W that preserve $\operatorname{Ref}(W)$ are the inner by graph automorphisms.
Proof By Corollary 1.35 and Theorem 1.44.

Chapter 2

Automorphisms of Finite Coxeter Groups

Let W be a finite irreducible Coxeter group, then W has type $A_{n}, B_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}$, H_{3}, H_{4} or $I_{2}(m)$. In the following α will be an automorphism of W.
2.1 Lemma If w_{0}, the longest element in the finite Coxeter group W, is central and $l\left(w_{0}\right)$ is even, then

$$
\begin{aligned}
\psi: W & \rightarrow W \\
\quad w & \mapsto\left(w_{0}\right)^{l(w)} w
\end{aligned}
$$

defines an automorphism of W which is an outer automorphism except in the case $I_{2}(4 l)$.
Proof If $w, w^{\prime} \in W$, then by Lemma $1.4 l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)+2 k$ for some integer k. By Lemma $1.19 w_{0}$ is an involution and so $w_{0}^{2 k}=1$. So

$$
\begin{aligned}
\psi\left(w w^{\prime}\right) & =\left(w_{0}\right)^{l\left(w w^{\prime}\right)} w w^{\prime} \\
& =\left(w_{0}\right)^{l(w)+l\left(w^{\prime}\right)+2 k} w w^{\prime} \\
& =\left(w_{0}\right)^{l(w)}\left(w_{0}\right)^{l\left(w^{\prime}\right)} w w^{\prime} \\
& =\left(w_{0}\right)^{l(w)} w\left(w_{0}\right)^{l\left(w^{\prime}\right)} w^{\prime} \\
& =\psi(w) \psi\left(w^{\prime}\right) .
\end{aligned}
$$

If $\psi(w)=\psi\left(w^{\prime}\right)$, then $\left(w_{0}\right)^{l(w)} w=\left(w_{0}\right)^{l\left(w^{\prime}\right)} w^{\prime}$, and if $l(w)+l\left(w^{\prime}\right)$ is even, it follows that $w=w^{\prime}$. Now suppose that $l(w)+l\left(w^{\prime}\right)$ is odd in which case $w_{0} w=w^{\prime}$. By Lemma 1.20

$$
\begin{aligned}
& l\left(w^{\prime}\right)=l\left(w_{0} w\right)=l\left(w_{0}\right)-l(w) \\
& l\left(w_{0}\right)=l(w)+l\left(w^{\prime}\right)
\end{aligned}
$$

and $l\left(w_{0}\right)$ is odd, contradicting the hypothesis that $l\left(w_{0}\right)$ is even. So ψ is injective and hence an automorphism. Note that the assumption that $l\left(w_{0}\right)$ is even is necessary, since otherwise we would find that

$$
\alpha\left(w_{0}\right)=w_{0}^{l\left(w_{0}\right)} w_{0}=1,
$$

whence α is not injective.
If $a \in \Phi$, then $w_{0} r_{a} w_{0}=r_{a}$, as w_{0} is central; so $w_{0} a= \pm a$. Since $w_{0}\left(\Phi^{+}\right)=\Phi^{-}$we deduce that $w_{0}(a)=-a$ for all a, and hence w_{0} acts as -1 on V. So $\psi\left(r_{a}\right)=w_{0} r_{a}=-r_{a}$ which has an $(n-1)$-dimensional -1-eigenspace and a 1-dimensional 1-eigenspace. Thus $\psi\left(r_{a}\right)$ is not a reflection unless $n=2$. So we are finished unless W is of type $I_{2}(m)$.

Suppose that W is a Coxeter group of type $I_{2}(m)$; then $l\left(w_{0}\right)$ is even if and only if $m=2 k$ is even. In this case suppose the simple roots are a_{1} and a_{2} with corresponding simple reflections $r_{1}=r_{a_{1}}$ and $r_{2}=r_{a_{2}}$. The longest element is

$$
w_{0}=\left(r_{1} r_{2}\right)^{m / 2}=\left(r_{1} r_{2}\right)^{k} .
$$

Looking at the effect of ψ on r_{1} and r_{2}

$$
\begin{aligned}
\psi\left(r_{1}\right) & =\left(w_{0}\right)^{1} r_{1} \\
& =\left(r_{1} r_{2}\right)^{k} r_{1} \\
& =\left(r_{1} r_{2} \cdots\right) \times r_{i} \times\left(r_{1} r_{2} \cdots\right)^{-1}
\end{aligned}
$$

where $r_{1} r_{2} \cdots$ has k terms and

$$
r_{i}= \begin{cases}r_{1} & \text { if } k \text { is even and } \\ r_{2} & \text { if } k \text { is odd. }\end{cases}
$$

Similarly $\psi\left(r_{2}\right)=\left(r_{1} r_{2} \cdots\right)^{\prime} r_{j}\left(r_{1} r_{2} \cdots\right)^{\prime-1}$ where $\left(r_{1} r_{2} \cdots\right)^{\prime}$ has $k-1$ terms and

$$
r_{j}= \begin{cases}r_{2} & \text { if } k \text { is even and } \\ r_{1} & \text { if } k \text { is odd. }\end{cases}
$$

Thus, if k is even,

$$
\begin{aligned}
\psi\left(r_{1}\right) & =\left(r_{1} r_{2}\right)^{k / 2} r_{1}\left(r_{1} r_{2}\right)^{-k / 2} \\
\psi\left(r_{2}\right) & =\left(r_{1} r_{2} \cdots\right)^{\prime} r_{2}\left(r_{1} r_{2} \cdots\right)^{\prime-1} \\
& =\left(r_{1} r_{2} \cdots\right)^{\prime} r_{2} r_{2} r_{2}\left(r_{1} r_{2} \cdots\right)^{\prime-1} \\
& =\left(r_{1} r_{2}\right)^{k / 2} r_{2}\left(r_{1} r_{2}\right)^{-k / 2}
\end{aligned}
$$

and ψ is conjugation by $\left(r_{1} r_{2}\right)^{k / 2}$. If k is odd a similar calculation shows that ψ is the graph automorphism that interchanges r_{1} and r_{2} followed by conjugation by $\left(r_{1} r_{2}\right)^{k / 2}$. Since r_{1} and r_{2} are not conjugate (since m is even by Lemma 3.19) this automorphism is outer.

Thus ψ is an outer automorphism in the cases $B_{2 k}, D_{2 k}, E_{8}, F_{4}, H_{4}$ and $I_{2}(2(2 l+1))$.
2.2 Lemma The automorphism ψ centralizes the inner automorphisms.

Proof Recall that $l\left(w_{0}\right)$ is even. Let α be the inner automorphism that conjugates by w, and look at $\psi \alpha \psi$.

$$
\begin{aligned}
\psi \alpha \psi\left(r_{i}\right) & =\psi \alpha\left(w_{0} r_{i}\right) \\
& =\psi\left(w w_{0} r_{i} w^{-1}\right) \\
& =w_{0}^{2 l(w)+1+l\left(w_{0}\right)} w_{0} w r_{i} w^{-1} \\
& =w r_{i} w^{-1}=\alpha r_{i}
\end{aligned}
$$

Hence $\psi \alpha \psi=\alpha$.
Except for D_{4} the group of graph automorphisms has order 1 or 2 . When it has order 2 we denote the non-identity graph automorphism by γ.
2.3 Proposition Let $w \in W$ be an involution, then there is an $I \subseteq \Pi$ such that w is conjugate to the longest element, w_{I} in the parabolic subgroup W_{I}. Furthermore w_{I} is central in W_{I}.
Proof Let $L=\{a \in \Pi \mid w a=-a\}$. First observe that $\Phi_{L}^{+} \subset N(w)$ is finite and so, by Lemma 1.11, W_{L} is finite. Let w_{L} be the longest element in W_{L}. Note also that if $a \in L$, then

$$
w r_{a} w=r_{w a}=r_{-a}=r_{a}
$$

and hence W_{L} centralizes w.
If $w=w_{L}$, then we are finished. So suppose $w_{L} w \neq 1$ and let $a \in N\left(w_{L} w\right) \cap \Pi$. If $w a \in \Phi^{+}$, then, as $w_{L} w a \in \Phi^{-}$we have $w a \in N\left(w_{L}\right)=\Phi_{L}^{+}$, but then

$$
a=w(w a) \in w \Phi_{L}^{+}=\Phi_{L}^{-}
$$

which is a contradiction. Hence $w a \in \Phi^{-}$. Thus $l\left(w r_{a}\right)=l(w)-1$, by Lemmas 1.7 and 1.10. If $w a=-a$, then $a \in L$ and so

$$
w_{L} w a=w_{L}(-a) \in w_{L} \Phi_{L}^{-}=\Phi_{L}^{+}
$$

a contradiction, implying that $w a \neq-a$. Hence $w a=-b$ for some $b \in \Phi^{+} \backslash\{a\}$, and

$$
\left(w r_{a}\right)^{-1} a=r_{a} w a=r_{a}(-b)=-r_{a} b \in \Phi^{-}
$$

Thus $l\left(r_{a}\left(w r_{a}\right)\right)=l\left(w r_{a}\right)-1$ and hence

$$
l\left(r_{a} w r_{a}\right)=l(w)-2
$$

and we may proceed by induction on $l(w)$.

There is, therefore, a one to one correspondence between the conjugacy classes of involutions in W and the classes of $I \subset \Pi$ such that w_{I} is central in W_{I}.

We now look at the various types of finite irreducible Coxeter groups individually.

§2.1 Type A

If W is a Coxeter group of type A_{n} it is well known that $W \cong \operatorname{Sym}_{n+1}$ the symmetric group on $n+1$ letters. Looking at W in this way, if w is an involution, then $w=w_{k}$ is a product of k disjoint 2-cycles for some $1 \leq k \leq\left\lfloor\frac{n+1}{2}\right\rfloor$. All such products are conjugate, and so

$$
\begin{aligned}
\left|\operatorname{cl}\left(w_{k}\right)\right| & =\text { \#products of } k \text { disjoint 2-cycles } \\
& =\binom{n+1}{2}\binom{n-1}{2} \cdots\binom{n-2 k+3}{2} \frac{1}{k!} \\
& =\binom{n+1}{2 k} 1 \times 3 \times 5 \times \cdots \times(2 k-1)
\end{aligned}
$$

where $\mathrm{cl}\left(w_{k}\right)$ is the conjugacy class of w_{k}. Under the isomorphism mentioned the simple reflections are (12), (23) and so on, up to $(n-1, n)$. These are all conjugate and so $\operatorname{cl}\left(w_{1}\right)$ is the only class of reflections and

$$
\left|\operatorname{cl}\left(w_{1}\right)\right|=\binom{n+1}{2}=\frac{n(n+1)}{2}
$$

If $2<2 k<n-1$, then $\binom{n+1}{2 k}>\binom{n+1}{2}$ and hence $\left|\operatorname{cl}\left(w_{k}\right)\right|>\left|\operatorname{cl}\left(w_{1}\right)\right|$.
If $2 k=n-1$, then $\binom{n+1}{2 k}=\binom{n+1}{n-1}=\binom{n+1}{2}$, but for $k>1$ we have $1.3 .5 \ldots>1$ and again $\left|\operatorname{cl}\left(w_{k}\right)\right|>\left|\operatorname{cl}\left(w_{1}\right)\right|$.

If $2 k=n, n$ even, then

$$
\left|\operatorname{cl}\left(w_{k}\right)\right|=\binom{n+1}{n} 1 \times 3 \times \cdots \times(n-1)
$$

Thus $\left|\operatorname{cl}\left(w_{k}\right)\right|=\left|\operatorname{cl}\left(w_{1}\right)\right|$ only if $\frac{n}{2}=1 \times 3 \times \cdots \times(n-1)$. Ignoring the case $n=2$, where there is only one class of involutions, it is easily shown that $n / 2<1 \times 3 \times \cdots \times(n-1)$.

If $2 k=n+1, n$ odd, then $\left|\operatorname{cl}\left(w_{k}\right)\right|=\left|\operatorname{cl}\left(w_{1}\right)\right|$ only if

$$
\frac{n+1}{2}=1 \times 3 \times \cdots \times(n-2) .
$$

For $n>5$ it is easily shown that the right hand side is bigger, while for $n=3$ it is smaller. If $n=5$, then we have equality.

Hence, except possibly for $n=5, k=3$, no other class of involutions has the same size as the class of reflections. Hence, as the graph of A_{n} is a tree with no unusual labels all automorphisms preserve reflections and so are inner by graph, by Proposition 1.44. As we have seen earlier this graph automorphism is induced by conjugation by w_{0} the longest element. Thus

$$
\operatorname{Aut}\left(A_{n}\right) \cong W / Z(W)=W,
$$

except possibly for $n=5$.
Suppose that $W \cong \operatorname{Sym}_{6}$ is of type A_{5}. Define $\xi: W \rightarrow W$ by

$$
\begin{aligned}
& \xi:(12) \mapsto(13)(24)(56)=\sigma_{1} \\
& (23) \mapsto(16)(25)(34)=\sigma_{2} \\
& (34) \mapsto(14)(23)(56)=\sigma_{3} \\
& (45) \mapsto(16)(24)(35)=\sigma_{4} \\
& (56) \mapsto(12)(34)(56)=\sigma_{5} \text {. }
\end{aligned}
$$

Looking at the possible products:

$$
\begin{array}{lll}
\sigma_{1} \sigma_{2}=(145)(236) & \sigma_{2} \sigma_{3}=(153)(264) & \sigma_{3} \sigma_{4}=(125)(346) \\
\sigma_{1} \sigma_{3}=(12)(34) & \sigma_{2} \sigma_{4}=(23)(45) & \sigma_{3} \sigma_{5}=(13)(24) \\
\sigma_{1} \sigma_{4}=(15)(36) & \sigma_{2} \sigma_{5}=(15)(26) & \sigma_{3} \sigma_{6}=(154)(236) \\
\sigma_{1} \sigma_{5}=(14)(23) . & &
\end{array}
$$

Hence ξ is a homomorphism. Looking now at ξ^{2}.

$$
\begin{aligned}
\xi^{2}(12) & =\xi((13)(24)(56)) \\
& =\xi((23)(12)(23)(34)(23)(34)(56)) \\
& =(64)(53)(21)(45)(36)(21)(12)(34)(56) \\
& =(12) .
\end{aligned}
$$

Similar calculations for the other simple reflections show that $\xi^{2}=1$ and hence ξ is an outer automorphism of W. If α is any automorphism of W, then either the reflections are preserved, in which case α is inner, or $\xi \alpha$ preserves reflections and hence is inner. Hence $|\operatorname{Out}(W)|=2$.
2.4 Proposition If W is a Coxeter group of type A_{n}, then

$$
\operatorname{Aut}(W) \cong W
$$

if $n \neq 5$, while

$$
\operatorname{Aut}\left(\operatorname{Sym}_{6}\right) \cong \operatorname{Sym}_{6} \rtimes\langle\xi\rangle .
$$

So, for $n \neq 5$, any automorphism of a group of type A_{n} maps reflections to reflections, furthermore any automorphism of A_{5} that does preserve reflections is inner.

§2.2 Types B and D

In, for example, $\S 2.10$ of [Hum90] it is shown that groups of type B_{n} are isomorphic to $\mathcal{E}_{n} \rtimes \operatorname{Sym}_{n}$ where \mathcal{E}_{n} is an elementary abelian 2-group, say

$$
\mathcal{E}_{n}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{n}\right\rangle
$$

where Sym_{n} acts to permute the x_{i} 's. Similarly, groups of type D_{n} are isomorphic to $\mathcal{E}_{n}^{\prime} \rtimes \operatorname{Sym}_{n}$ where \mathcal{E}_{n}^{\prime} is the subgroup of \mathcal{E}_{n} generated by elements of the form $x_{i} x_{j}$. Following the treatment in [Hum90] the following diagrams show the association of the elements of the above groups to the simple reflections.

Thus elements of a group W of type B_{n} or D_{n} have the form σx for some $\sigma \in \operatorname{Sym}_{n}$ and $x \in \mathcal{E}_{n}^{?}$ where $\mathcal{E}_{n}^{?}$ is \mathcal{E}_{n} or \mathcal{E}_{n}^{\prime} as appropriate. In much of the following B_{n} and D_{n} are treated simultaneously. We assume that $n>2$, it being easy to check that for B_{2} all automorphisms are inner by graph.
2.5 Lemma Suppose W is a Coxeter group of type B_{n} or $D_{2 k}$ and let

$$
\theta(\sigma x)=\sigma x\left(w_{0}\right)^{m(\sigma)},
$$

where $m(\sigma)$ is 0 if σ is even and 1 if σ is odd. Then θ is an outer automorphism of W.
Proof In all cases w_{0}, the longest element in W is a central involution and so θ is easily seen to be a homomorphism. Also $\theta^{2}=1$ and hence θ is an automorphism. Finally, θ does not map reflections to reflections and so is not an inner automorphism.

It is worth noting $\psi=\theta$ if W is a group of type D_{n} (since elements of \mathcal{E}_{n}^{\prime} have even length).
2.6 Lemma Suppose that α is an automorphism of a group of type B_{n} for $n \geq 3$ or D_{n} for $n>4$. Then $\alpha\left(\mathcal{E}_{n}^{?}\right)=\mathcal{E}_{n}^{?}$.
Proof Suppose that $\alpha \in \operatorname{Aut}(W)$ where W is a group of type B_{n} or D_{n}; then $\mathcal{E}_{n}^{?} \triangleleft W$ and hence $\alpha\left(\mathcal{E}_{n}^{?}\right) \triangleleft W$. Now if $x \in \mathcal{E}_{n}^{?}$, then $x^{2}=1$ and so, if $\alpha(x)=\sigma y$, then

$$
1=\alpha\left(x^{2}\right)=(\sigma y)^{2}=\sigma^{2} y^{\sigma} y
$$

Thus $\sigma^{2}=1$ and $y^{\sigma}=y$. As $\sigma^{2}=1, \sigma$ is either 1 or a product of disjoint 2-cycles.

1. If $\sigma=(a b)$, then as $\alpha\left(\mathcal{E}_{n}^{?}\right) \triangleleft W$, for all $(c d) \in \operatorname{Sym}_{n}$ there is a $y^{\prime} \in \mathcal{E}_{n}^{?}$ such that $(c d) y^{\prime} \in \alpha\left(\mathcal{E}_{\dot{n}}^{?}\right)$. In particular, $\alpha\left(\mathcal{E}_{\dot{n}}^{?}\right)$ contains an element of the form $(b c) y^{\prime}$, with $y^{\prime} \in \mathcal{E}_{n}^{?}$ and $c \neq a$, and we find that

$$
(a b) y(b c) y^{\prime}=(a b)(b c) y^{(b c)} y^{\prime}=(a c b) y^{\prime \prime} \in \alpha\left(\mathcal{E}_{n}^{?}\right) .
$$

But (acb) $y^{\prime \prime}$ has order a multiple of 3 , which is a contradiction.
2. If $\sigma=(a b)(c d)(e f) \sigma^{\prime}$ we can use the same argument with $(a c)(b e)(d f) \sigma^{\prime}$, where σ^{\prime} is 1 or a further product of disjoint 2-cycles.
3. If $\sigma=(a b)(c d)$ and $n>4$ we can again use the same argument, with (ae)(cd).
4. Finally, if W has type B_{4}, we may assume $\sigma=(12)(34)$. Now $y^{(12)(34)}=y$ and so we have

$$
y=1, \quad x_{1} x_{2}, \quad x_{3} x_{4} \quad \text { or } \quad x_{1} x_{2} x_{3} x_{4} .
$$

Given the normality of $\alpha\left(\mathcal{E}_{4}\right)$, and noting that

$$
\begin{aligned}
(12)(34) & =x_{1}\left((12)(34) x_{1} x_{2}\right) x_{1} \\
& =x_{3}\left((12)(34) x_{3} x_{4}\right) x_{3} \\
& =x_{1} x_{3}\left((12)(34) x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3} .
\end{aligned}
$$

we deduce that (12)(34) and (12)(34) $x_{1} x_{2}$ are both in $\alpha\left(\mathcal{E}_{4}\right)$. Hence $x_{1} x_{2} \in \alpha\left(\mathcal{E}_{n}\right)$. By normality again we deduce that $\alpha\left(\mathcal{E}_{4}\right)$ contains all elements of the form $(a b)(c d) x_{i} x_{j}$. But since there are 18 such elements this contradicts the fact that $\left|\mathcal{E}_{4}\right|=16$.

For all $\sigma \in \operatorname{Sym}_{n}$ write

$$
\alpha(\sigma)=\beta(\sigma) \delta(\sigma)
$$

where $\beta(\sigma) \in \operatorname{Sym}_{n}$ and $\delta(\sigma) \in \mathcal{E}_{n}^{?}$. It is easy to see that β is an automorphism of Sym_{n}. Hence, up to inner automorphisms, except possibly when $n=6$, we may assume that $\beta=1$. So $\alpha(\sigma x)=\sigma \delta(\sigma) \alpha(x)$. Now

$$
\begin{aligned}
\alpha(x \sigma) & =\alpha\left(\sigma x^{\sigma}\right) \\
\alpha(x) \alpha(\sigma) & =\sigma \delta(\sigma) \alpha\left(x^{\sigma}\right) \\
\alpha(x) \sigma \delta(\sigma) & =\sigma \delta(\sigma) \alpha\left(x^{\sigma}\right) \\
\alpha(x)^{\sigma} & =\alpha\left(x^{\sigma}\right)
\end{aligned}
$$

for all $\sigma \in \operatorname{Sym}_{n}$ and $x \in \mathcal{E}_{n}^{?}$.
Considering type B_{n}, if $\alpha\left(x_{1}\right)=x_{1}$, then

$$
\alpha\left(x_{i}\right)=\alpha\left(x_{1}^{(1 i)}\right)=\alpha\left(x_{1}\right)^{(1 i)}=x_{i} .
$$

So suppose that for some $j \neq 1$:

$$
\alpha\left(x_{1}\right)=x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \ldots x_{j}^{1} \ldots x_{n}^{\varepsilon_{n}} .
$$

Then, for $i \neq 1, j$

$$
\alpha\left(x_{1}\right)=\alpha\left(x_{1}^{(i j)}\right)=x_{1}^{\varepsilon_{1}} \ldots x_{j}^{\varepsilon_{i}} \ldots
$$

and so $\varepsilon_{i}=1$. Hence $\alpha\left(x_{1}\right)=x_{1}^{\varepsilon_{1}} x_{2} x_{3} \ldots x_{n}$.
If $\alpha\left(x_{1}\right)=x_{1} x_{2} \ldots x_{n}$, then $\alpha\left(x_{2}\right)=\alpha\left(x_{1}\right)^{(12)}=\alpha\left(x_{1}\right)$ which is a contradiction. Thus, if $\alpha \neq 1$, then $\alpha\left(x_{1}\right)=\hat{x_{1}} x_{2} \ldots x_{n}$ and hence

$$
\alpha\left(x_{i}\right)=x_{1} x_{2} \ldots \hat{x_{i}} \ldots x_{n},
$$

where the $\hat{x_{i}}$ indicates that particular term is absent.
If n is odd and $\left.\alpha\right|_{\mathcal{E}_{n}}=1$, then

$$
\begin{aligned}
\alpha\left(x_{1} x_{2} \ldots x_{n}\right) & =\left(\hat{x_{1}} x_{2} \ldots x_{n}\right) \ldots\left(x_{1} x_{2} \ldots \hat{x_{n}}\right) \\
& =\left(x_{1} x_{2} \ldots x_{n}\right)^{n-1}=1
\end{aligned}
$$

contradicting the injectivity of α. Thus if n is odd, $\alpha(x)=x$.
Now suppose that n is even. Then $\psi: w \mapsto w\left(w_{0}\right)^{l(w)}$ is an involutory automorphism of W. Now

$$
x_{i}=(i-1, i) \ldots(23)(12) x_{1}(12)(23) \ldots(i-1, i)
$$

and from our previous discussion of the longest element w_{0} we see that in fact

$$
w_{0}=x_{1} x_{2} \cdots x_{n} .
$$

Now $l\left(x_{i}\right)$ is odd (since x_{i} is a reflection) and so

$$
\psi\left(x_{i}\right)=x_{i}\left(x_{1} \cdots x_{n}\right)=\alpha\left(x_{i}\right) .
$$

It follows that $(\psi \alpha)\left(x_{i}\right)=x_{i}$. Furthermore,

$$
\begin{aligned}
\psi(\sigma) & =\psi(\sigma \delta(\sigma)) \\
& =\sigma \delta(\sigma) w_{0}^{l}
\end{aligned}
$$

for some l. Thus, after replacing α by $\psi \alpha$ we still have $\beta=1$, and we now also have $\left.\alpha\right|_{\mathcal{E}_{n}}=1$.

Thus, given $\alpha \in \operatorname{Aut}(W)$ where W is of type B_{n}, we may assume, up to inner and ψ that $\beta=1$ and $\alpha=1$.

Now look at the type D_{n} case. Using similar arguments either $\alpha\left(x_{i} x_{j}\right)=x_{i} x_{j}$ or $x_{1} \ldots \hat{x_{i}} \ldots \hat{x_{j}} \ldots x_{n}$. If $\alpha \neq 1$, then

$$
\begin{aligned}
& \alpha\left(x_{1} x_{2}\right)=x_{3} x_{4} \ldots x_{n} \\
& \alpha\left(x_{2} x_{3}\right)=x_{1} x_{4} \ldots x_{n} \\
& \alpha\left(x_{1} x_{3}\right)=x_{2} x_{4} \ldots x_{n} .
\end{aligned}
$$

But then $\alpha\left(x_{1} x_{3}\right) \neq \alpha\left(x_{1} x_{2}\right) \alpha\left(x_{2} x_{3}\right)$ which is a contradiction. Hence $\alpha=1$ in all cases for groups of type D_{n}.

Therefore, up to ψ in the $B_{2 k}$ case, we may assume that

$$
\alpha(\sigma x)=\sigma \delta(\sigma) x
$$

2.7 Lemma Suppose that $\alpha \in \operatorname{Aut}(W)$, where W is of type B_{n} or D_{n}, such that $\alpha(\sigma x)=\sigma \delta(\sigma) x$ as above. Then $\alpha=\theta$ or the action of δ on the simple reflections in Sym_{n} is either

$$
\delta(12)=x_{1} x_{2} \quad \text { and } \quad \delta(23)=\delta(34)=\cdots=1
$$

or

$$
\delta(12)=x_{1} x_{2} w_{0} \quad \text { and } \quad \delta(23)=\delta(34)=\cdots=w_{0} .
$$

Proof Suppose $y \in \mathcal{E}_{n}^{?}$, let $\alpha^{y}=i_{y} \alpha$, where i_{y} is the inner automorphism of W induced by y, and write $\alpha^{y}(\sigma x)=\beta^{\prime}(\sigma) \delta^{\prime}(\sigma) \alpha^{\prime}(x)$. Then

$$
\begin{aligned}
\beta^{\prime}(\sigma) \delta^{\prime}(\sigma) \alpha^{\prime}(x) & =y \alpha(\sigma x) y \\
& =\sigma \delta(\sigma) y^{\sigma} y x .
\end{aligned}
$$

Thus $\beta^{\prime}=1, \alpha^{\prime}=1$ and $\delta^{\prime}=\delta y^{\sigma} y$. Following automorphisms with conjugation by elements of $\mathcal{E}_{n}^{?}$ only affects δ. Also note that as $\alpha(1)=1$ we have $\delta(1)=1$. Now

$$
\begin{aligned}
\alpha(\sigma \tau) & =\alpha(\sigma) \alpha(\tau) \\
\sigma \tau \delta(\sigma \tau) & =\sigma \delta(\sigma) \tau \delta(\tau) \\
\delta(\sigma \tau) & =\delta(\sigma)^{\tau} \delta(\tau) .
\end{aligned}
$$

In particular if σ is an involution.

$$
\begin{aligned}
1 & =\delta\left(\sigma^{2}\right)=\delta(\sigma)^{\sigma} \delta(\sigma) \\
\delta(\sigma)^{\sigma} & =\delta(\sigma) .
\end{aligned}
$$

Similarly for any 3 -cycle $(a b c), 1=\delta\left((a b c)^{3}\right)=\delta(a b c)^{(a b c)^{2}} \delta(a b c)^{(a b c)} \delta(a b c)$. Thus if

$$
\delta(a b c)=\prod x_{i}^{\varepsilon_{i}},
$$

then

$$
1=\left(x_{a} x_{b} x_{c}\right)^{\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c}} \prod_{i \notin\{a, b, c\}} x_{i}^{3 \varepsilon_{i}}
$$

and so $\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{c} \equiv 0(\bmod 2)$ and $\varepsilon_{i}=0$ otherwise. Hence

$$
\delta(a b c)=1, \quad x_{a} x_{b}, \quad x_{a} x_{c} \quad \text { or } \quad x_{b} x_{c} .
$$

Suppose that $\delta \neq 1$. We first look at the case where $\delta(a b c) \neq 1$ for some 3 -cycle ($a b c$), without loss we may assume that $\delta(123) \neq 1$, and conjugating by x_{2} or x_{3} as necessary ($x_{2} x_{4}$ or $x_{3} x_{4}$ in D_{n}) we may assume that

$$
\delta(123)=x_{1} x_{2} .
$$

If there is an $i>3$ such that $\delta(i 23) \neq 1$, then conjugating by x_{i} (or $x_{i} x_{4}$, or $x_{i} x_{5}$ for $D_{n}, n \geq 5$) we may assume

Now

$$
\begin{aligned}
\delta(123) & =x_{1} x_{2} \\
\delta(i 23) & =x_{2} x_{3} \\
(23)(12) & =(123) \\
\delta(23)^{(12)} \delta(12) & =x_{1} x_{2} \\
\delta(23) \delta(12) & =x_{1} x_{2} . \\
\delta(23) \delta(i 2) & =x_{3} x_{i} \\
\delta(12) \delta(i 2) & =x_{1} x_{2} x_{3} x_{i} \\
\delta(12)^{(i 2)} \delta(i 2) & =x_{1} x_{2} x_{3} x_{i} \\
\delta(1 i 2) & =x_{1} x_{2} x_{3} x_{i} .
\end{aligned}
$$

Conjugating by (12)
Similarly
multiplying the last two
conjugating by (i2)

This is a contradiction as $\delta(1 i 2)=1, x_{1} x_{2}, x_{1} x_{i}$ or $x_{2} x_{i}$. Thus $\delta(i 23)=1$ for all $i>3$.
Now $(23)(i 2)=(i 23)$ and so

$$
\delta(23)^{(i 2)} \delta(i 2)=\delta(i 23)=1 .
$$

Conjugating by (i2) we find that $\delta(23)=\delta(2 i)$ for all $i>3$. For $i \geq 3$ we have

$$
\delta(23)=\delta(2 i)=\delta(2 i)^{(2 i)}=\delta(23)^{(2 i)}
$$

and hence $\delta(23)=1, x_{1}, x_{2} \ldots x_{n}$ or $x_{1} x_{2} \ldots x_{n}$. From earlier $\delta(12) \delta(23)=x_{1} x_{2}$ and so

$$
\delta(12)=x_{1} x_{2}, \quad x_{2}, \quad x_{1} \hat{x_{2}} \ldots x_{n} \quad \text { or } \quad x_{3} x_{4} \ldots x_{n} .
$$

We know that $\delta(12)^{(12)}=\delta(12)$ and so we can only have the first or last alternatives. If $\delta(12)=x_{1} x_{2}$ then $\delta(23)=1$, while if $\delta(12)=x_{3} \cdots x_{n}$ then $\delta(23)=x_{1} x_{2} \cdots x_{n}$. Hence

$$
\begin{array}{rll}
\delta(12)=x_{1} x_{2} & \text { and } & \delta(23)=\delta(24)=\cdots=1, \quad \text { or } \\
\delta(12)=x_{3} \cdots x_{n} & \text { and } & \delta(23)=\delta(24)=\cdots=x_{1} x_{2} \cdots x_{n}
\end{array}
$$

(Note that the second case cannot occur in type $D_{2 k+1}$.)
If $i, j \geq 3$, then $\delta(i j)=\delta((2 i)(2 j)(2 i))=\delta(2 i)^{(2 j)(2 i)} \delta(2 j)^{(2 i)} \delta(2 i)$ and so

$$
\delta(i j)=1 \quad \text { or } \quad x_{1} \ldots x_{n}
$$

respectively. Similarly $\delta(1 i)=\delta((2 i)(21)(2 i))$ and so

$$
\delta(1 i)=x_{1} x_{i} \quad \text { or } \quad \hat{x_{1}} x_{2} \ldots \hat{x_{i}} \ldots x_{n} .
$$

Thus there are two possibilities for δ.

$$
\delta(12)=x_{1} x_{2} \quad \text { and } \quad \delta(23)=\delta(34)=\cdots=1
$$

or

$$
\delta(12)=x_{1} x_{2} w_{0} \quad \text { and } \quad \delta(23)=\delta(34)=\cdots=w_{0}
$$

Now suppose that $\delta \neq 1$ but $\delta(a b c)=1$ for all 3 -cycles ($a b c$). Then without loss we may assume that $\delta(12) \neq 1$. Suppose $\delta(12)=(12) y$ for some $1 \neq y \in E_{n}^{?}$. If $\delta(2 i)=(2 i) y^{\prime}$, then

$$
\alpha((12)(2 i))=\alpha(12 i)=(12 i)=(12)(2 i) .
$$

But then

$$
\begin{aligned}
(12)(2 i) & =\alpha((12)(2 i)) \\
& =\alpha(12) \alpha(2 i) \\
& =(12) y(2 i) y^{\prime} \\
& =(12 i) y^{(2 i)} y^{\prime}
\end{aligned}
$$

whence $y^{(2 i)} y^{\prime}=1$. From earlier we know that $\delta(2 i)^{(2 i)}=\delta(2 i)$ and hence $y^{\prime(2 i)}=y^{\prime}$. Therefore $\left(y y^{\prime}\right)^{(2 i)}=1$ and we deduce $y=y^{\prime}$. Repeating this we may show that $\delta(i j)=y$ for all i and j. But this implies that $y^{(i j)}=y$ for all i and j, together with the fact that $y \neq 1$ we have shown that $y=w_{0}$. Noting that this is not possible in the $D_{2 k+1}$ case. In the other cases is it easily shown that

$$
\alpha(\sigma x)=\sigma x w_{0}^{m(\sigma)}=\theta(\sigma x) .
$$

In view of this lemma if α, or α followed by θ, is not inner we may assume that $\delta(12)=x_{1} x_{2}$ while $\delta(i, i+1)=1$ for $i \geq 2$. It can be seen that the automorphism we are left with is conjugation by the element x_{1}. In type B_{n} this is clearly an inner automorphism.

In type $D_{2 k}$ we find

$$
\begin{aligned}
\alpha(12) & =(12) x_{1} x_{2} \\
\alpha\left((12) x_{1} x_{2}\right) & =(12) x_{1} x_{2} x_{1} x_{2}=(12) \\
\alpha(i, i+1) & =(i, i+1)
\end{aligned}
$$

and so α is the graph automorphism.
If this is an inner automorphism, then n is even and we can find σy such that

$$
(i, i+1)^{\sigma y}=(i, i+1)
$$

for all i. Hence $\sigma=1$. Now $(i, i+1)^{y}=(i, i+1)$ tells us that

$$
y=x_{1}^{\varepsilon_{1}}\left(x_{2} \ldots x_{n}\right)^{\varepsilon_{2}} .
$$

But $y^{(12)} y=x_{1} x_{2}$ implies that $\varepsilon_{1}+\varepsilon_{2}=1$ and hence

$$
y=x_{1} \quad \text { or } \quad x_{2} \ldots x_{n}
$$

neither of which lie in $D_{2 k}$. Thus θ is not an inner automorphism.
Hence, up to inner automorphisms we have:
If W has type $B_{2 k+1}$, then $\alpha \in\langle\theta\rangle$.
If W has type $B_{2 k}$, then $\alpha \in\langle\psi\rangle \times\langle\theta\rangle$.
If W has type $D_{2 k+1}$, then $\alpha=1$.
If W has type $D_{2 k}$, then $\alpha \in\langle\psi\rangle \times\langle\delta\rangle$.
(It is easily established that ψ commutes with θ and the graph automorphisms as appropriate.) It only remains to deal with the cases of $n=6$ and $\beta \neq 1$ and D_{4}.

Suppose that $n=6$ and β is an outer automorphism of Sym_{6}. Without loss we may assume that

$$
\begin{aligned}
\beta:(12) & \mapsto(13)(24)(56) \\
(23) & \mapsto(16)(25)(34) \\
(34) & \mapsto(14)(23)(56) \\
(45) & \mapsto(16)(24)(35) \\
(56) & \mapsto(12)(34)(56) .
\end{aligned}
$$

Now $x_{5} x_{6}$ is not central in either B_{6} or D_{6} and so $\alpha\left(x_{5} x_{6}\right)$ cannot be central. Suppose $\alpha\left(x_{5} x_{6}\right)=\prod x_{i}^{\varepsilon_{i}}$; then

$$
\begin{aligned}
\alpha\left(x_{5} x_{6}(12)\right) & =\alpha\left((12) x_{5} x_{6}\right) \\
\beta(12) \delta(12) \alpha\left(x_{5} x_{6}\right)^{\beta(12)} & =\beta(12) \delta(12) \alpha\left(x_{5} x_{6}\right) \\
\left(\prod x_{i}^{\varepsilon_{i}}\right)^{(13)(24)(56)} & =\prod x_{i}^{\varepsilon_{i}} .
\end{aligned}
$$

Thus $\varepsilon_{1}=\varepsilon_{3}, \varepsilon_{2}=\varepsilon_{4}$ and $\varepsilon_{5}=\varepsilon_{6}$. A similar argument with (23) $x_{5} x_{6}$ shows that $\varepsilon_{1}=\varepsilon_{6}$, $\varepsilon_{2}=\varepsilon_{5}$ and $\varepsilon_{3}=\varepsilon_{4}$. Hence

$$
\varepsilon_{1}=\varepsilon_{6}=\varepsilon_{5}=\varepsilon_{2}=\varepsilon_{4}=\varepsilon_{3}
$$

and $\alpha\left(x_{5} x_{6}\right)=w_{0}^{\varepsilon_{1}}$ is central, a contradiction. Thus we have no new automorphisms.
Finally suppose that W is of type D_{4}. Looking for parabolic subgroups with longest element central, to find the classes of involutions, we discover 6 possibilities:

$$
\begin{aligned}
\left\langle r_{1}\right\rangle & \text { longest element: } r_{1} \\
\left\langle r_{1}, r_{2}\right\rangle & \text { longest element: } r_{1} r_{2} \\
\left\langle r_{1}, r_{4}\right\rangle & \text { longest element: } r_{1} r_{4} \\
\left\langle r_{2}, r_{4}\right\rangle & \text { longest element: } r_{2} r_{4} \\
\left\langle r_{1}, r_{2}, r_{4}\right\rangle & \text { longest element: } r_{1} r_{2} r_{4} \\
W & \text { longest element: } w_{0} .
\end{aligned}
$$

To see that $r_{1} r_{2}, r_{1} r_{4}$ and $r_{2} r_{4}$ are not conjugate observe that in the notation used above

$$
\begin{aligned}
& r_{1} r_{2}=x_{1} x_{2} \\
& r_{1} r_{4}=(12)(34)
\end{aligned}
$$

are clearly not conjugate and, by the symmetry of the diagram, $r_{2} r_{4}$ must also belong to a separate class. There are many places to find the sizes of these conjugacy classes, for example [Car72]. We find:

$$
\begin{aligned}
\left|\operatorname{cl}\left(r_{1}\right)\right| & =12 \\
\left|\operatorname{cl}\left(r_{1} r_{2}\right)\right| & =6 \\
\left|\operatorname{cl}\left(r_{1} r_{4}\right)\right| & =6 \\
\left|\operatorname{cl}\left(r_{2} r_{4}\right)\right| & =6 \\
\left|\operatorname{cl}\left(r_{1} r_{2} r_{3}\right)\right| & =12 \\
\left|\operatorname{cl}\left(w_{0}\right)\right| & =1
\end{aligned}
$$

The automorphism ψ does not preserve reflections and so $\operatorname{cl}\left(r_{1} w_{0}\right) \neq \operatorname{cl}\left(r_{1}\right)$. This implies $\operatorname{cl}\left(r_{1} w_{0}\right)=\operatorname{cl}\left(r_{1} r_{2} r_{3}\right)$. If α is any automorphism of W, then we may assume, up to ψ, that α preserves reflections. Thus, by Proposition 1.44, α is inner by graph. We have seen above that the graph automorphisms of order 2 are outer. Suppose that $\alpha: r_{1} \mapsto r_{2}, r_{2} \mapsto r_{4}$, $r_{3} \mapsto r_{3}$ and $r_{4} \mapsto r_{1}$ is inner. Then (12 $)^{\sigma y}=(34)$ and $\left((12) x_{1} x_{2}\right)^{\sigma y}=(12)$, and therefore

$$
(12)=(12)^{\sigma}=(34)
$$

is a contradiction and all the graph automorphisms are outer automorphisms. Hence

$$
\operatorname{Aut}(W) \cong\left(\operatorname{Inn}(W) \rtimes \operatorname{Sym}_{3}\right) \times\langle\psi\rangle=\left(W /\left\langle w_{0}\right\rangle \rtimes \operatorname{Sym}_{3}\right) \times\langle\psi\rangle
$$

The following proposition summarizes what we have shown.

2.8 Proposition

(a) If W is a group of type B_{n} for n odd, then

$$
\operatorname{Aut}(W) \cong\left(W /\left\langle w_{0}\right\rangle\right) \rtimes\langle\theta\rangle .
$$

(b) If W is a group of type B_{n} for n even, then

$$
\operatorname{Aut}(W)=\left(\left(W /\left\langle w_{0}\right\rangle\right) \rtimes\langle\theta\rangle\right) \times\langle\psi\rangle
$$

(c) If W is a group of type D_{n} for n odd, then

$$
\operatorname{Aut}(W) \cong W .
$$

(d) If W is a group of type D_{n} for n even $n>4$, then

$$
\operatorname{Aut}(W) \cong\left(\left(W /\left\langle w_{0}\right\rangle\right) \rtimes\langle\gamma\rangle\right) \times\langle\psi\rangle
$$

where γ is the graph automorphism.
(e) If W is a group of type D_{4}, then

$$
\operatorname{Aut}(W) \cong\left(W /\left\langle w_{0}\right\rangle \rtimes \operatorname{Sym}_{3}\right) \times\langle\psi\rangle .
$$

In particular all automorphisms of $D_{2 k+1}$ map reflections to reflections. All automorphisms of $B_{2 k+1}$ map r_{1} to a reflection while any automorphism of B_{n} that does preserve reflections must be inner.

$\S 2.3$ Type E

Suppose that W is of type E_{6} with diagram

The following table lists representatives of the conjugacy classes of parabolic subgroups with longest element central, and the sizes of the corresponding classes of involutions (see [Car72]).

W_{I}	Type	$\left\|\mathrm{cl}\left(w_{I}\right)\right\|$
$\left\langle r_{1}\right\rangle$	A_{1}	36
$\left\langle r_{1}, r_{3}\right\rangle$	$A_{1} \times A_{1}$	270
$\left\langle r_{1}, r_{3}, r_{6}\right\rangle$	$A_{1} \times A_{1} \times A_{1}$	540
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}\right\rangle$	D_{4}	45.

Thus any automorphism must preserve reflections and so is inner by graph. We have seen that the graph automorphism is inner, being conjugation by w_{0}, and so

$$
\operatorname{Aut}(W) \cong W .
$$

Suppose that W is of type E_{7} with diagram

$$
\begin{aligned}
& \cdot 4 \\
& \begin{array}{llllll}
i & \dot{2} & \dot{3} & \dot{5} & \dot{6} & \dot{7}
\end{array}
\end{aligned}
$$

The following table lists representatives of the conjugacy classes of parabolic subgroups with longest element central, and the sizes of the corresponding classes of involutions.

W_{I}	Type	$\left\|\mathrm{cl}\left(w_{I}\right)\right\|$
$\left\langle r_{1}\right\rangle$	A_{1}	63
$\left\langle r_{1}, r_{3}\right\rangle$	$A_{1} \times A_{1}$	945
$\left\langle r_{2}, r_{5}, r_{7}\right\rangle$	$A_{1} \times A_{1} \times A_{1}$	3780
$\left\langle r_{4}, r_{5}, r_{7}\right\rangle$	$A_{1} \times A_{1} \times A_{1}$	315
$\left\langle r_{2}, r_{4}, r_{5}, r_{7}\right\rangle$	$A_{1} \times A_{1} \times A_{1} \times A_{1}$	3780
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}\right\rangle$	D_{4}	315
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}, r_{7}\right\rangle$	$A_{1} \times D_{4}$	945
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right\rangle$	D_{6}	63
W	E_{7}	1

If r is a reflection, then $r w_{0}$ is an involution and so the other class of size 63 must be $w_{0} \operatorname{cl}\left(r_{1}\right)=\operatorname{cl}\left(r_{1} w_{0}\right)$. Now $l\left(w_{0}\right)=63$ and so $l\left(r_{1} w_{0}\right)=62$ is even. Therefore $\left\langle\operatorname{cl}\left(r_{1} w_{0}\right)\right\rangle \neq W$ as all the elements on the left have even length. Thus all automorphisms of W preserve reflections and hence are inner. W has no graph automorphisms.

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle
$$

Finally suppose that W is of type E_{8} with diagram

$$
\begin{array}{lllllll}
\mathbf{i} & \dot{8} & { }_{3}^{4} & \dot{5} & \dot{6} & \dot{7} & \dot{8}
\end{array}
$$

The classes of involutions are as follows:

W_{I}	Type	$\left\|\operatorname{cl}\left(w_{I}\right)\right\|$
$\left\langle r_{1}\right\rangle$	A_{1}	120
$\left\langle r_{1}, r_{3}\right\rangle$	$A_{1} \times A_{1}$	3780
$\left\langle r_{1}, r_{3}, r_{6}\right\rangle$	$A_{1} \times A_{1} \times A_{1}$	37800
$\left\langle r_{1}, r_{3}, r_{6}, r_{8}\right\rangle$	$A_{1} \times A_{1} \times A_{1} \times A_{1}$	113400
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}\right\rangle$	D_{4}	3150
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}, r_{7}\right\rangle$	$D_{4} \times A_{1}$	37800
$\left\langle r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right\rangle$	D_{6}	3780
$\left\langle r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right\rangle$	E_{7}	120
W	E_{8}	1

In this case ψ is an automorphism that must interchange the classes of size 120 . Thus, up to ψ, automorphisms preserve reflections and hence are inner, by Proposition 1.44.

$$
\operatorname{Aut}(W) \cong\left(W /\left\langle w_{0}\right\rangle\right) \rtimes\langle\psi\rangle
$$

The following proposition summarizes what we have shown.

2.9 Proposition

(a) If W is a group of type E_{6}, then

$$
\operatorname{Aut}(W) \cong W
$$

(b) If W is a group of type E_{7}, then

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle
$$

(c) If W is a group of type E_{8}, then

$$
\operatorname{Aut}(W) \cong\left(W /\left\langle w_{0}\right\rangle\right) \rtimes\langle\psi\rangle
$$

Note that all automorphisms of groups of type E_{6} or E_{7} are inner.

§2.4 Type F

There is of course only one finite group of this type. Suppose that W is of type F_{4} with diagram

$$
\dot{\mathrm{i}}^{\dot{x}^{4}} \dot{\mathbf{4}}
$$

By Lemmas 3.18 and 3.19 it can be seen that there are two classes of reflections with representatives r_{1} and r_{4}. In particular this proves that the graph automorphism is outer. The classes of involutions are as follows:

W_{I}	Type	$\left\|\operatorname{cl}\left(w_{I}\right)\right\|$
$I_{1}=\left\langle r_{1}\right\rangle$	A_{1}	12
$I_{2}=\left\langle r_{4}\right\rangle$	A_{1}	12
$I_{3}=\left\langle r_{2}, r_{3}\right\rangle$	$I_{2}(4)$	18
$I_{4}=\left\langle r_{1}, r_{4}\right\rangle$	$A_{1} \times A_{1}$	72
$I_{5}=\left\langle r_{1}, r_{2}, r_{3}\right\rangle$	B_{3}	12
$I_{6}=\left\langle r_{2}, r_{3}, r_{4}\right\rangle$	B_{3}	12
$I_{7}=W$	F_{4}	1

Define by $\psi_{l}: r_{1} \mapsto r_{1} w_{0}, r_{2} \mapsto r_{2} w_{0}, r_{3} \mapsto r_{3}$ and $r_{4} \mapsto r_{4}$. Similarly define ψ_{r} by $r_{1} \mapsto r_{1}$, $r_{2} \mapsto r_{2}, r_{3} \mapsto r_{3} w_{0}$ and $r_{4} \mapsto r_{4} w_{0}$. It is clear that ψ_{l} and ψ_{r} are automorphisms of W that are outer as they do not map reflections to reflections. It can be seen that:
(i) $\quad \gamma$ interchanges I_{1} and I_{2} and interchanges I_{5} and I_{6}.
(ii) ψ_{l} fixes I_{2} and I_{5} while interchanging I_{1} and I_{6}.
(iii) $\quad \psi_{r}$ fixes I_{1} and I_{6} while interchanging I_{2} and I_{5}.

Let \mathcal{C}_{j} be the conjugacy class containing the central element of $W_{I_{j}}$. Then $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ generates W, but it can be checked that $\mathcal{C}_{1} \cup \mathcal{C}_{6}$ does not. Indeed both \mathcal{C}_{1} and \mathcal{C}_{6} are contained in the kernel of the homomorphism $W \rightarrow\{ \pm 1\}$ given by $r_{1}, r_{2} \mapsto 1$ and $r_{3}, r_{4} \mapsto-1$.

So no automorphism maps $\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\} \mapsto\left\{\mathcal{C}_{1}, \mathcal{C}_{6}\right\}$. Similarly, there is no automorphism that maps this set to $\left\{\mathcal{C}_{2}, \mathcal{C}_{5}\right\}$. So the possible targets for $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ are:

$$
\begin{aligned}
&\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right) \mapsto\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right) \\
&\left(\mathcal{C}_{1}, \mathcal{C}_{5}\right) \\
&\left(\mathcal{C}_{2}, \mathcal{C}_{1}\right) \gamma \\
&\left(\mathcal{C}_{2}, \mathcal{C}_{6}\right) \psi_{l} \gamma \\
&\left(\mathcal{C}_{5}, \mathcal{C}_{1}\right) \gamma \psi_{l} \\
&\left(\mathcal{C}_{5}, \mathcal{C}_{6}\right) \psi_{l} \psi_{r} \gamma=\psi_{l} \gamma \psi_{l} \\
&\left(\mathcal{C}_{6}, \mathcal{C}_{2}\right) \psi_{l} \\
&\left(\mathcal{C}_{6}, \mathcal{C}_{5}\right) \\
& \psi_{l} \psi_{r}=\psi=\psi_{l} \gamma \psi_{l} \gamma .
\end{aligned}
$$

If automorphisms α_{1} and α_{2} have the property that $\alpha_{1}\left(\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}\right)=\alpha_{2}\left(\left\{\mathcal{C}_{1}, \mathcal{C}_{2}\right\}\right)$ then $\alpha_{2}^{-1} \alpha_{1}$ preserves reflections, and so is inner by graph (by Proposition 1.44). So, modulo inner automorphisms the above 8 possibilities are the only ones. Thus $\operatorname{Out}(W)=\left\langle\gamma, \psi_{l}\right\rangle$ is dihedral of order 8 . The following proposition summarizes what we have shown.

2.10 Proposition

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle \rtimes\left\langle\gamma, \psi_{l}\right\rangle
$$

where $\left\langle\gamma, \psi_{l}\right\rangle$ is a dihedral group of order 8 .

§2.5 Type H

Suppose W is of type H_{3} with diagram

$$
\begin{array}{cc}
& \begin{array}{l}
5 \\
1
\end{array} \quad \stackrel{\bullet}{2} \quad \\
\hline
\end{array}
$$

The classes of involutions are as follows:

W_{I}	Type	$\left\|\operatorname{cl}\left(w_{I}\right)\right\|$
$\left\langle r_{1}\right\rangle$	A_{1}	15
$\left\langle r_{1}, r_{3}\right\rangle$	$A_{1} \times A_{1}$	15
W	H_{3}	1

Now the elements in $\mathrm{cl}\left(r_{1} r_{3}\right)$ all have even length and so all automorphisms map reflections to reflections. Unfortunately the graph of W contains an edge labelled with a 5 and so, up to inner automorphisms, there are two possibilities:

$$
\begin{aligned}
\mathrm{i}^{5} \dot{\mathrm{i}} \dot{3} & \mapsto \dot{\mathrm{i}}^{5} \dot{\mathrm{i}} \quad \dot{3} \quad \text { or } \\
& \mapsto \mathrm{i}^{5^{\prime}} \dot{\mathrm{i}} \quad \dot{3}
\end{aligned}
$$

where in the second case $a_{1}^{\prime} \cdot a_{2}^{\prime}=-\mathrm{c}\left(2 \pi_{5}\right)=-m / 2$ where $m=(\sqrt{5}-1) / 2$, recalling that $a_{1} \cdot a_{2}=-l / 2$ where $l=(\sqrt{5}+1) / 2$.

Define $\xi: W \rightarrow W$ by

$$
\begin{aligned}
\xi: & r_{1} \mapsto r_{a_{1}^{\prime}}=r_{2} r_{1} r_{3} r_{2} r_{3} r_{1} r_{2} r_{1} r_{3} r_{2} r_{3} r_{1} r_{2} \\
& r_{2} \mapsto r_{2} \\
& r_{3} \mapsto r_{3}
\end{aligned}
$$

where $a_{1}^{\prime}=r_{2} r_{1} r_{3} r_{2} r_{3} r_{1} a_{2}=-(l+1) a_{1}-2 l a_{2}-l a_{3}$. Then $a_{1}^{\prime} \cdot a_{2}=-m / 2=-\mathrm{c}\left(2 \pi_{5}\right)$ and so $r_{a_{1}^{\prime}} r_{2}$ has order 5. Furthermore, $a_{1}^{\prime} \cdot a_{3}=0$, and so $r_{a_{1}^{\prime}} r_{3}$ has order 2. Thus ξ is a homomorphism. It is easily checked that $\xi^{2}=1$ and therefore ξ is an outer automorphism of W.

Now suppose that α is an outer automorphism of W. Then up to inner automorphisms we may assume

$$
\begin{aligned}
\alpha: r_{1} & \mapsto r_{\beta} \\
r_{2} & \mapsto r_{\gamma} \\
r_{3} & \mapsto r_{\delta}
\end{aligned}
$$

where $\beta \cdot \gamma=-m / 2, \beta \cdot \delta=0$ and $\gamma \cdot \delta=-1 / 2$. Then

$$
\begin{aligned}
\alpha \xi: r_{1} & \mapsto r_{r_{\gamma} r_{\beta} r_{\delta} r_{\gamma} r_{\delta} r_{\beta} \gamma}=r_{\beta^{\prime}} \\
r_{2} & \mapsto r_{\gamma} \\
r_{3} & \mapsto r_{\delta}
\end{aligned}
$$

where $\beta^{\prime}=(m-1) \beta-2 m \gamma-m \delta$. Now $\beta^{\prime} \cdot \gamma=-l / 2, \beta^{\prime} \cdot \delta=0$ and $\gamma \cdot \delta=-1 / 2$ and hence $\alpha \xi$ is inner. Hence

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle \rtimes\langle\xi\rangle
$$

Now suppose that W is of type H_{4} with diagram

$$
{ }_{1} \quad \dot{5} \quad \dot{3} \quad . \quad . \quad .
$$

The classes of involutions are as follows:

W_{I}	Type	$\left\|\operatorname{cl}\left(w_{I}\right)\right\|$
$\left\langle r_{1}\right\rangle$	A_{1}	60
$\left\langle r_{1}, r_{3}\right\rangle$	$A_{1} \times A_{1}$	450
$\left\langle r_{1}, r_{2}, r_{3}\right\rangle$	H_{3}	60
W	H_{4}	1

In this case $\psi: x \mapsto x\left(w_{0}\right)^{l(x)}$ is an automorphism that interchanges the two classes of size 60 and so, up to ψ, we may assume that an automorphism α maps reflections to reflections. Thus, up to inner automorphisms we have

$$
\begin{aligned}
& \mapsto \mathrm{i}^{5^{\prime}} \dot{\mathrm{j}} \quad \dot{3} \quad \dot{4}
\end{aligned}
$$

As in the type H_{3} case there is an automorphism ξ such that

$$
\begin{aligned}
& \xi: r_{1} \mapsto r_{a_{1}^{\prime}} \\
& r_{2} \mapsto r_{2} \\
& r_{3} \mapsto r_{3} \\
& r_{4} \mapsto r_{4}
\end{aligned}
$$

where

$$
\begin{aligned}
a_{1}^{\prime} & =r_{1} r_{2} r_{3} r_{4} r_{1} r_{2} r_{3} r_{1} r_{2} r_{3} r_{4} r_{1} r_{2} r_{3} r_{4} r_{1} r_{2} r_{3} r_{1} a_{2} \\
& =-(3 l+2) a_{1}-(3 l+3) a_{2}-2(l+1) a_{3}-(l+1) a_{4} .
\end{aligned}
$$

A similar, but much longer, calculation shows that $\alpha \xi$ is inner and hence

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle \rtimes\langle\xi, \psi\rangle=\left(W /\left\langle w_{0}\right\rangle \rtimes\langle\xi\rangle\right) \times\langle\psi\rangle
$$

The following proposition summarizes what we have shown.

2.11 Proposition

(a) If W is a group of type H_{3}, then

$$
\operatorname{Aut}(W) \cong W /\left\langle w_{0}\right\rangle \rtimes\langle\xi\rangle .
$$

(b) If W is a group of type H_{4}, then

$$
\operatorname{Aut}(W) \cong\left(W /\left\langle w_{0}\right\rangle \rtimes\langle\xi\rangle\right) \times\langle\psi\rangle
$$

Any automorphism of a group of type H_{3} maps reflections to reflections.

§2.6 The Dihedral Groups

Suppose that W is of type $I_{2}(m)$ with diagram

$$
i_{i}^{m} \dot{i}
$$

It is easily checked that the roots in Φ have the form 1.12, namely:

$$
v_{h}=\frac{\mathrm{s}\left((h-1) \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{1}+\frac{\mathrm{s}\left(h \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{2}
$$

where $\pi_{m}=\pi / m$ and $0 \leq h<2 m$. Observe that $v_{0}=-a_{1}, v_{1}=a_{2}$ and $v_{h+m}=-v_{h}$ for all h. It is readily checked that $v_{h} \cdot v_{0}=\mathrm{c}\left(h \pi_{m}\right)$, and the permutation of the root system defined by $v_{h} \mapsto v_{h+1}$ corresponds to a rotation through π_{m}.

Since the reflections are precisely the non-central involutions in W it is trivial that all automorphisms map reflections to reflections. Of course, an automorphism is completely determined by its effect on r_{1} and r_{2}. Clearly there is an automorphism that takes $r_{v_{h}}$ to $r_{v_{h+1}}$ for all h; we denote this automorphism by α. Since v_{h} and v_{h+m} correspond to the same reflection, α has order m. Note also that the group generated by α acts transitively on the set of reflections in W.
2.12 Notation Let $a b \cdot \stackrel{n}{n}$. denote the product of the first n terms of the alternating sequence a, b, a, b, \ldots.

Every reflection in W can be expressed in the form $r_{2} r_{1} . \stackrel{n}{.}$. for some odd integer n : indeed, $n=2 h-1$ gives the reflection along v_{h}. It follows that $r_{1} r_{v_{h}}=\left(r_{1} r_{2}\right)^{h}$, which has order m if and only if $\operatorname{gcd}(h, m)=1$. It follows that there is an automorphism α_{h} such that $r_{1} \mapsto r_{1}$ and $r_{2} \mapsto r_{v_{h}}$ whenever $\operatorname{gcd}(h, m)=1$, and these are the only automorphisms that fix r_{1}. So if we define $\operatorname{Aut}_{1}(W)=\left\{\alpha_{h} \mid \operatorname{gcd}(h, m)=1\right\}$, then it follows that $\operatorname{Aut}(W)=\operatorname{Aut}_{1}(W)\langle\alpha\rangle$.

Observe that if $\operatorname{gcd}(h, m)=1$ and $\operatorname{gcd}(k, m)=1$ then

$$
\left(\alpha_{h} \alpha_{k}\right)\left(r_{2}\right)=\alpha_{h}\left(r_{2} r_{1} \cdot \stackrel{2 k-1}{\bullet} \cdot\right)=\alpha_{h}\left(r_{2}\right) r_{1} \cdot \stackrel{2 k-1}{\bullet} \cdot=r_{2} r_{1} \cdot \stackrel{2 h k-1}{\cdot} \cdot=\alpha_{h k}\left(r_{2}\right) .
$$

Obviously also $\left(\alpha_{h} \alpha_{k}\right)\left(r_{1}\right)=r_{1}$, and so it follows that $\alpha_{h} \alpha_{k}=\alpha_{h k}$. So $\operatorname{Aut}_{1}(W)$ is isomorphic to the group of units of the ring of integers modulo m. Furthermore, it is easily verified that $\alpha_{h} \alpha=\alpha^{h} \alpha_{h}$, this being the automorphism that takes the reflection along v_{k} to the reflection along $v_{h k+h}$ for each k. So conjugation by α_{h} acts on the cyclic group of order m generated by α by raising elements to the power h. Thus $\operatorname{Aut}(W)$ is the holomorph of the cyclic group of order m.

Note that α_{m-1} fixes r_{1} and takes r_{2} to $r_{2} r_{1} \stackrel{2 m-3}{\sim} .=r_{1} r_{2} r_{1}$; hence α_{m-1} is conjugation by r_{1}. If γ is the nontrivial graph automorphism then $\gamma \alpha_{m-1}$ takes $r_{v_{0}}=r_{1}$ to $r_{2}=r_{v_{1}}$ and r_{2} to $r_{2} r_{1} r_{2}=r_{v_{3}}$. Thus $\gamma \alpha_{m-1}=\alpha$. It follows that $\left\langle\alpha, \alpha_{m-1}\right\rangle=\left\langle\gamma, \alpha_{m-1}\right\rangle$ is the group of all automorphisms that are inner by graph.

If m is even then the graph automorphism γ is outer, since it interchanges the two classes of reflections. If m is odd then γ is inner, being conjugation by w_{0}. The following proposition summarizes what we have shown.
2.13 Proposition Suppose that W is a group of type $I_{2}(m)$ and use the notation from above. Then all automorphisms of W preserve reflections, $\operatorname{Aut}(W)=\operatorname{Aut}_{1}(W)\langle\alpha\rangle$ is the holomorph of the cyclic group of order m and $\operatorname{Aut}_{1}(W)$ is isomorphic to the group of units of the ring of integers modulo m.

§2.7 Automorphisms of Infinite Coxeter Groups

In the finite case the subgroups of inner automorphisms and graph automorphisms are not always disjoint. We have seen that in the cases $A_{n}, D_{2 k+1}, I_{2}(2 k+1)$ and E_{6} the non-trivial graph automorphism is the same as conjugation by the longest element of W. This cannot happen if W is an infinite irreducible Coxeter group; in fact we can say slightly more.
2.14 Lemma If W is any infinite Coxeter group with no finite irreducible components, then the only graph automorphism that is inner is the identity.
Proof Suppose that conjugation by $w \in W$ is a graph automorphism. If W is not irreducible then

$$
W=W_{L_{1}} \times \cdots \times W_{L_{m}}
$$

where $\Pi=L_{1} \dot{\cup} L_{2} \dot{\cup} \cdots \dot{U} L_{M}$. As the automorphism is inner it is clear that each component is fixed and, by looking at the restriction to $W_{L_{i}}$, we may assume that Π is connected. That is, we now assume that W is irreducible. Now let

$$
J=\left\{a \in \Pi \mid w a \in \Phi^{-}\right\} .
$$

If $J=\emptyset$ then $N(w)=\emptyset$, whence $l(w)=0$ by Corollary 1.10, giving $w=1$. If $J=\Pi$ then $w \Phi^{+}=\Phi^{-}$and $l(w)=\left|\Phi^{+}\right|$. But this is impossible since Φ is infinite, by Lemma 1.11. Thus $\emptyset \varsubsetneqq J \varsubsetneqq \Pi$ and hence both J and $\Pi \backslash J$ are non-empty.

As conjugation by w is a graph automorphism, for each $a \in \Pi$ there is an $a^{\prime} \in \Pi$ such that $w r_{a} w^{-1}=r_{a^{\prime}}$. This gives $w a= \pm a^{\prime}$. It follows that $w J=-K$ for some $K \subset \Pi$ and $w(\Pi \backslash J)=\Pi \backslash K$. Now let $a \in J$ and $b \in \Pi \backslash J$. Then $-w a=a^{\prime} \in K$ and $w b=b^{\prime} \in \Pi \backslash K$, and by the definition of the bilinear form it follows that $a \cdot b \leq 0$ and $a^{\prime} \cdot b^{\prime} \leq 0$. But $a \cdot b=w a \cdot w b=-a^{\prime} \cdot b^{\prime}$, and so we conclude that $a \cdot b=0$. This result holds for all $a \in J$ and $b \in \Pi \backslash J$, and the two sets are non-empty, contradicting the irreducibility of W.

Combined with Corollary 1.44 the following result has been proved.
2.15 Corollary If W is an infinite Coxeter group, as above, whose diagram is a forest with no unusual labels and $R(W)$ is the group of automorphisms of W that preserve $\operatorname{Ref}(W)$ then

$$
R(W)=\operatorname{Inn}(W) \rtimes \operatorname{Gr}(W)
$$

The fact that $\operatorname{Inn}(W) \cong W / Z(W)$, where $Z(W)$ is the centre of W, is well-known. When W is irreducible, apart from the finite groups, the centre is trivial and so $\operatorname{Inn}(W) \cong W$.
2.16 Lemma If W is an infinite irreducible Coxeter group then $Z(W)=\{1\}$.

Proof Let $w \in Z(W)$. Then for all $a \in \Phi$ we have $r_{w a}=w r_{a} w^{-1}=r_{a}$ and so $w a= \pm a$. Hence $\Pi=L \dot{\cup} K$ where

$$
\begin{aligned}
L & =\{a \in \Pi \mid w a=-a\} \\
K & =\{a \in \Pi \mid w a=a\} .
\end{aligned}
$$

Now for all $a \in L$ and $b \in K$ we find that $a \cdot b=w a \cdot w b=-a \cdot b$ and hence $a \cdot b=0$. This contradicts the irreducibility of W unless one of L or K is empty. If $K=\emptyset$ then $w a=-a$ for all $a \in \Phi^{+}$, and so $N(w)=\Phi^{+}$, which is infinite by Lemma 1.11. However this contradicts Corollary 1.8. So $L=\phi$, and hence $w=1$. So we conclude that $Z(W)=\{1\}$ as required.
2.17 Corollary If W is an infinite irreducible Coxeter group whose diagram is a tree with no unusual labels and $R(W)$ is the set of automorphisms of W that preserve $\operatorname{Ref}(W)$ then

$$
R(W) \cong \operatorname{Inn}(W) \rtimes \operatorname{Gr}(W) \cong W \rtimes \operatorname{Gr}(W)
$$

Chapter 3

Nearly Finite Coxeter Groups

3.1 Definition Given the Coxeter group W with set of simple reflections Π indexed by positive integers, if $a_{i} \in \Pi$, then we let W_{i} denote the standard parabolic subgroup $W_{\Pi \backslash\left\{a_{i}\right\}}$. If W_{i} is finite for some a_{i}, then we denote by w_{i} the longest element in W_{i}.
3.2 Definition We shall call the infinite Coxeter group W nearly finite if there is a simple root a_{i} such that W_{i} is finite.

$\S 3.1$ Automorphisms That Preserve Reflections

Before considering the nearly finite groups we need some linear algebra.
3.3 Definition The $n \times n$ matrix M is reducible if there are non-empty sets I and J such that $I \dot{\cup} J=\{1, \ldots n\}$ and $m_{i j}=0$ for all $i \in I$ and $j \in J$. Otherwise M is said to be irreducible.
3.4 Lemma Let M be the Gram matrix of the finite rank Coxeter group, W, then M is irreducible if and only if W is irreducible.
Proof This is clear since $m_{i j}=a_{i} \cdot a_{j}$ is zero if and only if vertices i and j are not connected in the Coxeter diagram.
3.5 Lemma Suppose that M is a positive definite matrix such that $m_{i i}=1$ for all i and $m_{i j} \leq 0$ for all $i \neq j$. Let $C=M^{-1}$, then $c_{i j} \geq 0$ for all i and j. Further, if M is irreducible, then $c_{i j}>0$ for all i and j.
Proof Let e_{i} be the $i^{\text {th }}$ standard basis vector, written as a column vector. The $i i^{\text {th }}$ entry of C is equal to the $i i^{\text {th }}$ cofactor of M divided by $\operatorname{det}(M)$. As M is positive definite the principal minors are all positive and hence the $i i^{\text {th }}$ entry of C is non-zero. Also $v^{t} M v \geq 0$ for all vectors v with equality if and only if $v=0$.

Let $C_{i}=\sum_{j=1}^{n} \lambda_{j} e_{j}$ be the $i^{\text {th }}$ column of $C^{t}, J=\left\{j \mid \lambda_{j} \geq 0\right\}$ and $K=\left\{k \mid \lambda_{k}<0\right\}$. Setting $C^{\prime}=\sum_{J} \lambda_{j} e_{j}$ and $C^{\prime \prime}=\sum_{K} \lambda_{k} e_{k}$ we have $C_{i}=C^{\prime}+C^{\prime \prime}$. Now $C_{i}^{t} M=e_{i}^{t}$ and so

$$
C_{i}^{t} M e_{j}=e_{i}^{t} e_{j} \geq 0
$$

for all i and j. Since $\lambda_{k}<0$ for $k \in K$,

$$
\begin{aligned}
0 & \geq \sum_{k \in K} \lambda_{k}\left(C_{i}^{t} M e_{k}\right) \\
& =C_{i}^{t} M C^{\prime \prime} \\
& =C^{\prime t} M C^{\prime \prime}+C^{\prime \prime t} M C^{\prime \prime} \\
& =\sum_{\substack{j \in J \\
k \in K}} \lambda_{j} \lambda_{k} e_{j}^{t} M e_{k}+C^{\prime \prime t} M C^{\prime \prime} \\
& =\sum_{\substack{j \in J \\
k \in K}} \lambda_{j} \lambda_{k} m_{j k}+C^{\prime \prime t} M C^{\prime \prime} .
\end{aligned}
$$

Since $\lambda_{j} \geq 0, \lambda_{k}<$ and $m_{j k} \leq 0$ each term $\lambda_{j} \lambda_{k} m_{j k}$ is non-negative. Hence

$$
0 \geq \sum_{J, K} \lambda_{j} \lambda_{k} m_{j k}+C^{\prime \prime t} M C^{\prime \prime} \geq C^{\prime \prime t} M C^{\prime \prime} \geq 0 .
$$

Thus $C^{\prime \prime}=0$ and $C_{i}=C^{\prime}$ only has non-negative entries. Hence C has non-negative entries.
Suppose that C has at least one entry equal to 0 , say $c_{r k}=0$. Let $I=\left\{j \mid c_{r j}>0\right\}$ and $J=\left\{j \mid c_{r j}=0\right\}$; then $I \dot{\cup} J=\{1, \ldots, n\}$, remembering that $c_{i j} \geq 0$ for all i and j. Now $c_{r r} \neq 0$ and so $r \in I$, while $k \in J$. Hence both I and J are nonempty. If $j \in J$, then $j \neq r$; thus

$$
\begin{aligned}
0=e_{r}^{t} e_{j} & =C_{r}^{t} M e_{j} \\
& =\sum_{i \in I} c_{r i} e_{i}^{t} M e_{j} \\
& =\sum_{i \in I} c_{r i} m_{i j} .
\end{aligned}
$$

We have $c_{r i}>0$ for $i \in I$, while $m_{i j} \leq 0$ as $i \neq j$. Therefore $m_{i j}=0$ for all $i \in I$. Thus $m_{i j}=0$ for all $i \in I$ and $j \in J$ and hence M is reducible.
3.6 Proposition Suppose that W is a finite Coxeter group with simple roots $\left\{a_{1}, \ldots, a_{n}\right\}$, and let d_{1}, \ldots, d_{n} be a set of non-negative real numbers. Let $x=\sum \delta_{i} a_{i}$ be the solution of the system of equations $x \cdot a_{i}=d_{i}$ for all i. Then $\delta_{i} \geq 0$ for all i, and if some d_{j} is nonzero then $\delta_{i} \geq 0$ for all i and $\delta_{k}>0$ for all a_{k} in the same connected component as a_{j}.

In particular if W is irreducible and d_{j} is non-zero for some j then $\delta_{i}>0$ for all i.
Proof If M is the Gram matrix of the finite Coxeter group W, then M is positive definite, by Lemma 1.1. For all i we have $m_{i i}=a_{i} \cdot a_{i}=1$, whereas if $i \neq j$, then

$$
m_{i j}=a_{i} \cdot a_{j}=-\mathrm{c}\left(\pi_{m_{i j}}\right) \leq 0 .
$$

By Lemma 3.4 M is irreducible if and only if W is irreducible. Thus we may use Lemma 3.5.
Observe that the values of δ_{i} are given by

$$
\left(\delta_{i}\right)=M^{-1}\left(d_{i}\right) .
$$

The entries of M^{-1} are all non-negative, by Lemma 3.5, and hence the δ_{i} are non-negative given that the d_{i} are non-negative.

If W is reducible, then the vector space spanned by the a_{i} is the orthogonal sum of subspaces associated with the irreducible components and the Gram matrix M is the diagonal sum of the Gram matrices for the components. Thus we may consider each component separately and so suppose that W is irreducible. In that case the entries of M^{-1} are all positive. Given $\left(\delta_{i}\right)=M^{-1}\left(d_{i}\right)$ if any one d_{i} is positive while the rest are non-negative, then each δ_{i} is the sum of non-negative terms including at least one positive term. Hence each δ_{i} is positive.
3.7 Lemma Suppose W is a Coxeter group, r_{i} and r_{j} are simple reflections and α is an automorphism of W such that $\alpha\left(r_{i}\right)=r_{k}$ and $\alpha\left(r_{j}\right)=r_{l}$ are also simple reflections. Then $a_{i} \cdot a_{j}=a_{k} \cdot a_{l}$.
Proof Let $a_{i} \cdot a_{j}=-\mathrm{c}\left(\pi_{s}\right)$ and $a_{k} \cdot a_{l}=-\mathrm{c}\left(\pi_{t}\right)$. The order of $r_{i} r_{j}$ is s which equals t the order of $r_{k} r_{l}$ and hence $a_{i} \cdot a_{j}=a_{k} \cdot a_{l}$.
3.8 Definition We say that a Coxeter diagram is of finite type if the corresponding Coxeter group is finite.

A set of simple reflections in a Coxeter group is of finite type if the parabolic subgroup they generate is finite.
3.9 Theorem Suppose that W is irreducible, non-degenerate and nearly finite. Suppose that the diagram of W has no infinite bonds. Let Δ be the set of simple reflections and suppose that there exist $r_{1}, r_{y} \in \Delta$ (possibly equal) and an automorphism $\alpha: W \rightarrow W$ such that the following properties hold:

$$
\begin{equation*}
\Delta_{1}=\Delta \backslash\left\{r_{1}\right\} \text { and } \Delta_{y}=\Delta \backslash\left\{r_{y}\right\} \text { are both of finite type, and } \alpha\left(\Delta_{1}\right)=\Delta_{y} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha \in R(W) . \tag{2}
\end{equation*}
$$

Then α is inner by graph.

Proof Let V_{1} and V_{y} be the subspaces of V spanned by $\Pi \backslash\left\{a_{1}\right\}$ and $\Pi \backslash\left\{a_{y}\right\}$ respectively, and let x_{i} be the projection of $-a_{i}$ onto V_{i} for $i=1$ and y. We shall show that $x_{y} \cdot x_{y} \leq x_{1} \cdot x_{1}$. Since the same argument with r_{1} and r_{y} interchanged, α replaced by α^{-1} and using Lemma 1.33 will show that $x_{1} \cdot x_{1} \leq x_{y} \cdot x_{y}$, it follows that $x_{1} \cdot x_{1}=x_{y} \cdot x_{y}$.

Write $\{2,3, \ldots, n\}=J^{(1)} \cup J^{(2)} \cup \cdots \cup J^{(k)}$ where the $J^{(j)}$ correspond to the irreducible components of $\Pi \backslash\left\{a_{1}\right\}$. For each $i \in\{2,3, \ldots, n\}$ let

$$
a_{i} \cdot a_{1}=-\mathrm{c}\left(\pi_{m_{i 1}}\right)=-c_{i}
$$

so that by the definition of x_{1},

$$
a_{i} \cdot x_{1}=c_{i}
$$

for all $i \in\{2,3, \ldots, n\}$. Write

$$
u_{1}=x_{1}+a_{1}
$$

so that u_{1} spans the orthogonal complement of V_{1} in V. (As W is non-degenerate V_{1} has dimension $n-1, V_{1}^{\perp}$ is one dimensional and $a_{1} \notin V_{1}$.)

Let $x_{1}=\sum_{i=2}^{n} \mu_{i} a_{i}$. Note that

$$
x_{1}=x_{1}^{(1)}+x_{1}^{(2)}+\cdots+x_{1}^{(k)}
$$

where $x_{1}^{(j)}$ is the projection of $-a_{1}$ onto the subspace spanned by $\left\{a_{i} \mid i \in J^{(j)}\right\}$. Now for all $j \in\{1,2, \ldots, k\}$ and $i \in J^{(j)}$,

$$
x_{1}^{(j)} \cdot a_{i}=-a_{1} \cdot a_{i}=c_{i} \geq 0
$$

moreover, since W is irreducible there is at least one $i \in J^{(j)}$ such that $c_{i}>0$. Since

$$
x_{1}^{(j)}=\sum_{i \in J^{(j)}} \mu_{i} a_{i}
$$

it follows from Proposition 3.6 that $\mu_{i}>0$ for all i.
Let $x \in \Phi^{+}$be such that $\alpha\left(r_{1}\right)=r_{x}$, and let σ be the permutation of $\{1,2, \ldots, n\}$ such that $\alpha\left(r_{i}\right)=r_{\sigma i}$ for $i \in\{2,3, \ldots, n\}$. (Thus $\sigma 1=y$.) As $r_{\sigma i} r_{x}$ has the same order as $r_{i} r_{1}$, namely $m_{i 1}$, we have

$$
x \cdot a_{\sigma i}=\mathrm{c}\left(j_{i} \pi_{m_{i 1}}\right)=d_{i}
$$

for some j_{i} coprime to $m_{i 1}$. Note that $c_{i} \geq\left|d_{i}\right|$ for all $i \in\{2,3, \ldots, n\}$, and $d_{i}=0$ if and only if $c_{i}=0$. Let $x_{0}=\sum_{i=2}^{n} \lambda_{\sigma i} a_{\sigma i}$ be the projection of x onto V_{y}, so that $x_{0} \cdot a_{\sigma i}=d_{i}$ for each i, and

$$
x=x_{0}+\omega u_{y}
$$

for some scalar ω, where $u_{y}=x_{y}+a_{y}$ spans the orthogonal complement of V_{y} in V. Examining the coefficient of a_{y} in the above equation for x, and using Lemma 1.15 , we see that $\omega \geq 1$. Note also that

$$
x_{0}=x_{0}^{(1)}+x_{0}^{(2)}+\cdots+x_{0}^{(k)}
$$

where $x_{0}^{(j)}$ is the projection of x onto the space spanned by $\left\{a_{\sigma i} \mid i \in J^{(j)}\right\}$.
Since $c_{i} \geq\left|d_{i}\right|$ for all $i \in J^{(j)}$ (where $j \in\{1,2, \ldots, k\}$ is arbitrary), we have for all $i \in J^{(j)}$,

$$
\begin{aligned}
0 \leq c_{i}-d_{i} & =x_{1} \cdot a_{i}-x_{0} \cdot a_{\sigma i} \\
& =\left(\sum_{l \in J^{(j)}} \mu_{l} a_{l} \cdot a_{i}\right)-\left(\sum_{l \in J^{(j)}} \lambda_{\sigma l} a_{\sigma l} \cdot a_{\sigma i}\right) \\
& =\left(\sum_{l \in J^{(j)}} \mu_{l} a_{l} \cdot a_{i}\right)-\left(\sum_{l \in J^{(j)}} \lambda_{\sigma l} a_{l} \cdot a_{i}\right) \quad \text { by Lemma } 3.7 \\
& =\sum_{l \in J^{(j)}}\left(\mu_{l}-\lambda_{\sigma l}\right) a_{l} \cdot a_{i} .
\end{aligned}
$$

By Proposition 3.6 it follows that $\mu_{l} \geq \lambda_{\sigma l}$ for all $l \in J^{(j)}$; moreover, if $\mu_{l}-\lambda_{\sigma l}=0$ for some $l \in J^{(j)}$ then we must have $c_{i}-d_{i}=0$ for all $i \in J^{(j)}$. Similarly,

$$
0 \leq c_{i}+d_{i}=\sum_{l \in J^{(j)}}\left(\mu_{l}+\lambda_{\sigma l}\right) a_{l} \cdot a_{i}
$$

for all $i \in J^{(j)}$; so $\mu_{l}+\lambda_{\sigma l} \geq 0$ for all $l \in J^{(j)}$, equality occurring for some l only if $c_{i}+d_{i}=0$ for all $i \in J^{(j)}$. Note in particular that $\mu_{l} \geq\left|\lambda_{\sigma l}\right|$ for all $l \in\{1,2, \ldots, n-1\}$, and if $\mu_{l}=\left|\lambda_{\sigma l}\right|$ then $c_{l}=\left|d_{l}\right|$.

Each $z \in V$ can be written in the form $z=z_{0}+\nu u_{1}$ with $z_{0} \in V_{1}$ and $\nu \in \mathbb{R}$, and if $u_{1} \cdot u_{1} \geq 0$ this gives

$$
z \cdot z=z_{0} \cdot z_{0}+\nu^{2} u_{1} \cdot u_{1} \geq 0
$$

contrary to the fact that W is not of positive type. So $u_{1} \cdot u_{1}<0$, and, by the same reasoning $u_{y} \cdot u_{y}<0$.

Since $x \in \Phi$

$$
1=x \cdot x=\left(x_{0}+\omega u_{y}\right) \cdot\left(x_{0}+\omega u_{y}\right)=x_{0} \cdot x_{0}+\omega^{2} u_{y} \cdot u_{y}
$$

and we also have that

$$
x_{0} \cdot x_{0}=\sum_{i=2}^{n} \lambda_{\sigma i} a_{\sigma i} \cdot x_{0}=\sum_{i=2}^{n} \lambda_{\sigma i} d_{i} .
$$

Similarly,

$$
1=a_{1} \cdot a_{1}=\left(-x_{1}+u_{1}\right) \cdot\left(-x_{1}+u_{1}\right)=x_{1} \cdot x_{1}+u_{1} \cdot u_{1}
$$

and also

$$
x_{1} \cdot x_{1}=\sum_{i=2}^{n} \mu_{i} a_{i} \cdot x_{1}=\sum_{i=2}^{n} \mu_{i} c_{i} .
$$

Thus

$$
u_{1} \cdot u_{1}+\sum_{i=2}^{n} \mu_{i} c_{i}=\omega^{2} u_{y} \cdot u_{y}+\sum_{i=2}^{n} \lambda_{\sigma i} d_{i}
$$

and so

$$
\sum_{i=2}^{n}\left(\mu_{i} c_{i}-\lambda_{\sigma i} d_{i}\right)=\omega^{2} u_{y} \cdot u_{y}-u_{1} \cdot u_{1}
$$

Since $\mu_{i} \geq\left|\lambda_{\sigma i}\right|$ and $c_{i} \geq\left|d_{i}\right|$ for all i we see that $\sum_{i=2}^{n}\left(\mu_{i} c_{i}-\lambda_{\sigma i} d_{i}\right) \geq 0$, and so $\omega^{2} u_{y} \cdot u_{y} \geq u_{1} \cdot u_{1}$. But $\omega^{2} \geq 1$, and since $u_{y} \cdot u_{y}<0$ it follows that $u_{y} \cdot u_{y} \geq \omega^{2} u_{y} \cdot u_{y}$, and hence $u_{y} \cdot u_{y} \geq u_{1} \cdot u_{1}$. Since $1=x_{1} \cdot x_{1}+u_{1} \cdot u_{1}$ (shown above) and $1=x_{y} \cdot x_{y}+u_{y} \cdot u_{y}$ similarly it follows that $x_{y} \cdot x_{y} \leq x_{1} \cdot x_{1}$, as desired.

In view of our earlier remarks, we must have $u_{y} \cdot u_{y}=u_{1} \cdot u_{1}$, and

$$
0 \leq \sum_{i=2}^{n}\left(\mu_{i} c_{i}-\lambda_{\sigma i} d_{i}\right)=\left(\omega^{2}-1\right) u_{1} \cdot u_{1} \leq 0
$$

since $\omega \geq 1$ and $u_{1} \cdot u_{1}<0$. Thus $\left(\omega^{2}-1\right) u_{1} \cdot u_{1}=0$, giving $\omega=1$, and $\sum_{i=2}^{n}\left(\mu_{i} c_{i}-\lambda_{\sigma i} d_{i}\right)=0$, giving $\mu_{i} c_{i}=\lambda_{\sigma i} d_{i}=\left|\lambda_{\sigma i} d_{i}\right|$ for all $i \in\{2,3, \ldots, n\}$.

Since $0 \leq\left(\mu_{l}-\left|\lambda_{\sigma l}\right|\right) c_{l} \leq \mu_{l} c_{l}-\left|\lambda_{\sigma l}\right|\left|d_{l}\right|=0$ it follows that, for all $l \in\{2,3, \ldots, n\}$, either $c_{l}=0$ or $\left|\lambda_{\sigma l}\right|=\mu_{l}$. For each $j \in\{1,2, \ldots, k\}$ we may choose $l \in J^{(j)}$ with $c_{l}>0$; then either $\lambda_{\sigma l}=\mu_{l}$ and $d_{i}=c_{i}$ for all $i \in J^{(j)}$, or else $\lambda_{\sigma l}=-\mu_{l}$, and $d_{i}=-c_{i}$ for all $i \in J^{(j)}$. In the former case we have

$$
x_{0}^{(j)} \cdot a_{\sigma i}=d_{i}=c_{i}=x_{1}^{(j)} \cdot a_{i}
$$

for all $i \in J^{(j)}$, and it follows that $x_{0}^{(j)}=\tilde{\sigma}\left(x_{1}^{(j)}\right)$, where $\tilde{\sigma}$ is the isomorphism $V_{1} \rightarrow V_{y}$ given by $a_{i} \mapsto a_{\sigma i}$. In the latter case,

$$
x_{0}^{(j)} \cdot a_{\sigma i}=d_{i}=-c_{i}=-x_{1}^{(j)} \cdot a_{i}
$$

for all $i \in J^{(j)}$, giving $x_{0}^{(j)}=-\tilde{\sigma}\left(x_{1}^{(j)}\right)$.
Let w be the product of the longest elements of the parabolic subgroups corresponding to those sets $\sigma\left(J^{(j)}\right)$ for which $x_{0}^{(j)}=\tilde{\sigma}\left(x_{1}^{(j)}\right)$, let β be the inner automorphism of W given by conjugation by w, and let $\alpha^{\prime}=\beta \alpha$. Since β induces a graph automorphism on $\Delta \backslash\left\{r_{y}\right\}$, we see that α^{\prime} satisfies the same hypotheses as α. Now $\alpha^{\prime}\left(r_{1}\right)=w r_{x} w^{-1}=r_{w x}$, and

$$
\begin{aligned}
w x & =w x_{0}+u_{y} \\
& =w x_{0}^{(1)}+w x_{0}^{(2)}+\cdots+w x_{0}^{(k)}+u_{y} .
\end{aligned}
$$

where $w x_{0}^{(j)}$ is the projection of $w x$ onto the span of $\left\{a_{\sigma i} \mid i \in J^{(j)}\right\}$. Applying to α^{\prime} the arguments used for α enables us to deduce that for each j

$$
w x_{0}^{(j)}= \pm \tilde{\sigma}\left(x_{1}^{(j)}\right)= \pm \sum_{i \in J^{(j)}} \mu_{i} a_{\sigma i} .
$$

But w was chosen so that $w x_{0}^{(j)}$ is a negative linear combination of $\left\{a_{\sigma i} \mid i \in J^{(j)}\right\}$ for each j, and so we conclude that $w x_{0}^{(j)}=-\tilde{\sigma}\left(x_{1}^{(j)}\right)$. Thus

$$
\begin{aligned}
w x & =-\tilde{\sigma}\left(x_{1}^{(1)}\right)-\tilde{\sigma}\left(x_{1}^{(2)}\right)-\cdots-\tilde{\sigma}\left(x_{1}^{(k)}\right)+u_{y} \\
& =-\tilde{\sigma}\left(x_{1}\right)+u_{y}
\end{aligned}
$$

showing that $w x \cdot a_{\sigma i}=-c_{i}=a_{1} \cdot a_{i}$ for all $i \in\{2,3, \ldots, n\}$. Lemma 3.7 together with Theorem 1.44 shows that α^{\prime} is inner by graph. (Indeed we have shown that the positive roots $w x, a_{\sigma 2}, a_{\sigma 3}, \ldots, a_{\sigma n}$ form a base for the root system that is isomorphic to Π. From this we can conclude that $w x=a_{y}$ and that α^{\prime} is in fact a graph automorphism.)

§3.2 Reflections and Components

3.10 Definitions If W is a Coxeter group and $r \in W$, then we denote the conjugacy class of r in W by $\mathcal{C}(r)$.
(1) If r and r^{\prime} are reflections in W then we say that $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$ are linked if we can find $r_{1} \in \mathcal{C}(r)$ and $r_{2} \in \mathcal{C}\left(r^{\prime}\right)$ such that r_{1} and r_{2} do not commute.
(2) If r and r^{\prime} are reflections in W then we say that there is a chain joining $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$ if we can find reflections r_{0}, \ldots, r_{n} such that $r_{0}=r, r_{n}=r^{\prime}$ and $\mathcal{C}\left(r_{i}\right)$ and $\mathcal{C}\left(r_{i+1}\right)$ are linked for $i=0, \ldots, n-1$.
Recall from Lemma 1.17 that if r is any reflection in W then r lies in an irreducible component of W. Clearly, conjugate reflections lie in the same irreducible component.
3.11 Lemma Suppose that W is a Coxeter group with r and r^{\prime} any two reflections, then r and r^{\prime} are in the same irreducible component of W if and only if there is a chain joining $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$.

Proof By Lemma 1.1 each conjugacy class of reflections contains at least one simple reflection. If r and r^{\prime} are in the same irreducible component then there are simple roots a_{0} and a_{0}^{\prime} such that $r_{0} \in \mathcal{C}(r)$ and $r_{0}^{\prime} \in \mathcal{C}\left(r^{\prime}\right)$. Furthermore there is a path in the Coxeter diagram joining a_{0} and a_{0}^{\prime}. If $a_{0}, a_{1}, \ldots, a_{n}=a_{0}^{\prime}$ is such a path then the $\mathcal{C}\left(r_{i}\right)$ form a chain joining $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$.

Conversely, suppose that r and r^{\prime} are in different components of W. If $\mathcal{C}\left(r_{0}\right), \mathcal{C}\left(r_{1}\right), \ldots$ is a chain joining r and r^{\prime}, then we can find a j such that $\mathcal{C}\left(r_{j}\right)$ and $\mathcal{C}\left(r_{j+1}\right)$ are in different components. But this implies that each reflection in $\mathcal{C}\left(r_{j}\right)$ commutes with every reflection in $\mathcal{C}\left(r_{i+1}\right)$. This contradicts the fact that $\mathcal{C}\left(r_{j}\right)$ is linked to $\mathcal{C}\left(r_{j+1}\right)$. Thus if r and r^{\prime} are in different components then there is no chain joining them.

Note that a simple corollary of this is that there is a chain joining $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$ if and only if there is a chain joining r and r^{\prime}.
3.12 Lemma Suppose that W and W^{\prime} are finite rank Coxeter groups. If α is an isomorphism such that $\alpha(\operatorname{Ref}(W))=\operatorname{Ref}\left(W^{\prime}\right)$, then α maps each irreducible component of W onto an irreducible component of W^{\prime}.
Proof Suppose the irreducible components of W are $W_{J^{(i)}}$. If r and r^{\prime} are any two reflections in $\operatorname{Ref}\left(W_{J^{(i)}}\right)$ then by Lemma 3.11 there is a chain joining $\mathcal{C}(r)$ and $\mathcal{C}\left(r^{\prime}\right)$. As α preserves reflections and conjugacy classes there is a chain joining $\mathcal{C}(\alpha(r))$ and $\mathcal{C}\left(\alpha\left(r^{\prime}\right)\right)$. Hence $\alpha(r)$ and $\alpha\left(r^{\prime}\right)$ are in the same irreducible component of W^{\prime}. Thus $\alpha\left(W_{J^{(i)}}\right)$ is contained in an irreducible component of W^{\prime}. Applying this to α^{-1} finishes the proof.
3.13 Proposition Suppose that $\alpha: W \rightarrow W^{\prime}$ is an isomorphism of finite Coxeter groups that maps reflections to reflections. Then W and W^{\prime} have the same type.
Proof By Lemma 3.12 we may concentrate upon irreducible Coxeter groups. If two finite irreducible groups are isomorphic then they have the same order.

All finite Coxeter groups have even order and so if W is a finite irreducible Coxeter group then we can find a group W^{\prime} of type $I_{2}(m)$ such that $|W|=\left|W^{\prime}\right|$. However exactly half the elements of a group of type $I_{2}(m)$ are reflections, and this is a property not possessed by any of the other types. So there is no reflection preserving isomorphism between a group of type $I_{2}(m)$ and an irreducible group of any other type. The only other coincidences of order for finite irreducible Coxeter groups occurs for types A_{4} and H_{3}, which both have order 120. They are not isomorphic since, for example, A_{4} has trivial centre while H_{3} does not.

Suppose that W is a nearly finite Coxeter group of rank $n \geq 4$ such that W_{i} is a finite irreducible Coxeter group and let α be an automorphism of W. From Corollary 1.30 we know that $\alpha\left(W_{i}\right)$ is a maximal finite parabolic subgroup. Up to inner automorphisms we may assume that $\alpha\left(W_{i}\right)$ is a standard parabolic subgroup and therefore has rank at most $n-1$. If $\alpha\left(W_{i}\right)$ is reducible then it follows that W_{i} is isomorphic to a product of smaller Coxeter groups, for which the sum of the ranks does not exceed the rank of W_{i}. We proceed to show that this cannot occur by examining all cases.

In the paper [Max98], Maxwell finds all the normal subgroups of the finite irreducible Coxeter groups. In all cases W^{+}will denote the subgroup of elements of even length; other normal subgroups will be given as the kernels of surjective homomorphisms to other Coxeter groups. Maxwell's list is as follows.
A_{n} : If W is a group of type A_{n} then the normal subgroups of W are:

$$
\{1\}, \quad W \quad \text { and } \quad W^{+}
$$

Clearly no group of type A_{n} is reducible as W does not have two normal subgroups H and K such that $|H| \times|K|=|W|$.
B_{n} : If W is a group of type B_{n} with diagram
then the normal subgroups of W are:

$$
\begin{aligned}
& N_{0}=\{1\} \\
& N_{1}=\left\langle w_{0}\right\rangle=Z(W) \\
& N_{2}=W^{+} \\
& N_{3}=W \\
& N_{4}=\operatorname{ker}\left(\phi_{4}\right) \quad \text { where } \phi_{4}: W \rightarrow\left\langle s_{1}\right\rangle \text { type } A_{1} \\
& \phi_{4}\left(r_{1}\right)=s_{1}, \phi_{4}\left(r_{i}\right)=1 \\
& N_{5}=\operatorname{ker}\left(\phi_{5}\right) \quad \text { where } \phi_{5}: W \rightarrow\left\langle s_{1}\right\rangle \text { type } A_{1} \\
& \phi_{5}\left(r_{1}\right)=1, \phi_{5}\left(r_{i}\right)=s_{1} \\
& N_{6}=\operatorname{ker}\left(\phi_{6}\right) \quad \text { where } \phi_{6}: W \rightarrow\left\langle s_{1}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{1} \times A_{1} \\
& \phi_{6}\left(r_{1}\right)=s_{1}, \phi_{6}\left(r_{i}\right)=\sigma_{1} \\
& N_{7}=\operatorname{ker}\left(\phi_{7}\right) \quad \text { where } \phi_{7}: W \rightarrow\left\langle s_{i}\right\rangle \text { type } A_{n-1} \\
& \phi_{7}\left(r_{1}\right)=1, \phi_{7}\left(r_{i}\right)=s_{i} \\
& N_{8}=\operatorname{ker}\left(\phi_{8}\right) \quad \text { where } \phi_{8}: W \rightarrow\left\langle s_{i}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{n-1} \times A_{1} \\
& \phi_{8}\left(r_{1}\right)=\sigma_{1}, \phi_{8}\left(r_{i}\right)=s_{i} \\
& N_{9}=\operatorname{ker}\left(\phi_{9}\right) \quad \text { where } \phi_{9}: W \rightarrow\left\langle s_{i}\right\rangle \text { type } A_{2} \\
& \phi_{9}\left(r_{1}\right)=1, \phi_{9}\left(r_{2}\right)=s_{1}, \phi_{9}\left(r_{3}\right)=s_{2}, \phi_{9}\left(r_{4}\right)=s_{1} \\
& N_{10}=\operatorname{ker}\left(\phi_{10}\right) \quad \text { where } \phi_{10}: W \rightarrow\left\langle s_{1}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{2} \times A_{1} \\
& \phi_{9}\left(r_{1}\right)=\sigma_{1}, \phi_{9}\left(r_{2}\right)=s_{1}, \phi_{9}\left(r_{3}\right)=s_{2}, \phi_{9}\left(r_{4}\right)=s_{1}
\end{aligned}
$$

where the last two cases only occur when $n=4$. A consideration of orders shows that the only possible decompositions of W are as $N_{1} \times N_{2}, N_{1} \times N_{4}$ or $N_{1} \times N_{5}$. Now w_{0} is a product of elements conjugate to r_{1}; thus $\phi_{5}\left(w_{0}\right)=1$ and hence $w_{0} \in N_{5}$. Thus $N_{1} \cap N_{5} \neq\{1\}$. If n is even then $\phi_{4}\left(w_{0}\right)=r_{1}^{n}=1$, whence $w_{0} \in N_{4}$, and $l\left(w_{0}\right)=n^{2}$ is even, whence $w_{0} \in N_{2}$. Hence W has no direct product decomposition if n is even. If n is odd then

$$
W=N_{1} \times N_{2}=N_{1} \times N_{4} .
$$

In fact N_{4} is a Coxeter group of type $D_{2 k+1}$ and therefore a group of type $B_{2 k+1}$ is isomorphic to a group of type $A_{1} \times D_{2 k+1}$. The Coxeter group of type $D_{2 k+1}$ is not abstractly isomorphic to any other indecomposable Coxeter groups, since the only one with the correct order is $I_{2}\left(2^{2 k-1}(2 k+1)!\right)$, and this has non-trivial centre whereas $D_{2 k+1}$ has trivial centre. Thus $A_{1} \times D_{n}$ is the only decomposition as a product of groups abstractly isomorphic to Coxeter groups. However, $A_{1} \times D_{n}$ has greater rank than B_{n}, and so cannot occur as a parabolic subgroup of any Coxeter group that has a maximal parabolic subgroup of type B_{n}.
D_{n} : If W is a group of type D_{n} with diagram

$$
{ }_{1}^{2} . \quad . \quad . \quad \cdots \quad \underset{n-1}{.} \quad \underset{n}{ }
$$

then the normal subgroups of W are:

$$
\begin{aligned}
& N_{0}=\{1\} \\
& N_{1}=\left\langle w_{0}\right\rangle \text { (only for } n \text { even) } \\
& N_{2}=W^{+} \\
& N_{3}=W \\
& N_{4}=\operatorname{ker}\left(\phi_{4}\right) \quad \text { where } \phi_{4}: W \rightarrow\left\langle s_{i}\right\rangle \text { type } A_{n-1}
\end{aligned}
$$

$$
\begin{array}{r}
\phi_{4}\left(r_{1}\right)=s_{1}, \phi_{4}\left(r_{2}\right)=s_{1}, \phi_{4}\left(r_{i}\right)=s_{i-1} \\
N_{5}=\operatorname{ker}\left(\phi_{5}\right) \quad \\
\quad \text { where } \phi_{5}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \text { type } A_{2} \\
\phi_{5}\left(r_{1}\right)=\phi_{5}\left(r_{2}\right)=\phi_{5}\left(r_{4}\right)=s_{1}, \phi_{5}\left(r_{3}\right)=s_{2} \\
N_{6}=\operatorname{ker}\left(\phi_{6}\right) \\
\quad \text { where } \phi_{6}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \text { type } A_{2} \\
\phi_{6}\left(r_{1}\right)= \\
\phi_{6}\left(r_{2}\right)=\phi_{6}\left(r_{3}\right)=s_{1}, \phi_{6}\left(r_{4}\right)=s_{2} \\
N_{7}=\operatorname{ker}\left(\phi_{7}\right) \\
\quad \\
\phi_{7}\left(r_{2}\right)=\phi_{7}\left(r_{3}\right)=\phi_{7}\left(r_{4}\right)=s_{1}, \phi_{7}\left(r_{1}\right)=s_{2}
\end{array}
$$

where the last three cases only occur if $n=4$. Looking at orders the only possible decomposition is $W=N_{1} \times N_{2}$. But $l\left(w_{0}\right)$ is even and so $N_{1} \subset N_{2}$, whence W is indecomposable. E_{6} : If W is a group of type E_{6} with diagram

then the normal subgroups of W are $\{1\}, W^{+}$and W. Hence W is indecomposable. E_{7} : If W is a group of type E_{7} with diagram
then the normal subgroups of W are $\{1\},\left\langle w_{0}\right\rangle, W^{+}$and W. Since $l\left(w_{0}\right)$ is odd we see that $W=\left\langle w_{0}\right\rangle \times W^{+}$. The only finite Coxeter group of order $|W| / 2$ is of type $I_{2}(|W| / 4)$, but a group of type $A_{1} \times I_{2}(|W| / 4)$ has further normal subgroups and so cannot be isomorphic to a group of type E_{7}. Thus W does not decompose as a product of Coxeter groups.
$E_{8}: \quad$ If W is a group of type E_{8} with diagram

$$
\begin{array}{llllllll}
& & & \bullet 4 & & & & \\
\dot{1} & \dot{2} & \dot{3} & \dot{5} & 6 & & 7 & \dot{8}
\end{array}
$$

then the normal subgroups of W are $\{1\}, W^{+}$and W. Hence W is indecomposable. F_{4} : If W is a group of type F_{4} with diagram

$$
\dot{1}_{1} \quad \dot{2}^{4} \quad \dot{4}
$$

then the normal subgroups are:

$$
\begin{aligned}
& N_{0}=\{1\} \\
& N_{1}=\left\langle w_{0}\right\rangle \\
& N_{2}=W^{+} \\
& N_{3}=W \\
& N_{4}=\operatorname{ker}\left(\phi_{4}\right) \quad \text { where } \phi_{4}: W \rightarrow\left\langle s_{1}\right\rangle \text { type } A_{1} \\
& \quad \phi_{4}\left(r_{1}\right)=1, \phi_{4}\left(r_{2}\right)=1, \phi_{4}\left(r_{3}\right)=s_{1}, \phi_{4}\left(r_{4}\right)=s_{1} \\
& N_{5}=\operatorname{ker}\left(\phi_{5}\right) \quad \text { where } \phi_{5}: W \rightarrow\left\langle s_{1}\right\rangle \text { type } A_{1} \\
& \phi_{5}\left(r_{1}\right)=s_{1}, \phi_{5}\left(r_{2}\right)=s_{1}, \phi_{5}\left(r_{3}\right)=1, \phi_{5}\left(r_{4}\right)=1 \\
& N_{6}=\operatorname{ker}\left(\phi_{6}\right) \quad \text { where } \phi_{6}: W \rightarrow\left\langle s_{1}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{1} \times A_{1} \\
& \quad \phi_{6}\left(r_{1}\right)=s_{1}, \phi_{6}\left(r_{2}\right)=s_{1}, \phi_{6}\left(r_{3}\right)=\sigma_{1}, \phi_{6}\left(r_{4}\right)=\sigma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& N_{7}=\operatorname{ker}\left(\phi_{7}\right) \quad \text { where } \phi_{7}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \text { type } A_{2} \\
& \phi_{7}\left(r_{1}\right)=1, \phi_{7}\left(r_{2}\right)=1, \phi_{7}\left(r_{3}\right)=s_{1}, \phi_{7}\left(r_{4}\right)=s_{2} \\
& N_{8}=\operatorname{ker}\left(\phi_{8}\right) \quad \text { where } \phi_{8}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \text { type } A_{2} \\
& \phi_{8}\left(r_{1}\right)=s_{1}, \phi_{8}\left(r_{2}\right)=s_{2}, \phi_{8}\left(r_{3}\right)=1, \phi_{8}\left(r_{4}\right)=1 \\
& N_{9}=\operatorname{ker}\left(\phi_{9}\right) \quad \\
& \quad \text { where } \phi_{9}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{2} \times A_{1} \\
& \phi_{9}\left(r_{1}\right)= \\
& s_{1}, \phi_{9}\left(r_{2}\right)=s_{2}, \phi_{9}\left(r_{3}\right)=\sigma_{1}, \phi_{9}\left(r_{4}\right)=\sigma_{1} \\
& N_{10}=\operatorname{ker}\left(\phi_{10}\right) \quad \\
& \quad \text { where } \phi_{10}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \times\left\langle\sigma_{1}\right\rangle \text { type } A_{1} \times A_{1} \\
& \phi_{10}\left(r_{1}\right)= \\
& \sigma_{1}, \phi_{10}\left(r_{2}\right)=\sigma_{1}, \phi_{10}\left(r_{3}\right)=s_{1}, \phi_{10}\left(r_{4}\right)=s_{2} \\
& N_{11}=\operatorname{ker}\left(\phi_{11}\right) \\
& \quad \text { where } \phi_{11}: W \rightarrow\left\langle s_{1}, s_{2}\right\rangle \times\left\langle\sigma_{1}, \sigma_{2}\right\rangle \text { type } A_{2} \times A_{2} \\
& \phi_{11}\left(r_{1}\right)= \\
& s_{1}, \phi_{11}\left(r_{2}\right)=s_{2}, \phi_{11}\left(r_{3}\right)=\sigma_{1}, \phi_{11}\left(r_{4}\right)=\sigma_{2}
\end{aligned}
$$

As before a consideration of orders suggests that the only possible decompositions are $N_{1} \times N_{2}$, $N_{1} \times N_{4}$ or $N_{1} \times N_{5}$. However, w_{0} is an element of each of N_{2}, N_{4} and N_{5} and so W is indecomposable.
H_{3} : If W is a group of type H_{3} with diagram

$$
\dot{1}^{5} \quad \dot{3}
$$

then the normal subgroups of W are $\{1\},\left\langle w_{0}\right\rangle, W^{+}$and W. As with type $E_{7}, W=\left\langle w_{0}\right\rangle \times W^{+}$ but W^{+}is not a Coxeter group.
H_{4} : If W is a group of type H_{4} with diagram

then the normal subgroups of W are $\{1\}, W^{+}$and W. Hence W is indecomposable.
Note that W_{i} cannot have type $I_{2}(m)$ since we have assumed that W has rank at least 4, and hence W_{i} has rank at least 3. Automorphisms of Coxeter groups of rank 3 are dealt with in a separate chapter.

Therefore in all cases if W_{i} is a finite irreducible Coxeter group, then $\alpha\left(W_{i}\right)$ is a parabolic subgroup of the same type. Hence we have proved the following theorem.
3.14 Theorem If W is a nearly finite Coxeter group of rank $n \geq 4$ such that W_{i} is a finite irreducible Coxeter group, then any automorphism of W will map W_{i} to a conjugate of a maximal standard parabolic subgroup W_{j} of the same type as W_{i}.

§3.3 Graph Automorphisms and Unusual Labels

Suppose that W is an irreducible nearly finite Coxeter group. Renumbering if necessary we may assume that W_{1} is finite. We shall consider the situation in which W_{1} has a component of type H_{3}, H_{4} or $I_{2}(m)$ for $m>3$ and there is an $a_{i} \neq a_{1}$ such that W_{i} has the same type as W_{1}. Renumbering again if necessary suppose that W_{1} and W_{2} have the same type. We shall classify all such Coxeter groups. In particular, it turns out that in almost all cases there is a graph automorphism that interchanges a_{1} and a_{2}.

For convenience in the following identify a_{i} with the vertex it corresponds to in the Coxeter diagram, Γ, of W. Let Γ_{k} denote the graph obtained by deleting vertex a_{k} from Γ, and write deg_{k} for $\operatorname{deg}\left(a_{k}\right)$. Since W_{1} and W_{2} have the same type, $\sum_{k \neq 1} \operatorname{deg}_{k}=\sum_{k \neq 2} \operatorname{deg}_{k}$, and so it follows that $\operatorname{deg}_{1}=\operatorname{deg}_{2}$.

First suppose that W_{1} and W_{2} are irreducible. If we have a graph where $a_{1} a_{2}$ is not an edge, then we can obtain a new graph by including this edge. This new graph will still
have the property that W_{1} and W_{2} have the same type. Therefore we will look for graphs where $a_{1} a_{2}$ is an edge and obtain the remaining possibilities by deleting this edge. We will deal with type H_{3} in detail and then state the possibilities for H_{4} and $I_{2}(m)$.

Suppose that W_{1} and W_{2} have type H_{3}. Then deg_{2} in Γ_{1} is either 1 or 2. Thus $2 \leq \operatorname{deg}_{2}=\operatorname{deg}_{1} \leq 3$ in Γ.
Case (a): $\operatorname{deg}_{1}=\operatorname{deg}_{2}=2$. As $a_{1} a_{2}$ is an edge in Γ we can see that a_{2} has degree 1 in Γ_{1}. There are four possibilities:

$$
\begin{array}{cccccccccc}
2 \cdot{ }^{5} \cdot & \cdot & 2 \cdot{ }^{5} \cdot & \cdot & { }^{5} & \cdot & \cdot 2 & \cdot & & \cdot \\
q & & & q & & & & & q & \\
1 \cdot & & 1 \cdot & ? & & & & \cdot 1 & & ? \\
q & & 1
\end{array}
$$

As W_{2} also has type H_{3} the remaining label can be determined, and we have the following possibilities.

2	25	2	5
q.	q	. ${ }^{\text {. }}$ q	
$\dot{1}^{5}$	¢ 5	i	-

Deleting the edge $a_{1} a_{2}$ gives four further possibilities.

Case (b): $\operatorname{deg}_{1}=\operatorname{deg}_{2}=3$. This time a_{2} has degree 2 in Γ_{1} and there is only one possibility. As $\operatorname{deg}_{1}=3$ there is an edge from a_{1} to each vertex in Γ_{1}.

$$
\begin{array}{rc}
& 52 \\
? & q
\end{array} ?
$$

Again W_{2} has type H_{3} and the labels can be determined. There are two possibilities.

Deleting the edge $a_{1} a_{2}$ gives the following possibilities.

Thus there are the following 12 possibilities for Γ.

$$
\begin{aligned}
& \cdot{ }_{q}^{5} \stackrel{2}{\bullet} \quad \stackrel{2}{?} \\
& { }_{1} 5^{-} \quad \dot{1} 5 \dot{2}
\end{aligned}
$$

Note that in each case there is a graph automorphism that interchanges a_{1} and a_{2}.
Similar arguments to the above, lead to the following 14 possibilities if W_{1} and W_{2} have type H_{4}.

There are only 2 possibilities if W_{1} and W_{2} have type $I_{2}(m)$ for $m>3$.

$$
{ }_{m}^{m_{1}^{2}}{ }_{-1}^{2}{ }^{m} \cdot m \cdot 2
$$

In every case there is a graph automorphism that interchanges a_{1} and a_{2}.
Secondly, suppose that W_{1} is reducible. Then Γ_{1} contains at least two components. Thus $\operatorname{deg}_{1} \geq 2$ as a_{1} is joined to each component of Γ.
Case (a): a_{2} is not contained in the given component of Γ_{1} of type H_{3}, H_{4} or $I_{2}(m)$. Then Γ_{2} contains a component of type H_{3}, H_{4} or $I_{2}(m)$ with at least one edge added (the edge joining a_{1} to this component). This does not give a diagram of finite type if the original component had type H_{4} or $I_{2}(m)$ for $m>5$. So the original component is $H_{3}, I_{2}(4)$ or $I_{2}(5)$.

If Γ_{1} has a component of type H_{3} and a_{2} is not in this component, then $\operatorname{deg}_{1} \leq 3$ in Γ, for otherwise Γ_{2} would contain a component with an edge labelled with 5 and a vertex of degree at least 3 , contradicting the fact that Γ_{2} is of finite type. If $\operatorname{deg}_{1}=3$ or if a_{2} and a_{1} are not adjacent, then Γ_{2} contains a component with at least two edges added to a graph of type H_{3} and again such a component is not of finite type. Thus $\operatorname{deg}_{1}=2, \Gamma_{1}$ has two components and a_{2} is adjacent to a_{1}. Thus Γ_{2} has a component of type H_{4} and so W_{1} and W_{2} are of type $H_{3} \times H_{4}$. Thus Γ is the following.

$$
.^{5} \quad . \quad{ }^{1} q^{2} \quad . \quad . \quad 5
$$

Again there is a graph automorphism that interchanges a_{1} and a_{2}.
If Γ_{1} has a component of type $I_{2}(5)$ and a_{2} is not in this component, then again $\operatorname{deg}_{1} \leq 3$. In the case $\operatorname{deg}_{1}=2, \Gamma_{1}$ has 2 components and hence Γ_{2} has two components. The component containing a_{1} is of type H_{3} or H_{4}, and so W_{1} and W_{2} are of type $I_{2}(5) \times H_{3}$ or $I_{2}(5) \times H_{4}$. There are two possibilities.

$$
{ }^{5} .{ }^{1} q^{2} .^{5} . \quad .^{5} \quad{ }^{1} \quad{ }^{2} \quad .^{5}
$$

In each case there is a graph automorphism that interchanges a_{1} and a_{2}.
If $\operatorname{deg}_{1}=\operatorname{deg}_{2}=3$ then we have the following partial diagram:

Thus in Γ_{2} two edges have been added to $I_{2}(5)$ and so W_{2} contains a component of type H_{4} and we have the following.

In Γ_{2} the vertex a_{3} has degree 1 and so $\operatorname{deg}_{3}=1$ or 2 in Γ. If $\operatorname{deg}_{3}=1$ then Γ_{1} has components $A_{1}, I_{2}(5)$ and H_{4} and Γ is the following.

$$
.^{5} \cdot \dot{1}_{2} \cdot{ }^{5}
$$

There is a graph automorphism swapping a_{1} and a_{2}. If $\operatorname{deg}_{3}=2$ in Γ, then $a_{2} a_{3}$ is an edge in Γ_{1} and W_{2} has two components. Thus W_{1} and W_{2} have type $I_{2}(5) \times H_{4}$ and Γ is the following.

$$
.^{5} \cdot \dot{1}_{2}^{q} \cdot{ }^{5}
$$

Again there is a graph automorphism swapping a_{1} and a_{2}.
If Γ_{1} has a component of type $I_{2}(4)$ and a_{2} is not in this component, then yet again $\operatorname{deg}_{1} \leq 3$. If $\operatorname{deg}_{1}=2$ then Γ_{1} has two components, of types $I_{2}(4)$ and B_{k} for some k. Thus Γ is the following

and there is a graph automorphism swapping a_{1} and a_{2}. If $\operatorname{deg}_{1}=3$, then a_{1} and a_{2} must be adjacent as in the $I_{2}(5)$ case. Then Γ_{2} contains a component of type B_{l}, as well as one of type $I_{2}(4)$. Thus we have

where there may or may not be edges between the parts of the graph labelled X and Y.
If X and Y are joined then Γ_{1} and Γ_{2} have 2 components and must have type $I_{2}(4) \times B_{l}$. As B_{l} does not have a vertex of degree more than 2, any vertex other than a_{1} and a_{2} having degree 3 in Γ must be adjacent to both a_{1} and a_{2}. There is at most one such vertex, and so there are two possibilities.

There is a graph automorphism swapping a_{1} and a_{2} in each case.
Finally suppose that X and Y are not joined. Then Γ_{1} has 3 components, and since the component of Γ_{1} corresponding to Y is of type A_{k} for some k, we see that Γ_{1} and Γ_{2} have type $I_{2}(4) \times A_{k} \times B_{l}$. Hence Γ is the following,

and there is a graph automorphism swapping a_{1} and a_{2}. This completes the case where a_{2} is not in the given component of type H_{3}, H_{4} or $I_{2}(m)$.
Case (b): a_{2} is in the given component of type H_{3}, H_{4} or $I_{2}(m)$ for $m>3$.
Suppose that Γ_{1} contains a component of type H_{3} and a_{2} is in this component. Thus $\operatorname{deg}_{2} \leq 2$ in Γ_{1} and so $2 \leq \operatorname{deg}_{1}=\operatorname{deg}_{2} \leq 3$ in Γ.

Suppose $\operatorname{deg}_{1}=\operatorname{deg}_{2}=3$. The vertices a_{1} and a_{2} are joined, and there may or may not be edges joining a_{1} to the other vertices of the H_{3} component of Γ_{1}. Since a_{1} has degree 3 the possibilities for Γ are as follows.

In the first case Γ_{2} has 3 components, two of which are of type A_{1}, while in the second and third cases Γ_{2} has two components, one of which is of type A_{1}. In all three cases the remaining component of Γ_{2} must be of type H_{3}.

In the first case the only possibility is as follows,

and there is a graph automorphism swapping a_{1} and a_{2}. In the second case we have two possibilities, as follows.

In the first of these cases there is a graph automorphism swapping a_{1} and a_{2}, while the other is the first of our exceptions.

In the third case we also have two possibilities, as follows.

Again there is a graph automorphism swapping a_{1} and a_{2} in the first case. The other case is isomorphic to the exceptional case above.

Now suppose that $\operatorname{deg}_{1}=\operatorname{deg}_{2}=2$, still in the case where Γ_{1} has a component of type H_{3} that contains a_{2}. Only one of the two edges from a_{1} connects to the given H_{3} component of Γ_{1}, otherwise Γ_{1} is irreducible, a case that has already been dealt with. There are four possibilities.

If Γ is

then Γ_{2} has a component of type A_{2}, and so Γ_{1} and Γ_{2} have type $A_{2} \times H_{3}$. So we have the following diagram,

$$
\begin{array}{ll}
2^{2} & 5 \\
q & \\
1 \cdot & \\
\hline
\end{array}
$$

and there is a graph automorphism swapping a_{1} and a_{2}.
If Γ is
then Γ_{1} has a component of type A_{1}, and so Γ_{1} and Γ_{2} have type $A_{1} \times H_{3}$. So we have the following possible diagrams.

In the first case there is a graph automorphism swapping a_{1} and a_{2}, while the other is the final exceptional case. In fact it is the same as the previous exceptional case but with $q=2$. Furthermore, in this case Γ_{3} is also of finite type and is the unique subgraph of type $A_{2} \times I_{2}(5)$. If Γ is

then again we find that Γ_{1} and Γ_{2} are of type $A_{1} \times H_{3}$. We have the following possible diagrams.

In the first case there is a graph automorphism swapping a_{1} and a_{2}, while the other is isomorphic to the exception just considered.
If Γ is

then Γ_{1} and Γ_{2} are of type $I_{2}(5) \times H_{3}$. We have the following diagram.

$$
\begin{array}{cc}
\stackrel{2}{q} & . \\
{ }_{1} \cdot & \cdot \\
{ }^{5} \\
\cdot
\end{array}
$$

There is a graph automorphism swapping a_{1} and a_{2}. This completes the case where Γ has a component of type H_{3}.

Now suppose that Γ_{1} contains a component of type H_{4} and a_{2} is a vertex in this component. As in the equivalent H_{3} case this means that $2 \leq \operatorname{deg}_{1}=\operatorname{deg}_{2} \leq 3$.

If $\operatorname{deg}_{1}=\operatorname{deg}_{2}=3$, again a_{1} and a_{2} must be adjacent. So we have the following eight possibilities.

(i) In the first diagram of the above cases it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times A_{2} \times H_{4}$. We obtain the diagram.

and there is a graph automorphism swapping a_{1} and a_{2}.
(ii) In the second diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{2} \times H_{4}$. We obtain the diagram.

$$
\stackrel{5}{5} \stackrel{2}{q}_{5_{i}^{(}}^{i} \cdot .
$$

and there is a graph automorphism swapping a_{1} and a_{2}.
(iii) In the third diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times H_{4}$. We obtain the diagram.

and there is a graph automorphism swapping a_{1} and a_{2}.
(iv) In the fourth diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times A_{2} \times H_{4}$. We obtain the diagram.

and there is a graph automorphism swapping a_{1} and a_{2}.
(v) In the fifth diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times I_{2}(5) \times H_{4}$. We obtain the diagram.

$$
\begin{gathered}
{ }^{5} \cdot \stackrel{2}{q} \\
\cdot{ }_{5} \cdot \stackrel{q}{i} .
\end{gathered}
$$

and there is a graph automorphism swapping a_{1} and a_{2}.
(vi) In the sixth diagram it is clear that Γ_{1} and Γ_{2} must be of type $I_{2}(5) \times H_{4}$. We obtain the diagram.

and there is a graph automorphism swapping a_{1} and a_{2}.
(vii) In the seventh diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times H_{4}$. We obtain the diagram.

$$
5 \begin{array}{ccc}
& \begin{array}{c}
2 \\
\bullet \\
\\
\\
\\
\\
\\
\\
1
\end{array} & \bullet \\
\bullet
\end{array}
$$

and there is a graph automorphism swapping a_{1} and a_{2}.
(viii) In the final diagram it is clear that Γ_{1} and Γ_{2} must be of type $A_{1} \times H_{4}$. We obtain the diagram.
and there is a graph automorphism swapping a_{1} and a_{2}.
Suppose finally that $\operatorname{deg}_{1}=\operatorname{deg}_{2}=2$. As we are assuming that Γ_{1} is reducible, a_{1} is joined to the given H_{4} component by exactly one edge. We have the following possibilities.

In the first diagram Γ_{1} and Γ_{2} are of type $A_{3} \times H_{4}$ and we have

and there is a graph automorphism swapping a_{1} and a_{2}. This can be repeated for each diagram; the results are summarized below.

$$
\begin{aligned}
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } A_{2} \times H_{4} \quad \stackrel{5}{5}_{5}^{\stackrel{2}{*}} \quad . \quad .
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } A_{1} \times H_{4} \quad \bullet^{5} \cdot \stackrel{2}{.} . \\
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } A_{1} \times H_{4} \quad \ddots_{i 5}^{2} \text {. } \\
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } H_{3} \times H_{4} \quad .{ }^{5} . \quad . \stackrel{.}{l}^{q} \cdot . \quad .{ }^{5} . \\
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } I_{2}(5) \times H_{4} \quad .{ }^{5} .{ }^{2} . .^{1} .{ }^{5} . \\
& \Gamma_{1} \text { and } \Gamma_{2} \text { have type } A_{1} \times H_{4} \quad .{ }^{5} . \quad . \quad . .^{2} .
\end{aligned}
$$

In each case there is a graph automorphism swapping a_{1} and a_{2}.
It remains to consider the case that Γ_{1} contains a component of type $I_{2}(m)$ for $m>3$ and a_{2} is a vertex in this component. Since a_{2} has degree 1 in Γ_{1} it has degree 2 in Γ. Thus $\operatorname{deg}_{1}=\operatorname{deg}_{2}=2$, and since Γ_{1} is reducible if follows that one of the edges from a_{1} connects to the given $I_{2}(m)$ and the other does not. Therefore Γ_{1} and Γ_{2} both have type $A_{1} \times I_{2}(m)$. The only possibility is as follows

$$
{ }_{1}^{m}{\underset{2}{q}}^{m}
$$

and there is a graph automorphism swapping a_{1} and a_{2}. This completes the proof of the following result.
3.15 Proposition Suppose that W is a Coxeter group and there are two simple roots $a_{i} \neq a_{j}$ such that W_{i} and W_{j} are finite Coxeter groups of the same type. If W_{i} and W_{j} contain at least one component of type H_{3}, H_{4} or $I_{2}(m)$ for $m>3$, then there is a graph automorphism of W that interchanges W_{i} and W_{j}, or else W corresponds to one of the following diagrams.

In the second of these cases there is simple root a_{k} such that W_{k} is the unique maximal standard parabolic subgroup of type $A_{2} \times I_{2}(5)$.

§3.4 Nearly Finite Coxeter Groups

3.16 Theorem If W is an irreducible non-degenerate nearly finite Coxeter group with finite labels, then any automorphism of W that preserves reflections is inner by graph.
Proof Renumbering if necessary we may suppose that W_{1} is finite. Let $\alpha \in R(W)$ be any automorphism that preserves reflections. Up to inner automorphisms we may assume that $\alpha\left(W_{1}\right)$ is a standard parabolic subgroup. By Proposition 3.13 and the fact that $\left.\alpha\right|_{W_{1}}$ preserves reflections W_{1} and $\alpha\left(W_{1}\right)$ have the same type and hence the same rank. Thus $\alpha\left(W_{1}\right)=W_{i}$ for some i possibly equal to 1 .

Suppose that W_{1} does not contain any component of type H_{3}, H_{4} or $I_{2}(m)$ for $m>3$. Then Γ_{1} is a forest with no unusual labels. As W_{1} and W_{i} have the same type there is a permutation σ of the simple roots such that $\tilde{\sigma}: W_{i} \rightarrow W_{1}$ given by $\tilde{\sigma}\left(r_{i}\right)=r_{\sigma i}$ is an isomorphism. Then $\alpha \tilde{\sigma}$ is a reflection preserving automorphism of a Coxeter group whose diagram is a forest with no unusual labels. By Proposition $1.44 \alpha \tilde{\sigma}$ is inner by graph. Thus, up to inner automorphisms of W_{i}, we may assume that $\alpha \tilde{\sigma}$ is a graph automorphism of W_{i} and hence that α maps r_{j} to a simple root for each $j \in\{2,3, \ldots, n\}$. The result follows from Theorem 3.9.

So suppose that W_{1} contains at least one component of type H_{3}, H_{4} or $I_{2}(m)$ with $m>3$. By Proposition 3.15 there are two possibilities: either W has a graph automorphism interchanging W_{1} and W_{2}, so that up to automorphisms that are inner by graph we may assume that $\alpha\left(W_{1}\right)=W_{1}$, or else W has one or other of the following two diagrams.

The first of these requires special treatment, which we defer. The second may be dealt with by relabelling a_{k} to be a_{1}, since then W_{1} becomes the unique maximal standard parabolic subgroup of type $A_{2} \times I_{2}(5)$. Modifying α by an inner automorphism then permits us to assume that $\alpha\left(W_{1}\right)=W_{1}$.

Proceeding under the assumption that $\alpha\left(W_{1}\right)=W_{1}$, by Lemma 1.34 we may define ϕ_{α} so that

$$
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right) \leq 0
$$

for all $i, j \geq 2$ with $i \neq j$. As in Corollary 1.35 it follows that

$$
\begin{equation*}
\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=a_{i} \cdot a_{j} \tag{3.17}
\end{equation*}
$$

unless $m_{i j}=5$ or $m_{i j} \geq 7$. Furthermore, these values for $m_{i j}$ can only occur if a_{i} and a_{j} lie in an irreducible component of W_{1} of type H_{3}, H_{4} or $I_{2}(m)$, and then only for one pair of simple roots in the component.

If Eq. 3.17 does hold for all $i, j \geq 2$ then by Theorem 1.39 there exists $w \in W_{1}$ such that $\pm \phi_{\alpha}\left(w a_{i}\right) \in \Pi \backslash\left\{a_{1}\right\}$ for all $i \geq 2$, and hence conjugation by w followed by α permutes the simple reflections of W_{1}. Theorem 3.9 then applies, and it follows that α is inner by graph. It remains to deal with those cases in which W_{1} has at least one irreducible component of type H_{3}, H_{4} or $I_{2}(m)$ (where $m=5$ or $m \geq 7$) for which Eq. 3.17 does not hold. We do this by adapting the argument used in the proof of Theorem 3.9 to the present situation.

Suppose that a_{i} and a_{j} are simple roots of W_{1} for which Eq. 3.17 fails, and let $m=m_{i j}$. Thus $a_{i} \cdot a_{j}=-\mathrm{c}\left(\pi_{m}\right)$, and $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=-\mathrm{c}\left(j \pi_{m}\right)$ for some j coprime to m. Since $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right) \leq 0$ we have that $1<j<m / 2$. Note that for types H_{3} and H_{4} we have $m=5$, and $j=2$ is the only possibility.

We assume now that Eq. 3.17 fails for some i and j. We shall show that this leads to a contradiction.

Let V_{1} be the subspace of V spanned by $\Pi \backslash\left\{a_{1}\right\}$, and let M be the Gram matrix of the restriction of our bilinear form to V_{1} computed relative to the above basis. Let M^{\prime} be the Gram matrix for the same form computed relative to the basis $\phi_{\alpha}\left(\Pi \backslash\left\{a_{1}\right\}\right)$. We assume that the simple roots are ordered so that M is a diagonal sum of matrices corresponding to the various irreducible components of W_{1}. Since $\phi_{\alpha}\left(a_{i}\right) \cdot \phi_{\alpha}\left(a_{j}\right)=0$ whenever $a_{i} \cdot a_{j}=0$, we see that M^{\prime} is also a diagonal sum, with blocks of the same sizes as those of M.

The blocks of M corresponding to components of types H_{3}, H_{4} and $I_{2}(m)$ are as follows (assuming the ordering is chosen appropriately).

$$
\begin{aligned}
& M_{3}=\left[\begin{array}{ccc}
1 & -\mathrm{c}\left(\pi_{5}\right) & 0 \\
-\mathrm{c}\left(\pi_{5}\right) & 1 & -1 / 2 \\
0 & -1 / 2 & 1
\end{array}\right] \\
& M_{4}=\left[\begin{array}{ccc}
1 & -\mathrm{c}\left(\pi_{5}\right) & 0 \\
-\mathrm{c}\left(\pi_{5}\right) & 1 & 0 \\
0 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 \\
0 & -1 / 2 \\
0 & -1 / 2 & 1
\end{array}\right] \\
& M_{I}=\left[\begin{array}{cc}
1 & -\mathrm{c}\left(\pi_{m}\right) \\
-\mathrm{c}\left(\pi_{m}\right) & 1
\end{array}\right]
\end{aligned}
$$

Letting $T_{*}=M_{*}^{-1}$ be the corresponding inverses we find:

$$
\begin{aligned}
& T_{3}=\left[\begin{array}{lll}
\frac{9+3 \sqrt{5}}{2} & 4+2 \sqrt{5} & 2+\sqrt{5} \\
4+2 \sqrt{5} & 6+2 \sqrt{5} & 3+\sqrt{5} \\
2+\sqrt{5} & 3+\sqrt{5} & \frac{5+\sqrt{5}}{2}
\end{array}\right] \\
& T_{4}=\left[\begin{array}{llll}
28+12 \sqrt{5} & 33+15 \sqrt{5} & 22+10 \sqrt{5} & 11+5 \sqrt{5} \\
33+15 \sqrt{5} & 42+18 \sqrt{5} & 28+12 \sqrt{5} & 14+6 \sqrt{5} \\
22+10 \sqrt{5} & 28+12 \sqrt{5} & 20+8 \sqrt{5} & 10+4 \sqrt{5} \\
11+5 \sqrt{5} & 14+6 \sqrt{5} & 10+4 \sqrt{5} & 6+2 \sqrt{5}
\end{array}\right] \\
& T_{I}=\left[\begin{array}{ccc}
1 / \mathrm{s}^{2}\left(\pi_{m}\right) & \mathrm{c}\left(\pi_{m}\right) / \mathrm{s}^{2}\left(\pi_{m}\right) \\
\mathrm{c}\left(\pi_{m}\right) / \mathrm{s}^{2}\left(\pi_{m}\right) & 1 / \mathrm{s}^{2}\left(\pi_{m}\right)
\end{array}\right]
\end{aligned}
$$

If ϕ_{α} does not preserve the form on such a component then the corresponding blocks of M^{\prime} are as follows.

$$
\begin{aligned}
& M_{3}^{\prime}=\left[\begin{array}{ccc}
1 & -\mathrm{c}\left(2 \pi_{5}\right) & 0 \\
-\mathrm{c}\left(2 \pi_{5}\right) & 1 & -1 / 2 \\
0 & -1 / 2 & 1
\end{array}\right] \\
& M_{4}^{\prime}=\left[\begin{array}{ccc}
1 & -\mathrm{c}\left(2 \pi_{5}\right) & 0 \\
\hline \mathrm{c}\left(2 \pi_{5}\right) & 1 & -1 / 2 \\
0 & -1 / 2 & 1 \\
0 & -1 / 2 \\
0 & 0 & -1 / 2 \\
0
\end{array}\right] \\
& M_{I}^{\prime}=\left[\begin{array}{ccc}
1 & -\mathrm{c}\left(j \pi_{m}\right) \\
-\mathrm{c}\left(j \pi_{m}\right) & 1
\end{array}\right]
\end{aligned}
$$

Letting $T_{*}^{\prime}=M_{*}^{\prime-1}$ be the corresponding inverses we find:

$$
\begin{aligned}
& T_{3}^{\prime}=\left[\begin{array}{ccc}
\frac{9-3 \sqrt{5}}{2} & -4+2 \sqrt{5} & -2+\sqrt{5} \\
-4+2 \sqrt{5} & 6-2 \sqrt{5} & 3-\sqrt{5} \\
-2+\sqrt{5} & 3-\sqrt{5} & \frac{5-\sqrt{5}}{2}
\end{array}\right] \\
& T_{4}^{\prime}=\left[\begin{array}{cccc}
28-12 \sqrt{5} & -33+15 \sqrt{5} & -22+10 \sqrt{5} & -11+5 \sqrt{5} \\
-33+15 \sqrt{5} & 42-18 \sqrt{5} & 28-12 \sqrt{5} & 14-6 \sqrt{5} \\
-22+10 \sqrt{5} & 28-12 \sqrt{5} & 20-8 \sqrt{5} & 10-4 \sqrt{5} \\
-11+5 \sqrt{5} & 14-6 \sqrt{5} & 10-4 \sqrt{5} & 6-2 \sqrt{5}
\end{array}\right] \\
& T_{I}^{\prime}=\left[\begin{array}{ccc}
1 / \mathrm{s}^{2}\left(j \pi_{m}\right) & \mathrm{c}\left(j \pi_{m}\right) / \mathrm{s}^{2}\left(j \pi_{m}\right) \\
\mathrm{c}\left(j \pi_{m}\right) / \mathrm{s}^{2}\left(j \pi_{m}\right) & 1 / \mathrm{s}^{2}\left(j \pi_{m}\right)
\end{array}\right]
\end{aligned}
$$

Note that each entry $t_{i j}^{\prime}$ of T_{*}^{\prime} is positive but strictly less that the corresponding entry $t_{i j}$ of T_{*}. (Recall that $\frac{m}{2}>j>1$ so that, $\pi / 2>j \pi_{m}>\pi_{m}$ and hence $\mathrm{s}\left(j \pi_{m}\right)>\mathrm{s}\left(\pi_{m}\right)$ and $\mathrm{c}\left(j \pi_{m}\right)<\mathrm{c}\left(\pi_{m}\right)$.)

Hence if $T=\left(t_{i j}\right)=M^{-1}$ and $T^{\prime}=\left(t_{i j}^{\prime}\right)=M^{\prime-1}$, then we have $t_{i j} \geq t_{i j}^{\prime}$ for all $i, j \in\{2,3, \ldots, n\}$. Since there is a component for which the form is not preserved, there is a block on which $t_{i j}>t_{i j}^{\prime}$ for all i and j corresponding to roots in that block.

As in the proof of Theorem 3.9 we suppose that $\alpha\left(r_{1}\right)=r_{x}$ where $x \in \Phi^{+}$, and let x_{0} be the projection of x onto V_{1}. Let x_{1} be the projection of $-a_{1}$ onto V_{1}. Then $u_{1}=x_{1}+a_{1}$ spans the orthogonal complement of V_{1} in V, and $u_{1} \cdot u_{1}<0$ since W is non-degenerate and infinite. Finally $x=x_{0}+\omega u_{1}$ for some scalar ω, and by Lemma 1.15 we have $\omega \geq 1$.

For each $i \in\{2,3, \ldots, n\}$ let

$$
a_{i} \cdot a_{1}=-\mathrm{c}\left(\pi_{m_{i 1}}\right)=-c_{i} .
$$

Write $x_{1}=\sum_{i=2}^{n} \mu_{i} a_{i}$. Now $x_{1} \cdot a_{i}=-a_{1} \cdot a_{i}=c_{i}$, for $i \geq 2$ and so

$$
\mu_{i}=\sum_{j=2}^{n} t_{i j} c_{j} .
$$

For each $i \geq 2$ there is an integer j_{i} such that

$$
x_{0} \cdot \phi_{\alpha}\left(a_{i}\right)=x \cdot \phi_{\alpha}\left(a_{i}\right)=\mathrm{c}\left(j_{i} \pi_{m_{i 1}}\right)=d_{i},
$$

where $\left|d_{i}\right| \leq c_{i}$ and $d_{i}=0$ if and only if $c_{i}=0$. Writing $x_{0}=\sum_{i=2}^{n} \lambda_{i} \phi_{\alpha}\left(a_{i}\right)$, we have

$$
\lambda_{i}=\sum_{j=2}^{n} t_{i j}^{\prime} d_{j}
$$

for $i \in\{2,3, \ldots, n\}$. Now observe the following.

$$
x_{0} \cdot x_{0}=\sum_{i=2}^{n} \lambda_{i} x_{0} \cdot \phi_{\alpha}\left(a_{i}\right)=\sum_{i=2}^{n} \lambda_{i} d_{i}=\sum_{i=2}^{n} \sum_{j=2}^{n} t_{i j}^{\prime} d_{i} d_{j}
$$

and

$$
x_{1} \cdot a_{1}=\sum_{i=2}^{n} \mu_{i} a_{i} \cdot a_{1}=-\sum_{i=2}^{n} \mu_{i} c_{i}=-\sum_{i=2}^{n} \sum_{j=2}^{n} t_{i j} c_{i} c_{j} .
$$

Since $c_{i} c_{j} \geq\left|d_{i} d_{j}\right| \geq d_{i} d_{j}$ and $t_{i j} \geq t_{i j}^{\prime} \geq 0$ for all $i, j \in\{2,3, \ldots, n\}$

$$
\sum_{i} \sum_{j} t_{i j} c_{i} c_{j} \geq \sum_{i} \sum_{j} t_{i j}^{\prime} d_{i} d_{j} .
$$

But there is an irreducible component of W_{1} for which $t_{i j}>t_{i j}^{\prime}$. As W is irreducible there is an edge joining a_{1} to this component, and hence there is an a_{k} in this component for which $c_{k}>0$. Then $t_{k k} c_{k}^{2} \geq t_{k k} d_{k}^{2}>t_{k k}^{\prime} d_{k}^{2}$, and so

$$
-x_{1} \cdot a_{1}=\sum_{i} \sum_{j} t_{i j} c_{i} c_{j}>\sum_{i} \sum_{j} t_{i j}^{\prime} d_{i} d_{j}=x_{0} \cdot x_{0} .
$$

Therefore $1+x_{1} \cdot a_{1}<1-x_{0} \cdot x_{0}$. Now

$$
\begin{aligned}
u_{1} \cdot u_{1} & =\left(x_{1}+a_{1}\right) \cdot u_{1} \\
& =a_{1} \cdot u_{1} \\
& =a_{1} \cdot a_{1}+a_{1} \cdot x_{1} \\
& =1+a_{1} \cdot x_{1} .
\end{aligned}
$$

Thus $u_{1} \cdot u_{1}<1-x_{0} \cdot x_{0}$ and since $u_{1} \cdot u_{1}<0$,

$$
1>\frac{1-x_{0} \cdot x_{0}}{u_{1} \cdot u_{1}} .
$$

Since $x \in \Phi$

$$
\begin{aligned}
1 & =x \cdot x \\
& =\left(x_{0}+\omega u_{1}\right) \cdot\left(x_{0}+\omega u_{1}\right) \\
& =x_{0} \cdot x_{0}+\omega^{2} u_{1} \cdot u_{1} .
\end{aligned}
$$

Hence

$$
\omega^{2}=\frac{1-x_{0} \cdot x_{0}}{u_{1} \cdot u_{1}}<1 .
$$

But $\omega \geq 1$ and we have obtained the desired contradiction.
It only remains to deal with groups that have Coxeter diagram

$$
\begin{gathered}
5_{k}^{j} \cdot{ }_{q}^{j} \cdot \\
\dot{i}_{i 5}
\end{gathered} .
$$

(for which we cannot assume that $\alpha\left(W_{1}\right)=W_{1}$). These are considered in detail in the next section.

§3.5 Some Examples

To complete the proof of Theorem 3.16 and to foreshadow the arguments used in the next chapter we look at two examples. We find $\operatorname{Aut}(W)$ for the nearly finite Coxeter group with diagram
where $q>2$. After this example we consider nearly finite groups with W_{1} irreducible of type A_{n-1} for $n \neq 6, D_{2 k+1}, E_{6}$ or E_{7}. First some preliminary results.
3.18 Lemma Let W be a Coxeter group with a_{i}, a_{j} two simple roots. If the edge joining the nodes corresponding to a_{i} and a_{j} is labelled with an odd number, then r_{i} and r_{j} are conjugate.
Proof Suppose the edge joining the nodes is labelled $2 k+1$. Then $\left(r_{i} r_{j}\right)^{2 k+1}=1$ and so

$$
r_{i}=\left(r_{j} r_{i}\right)^{k} r_{j}\left(r_{i} r_{j}\right)^{k}=\left(r_{j} r_{i}\right)^{k} r_{j}\left(r_{i} r_{j}\right)^{-k}
$$

whence r_{i} and r_{j} are conjugate.
3.19 Lemma Let W be a Coxeter group with Π the set of simple roots. If we can find subsets I and J of Π such that $\Pi=I \dot{U} J$ and any edge joining a vertex in I to a vertex in J has an even label (or is ∞), then no reflection in W_{I} is conjugate to a reflection in W_{J}.

Proof For each simple reflection r_{i} define $f\left(r_{i}\right) \in\{1,-1\}$ as follows: if $a_{i} \in I$, then $f\left(r_{i}\right)=1$ while if $a_{j} \in J$, then $f\left(r_{j}\right)=-1$. If $a_{i} \in I$ and $a_{j} \in J$ then $m_{i j}=2 k$ for some k, and hence

$$
\left(f\left(r_{i}\right) f\left(r_{j}\right)\right)^{m_{i j}}=(-1)^{2 k}=1 .
$$

(If $m_{i j}=\infty$ there is no relation.) For other values of i and j the equation holds trivially. Thus f defines a homomorphism from W to an abelian group. If $r_{i} \in W_{I}$ and $r_{j} \in W_{J}$, then $f\left(r_{i}\right) \neq f\left(r_{j}\right)$ and therefore r_{i} and r_{j} cannot be conjugate.

Using these last two results it is possible to write down representatives of the conjugacy classes of reflections. Choosing a simple reflection r_{i}, any other simple reflection connected to r_{i} by a path whose labels are all odd is in the conjugacy class of r_{i}. No other simple reflection is in this conjugacy class. Consider, for example, the following diagram:

$$
\dot{i} \quad \dot{i}^{4} \dot{3} \quad \dot{4} \quad \dot{5}^{4} \dot{6}
$$

There are three conjugacy classes of reflections with representatives r_{1}, r_{3} and r_{6}.
Suppose now that W is a Coxeter group with diagram

Then every simple reflection is connected to r_{1} by a path on which every edge has an odd label. By Lemma 3.18 this implies that all simple reflections are conjugate to r_{1}, and hence that W has a single conjugacy class of reflections.

As we know, W_{1} and W_{2} are maximal finite standard parabolic subgroups of type $A_{1} \times H_{3}$. If $q>5$, then $W_{\left\{a_{1}, a_{2}\right\}}$ is also a maximal finite subgroup. Thus $\left\langle r_{2}\right\rangle=W_{1} \cap W_{\left\{a_{1}, a_{2}\right\}}$ and by Lemma 1.32 every automorphism of W maps r_{2} to a reflection. There is only one class of reflections and hence all automorphisms preserve reflections. Similarly, if $q \leq 5$ then $W_{\left\{a_{1}, a_{2}, a_{4}\right\}}$ is a maximal finite subgroup, and since

$$
\left\langle r_{4}\right\rangle=W_{1} \cap W_{2} \cap W_{\left\{a_{1}, a_{2}, a_{4}\right\}}
$$

we see that again automorphisms of W preserve reflections. Thus $\operatorname{Aut}(W)=R(W)$.
Let $\alpha \in \operatorname{Aut}(W)$. Since α must map the maximal finite subgroup W_{1} to another maximal finite subgroup, up to inner automorphisms we may assume that $\alpha\left(W_{1}\right)$ is W_{1} or W_{2}. If $\alpha\left(W_{1}\right)=W_{1}$ then the argument used in Theorem 3.16 shows that α is inner by graph. So suppose that $\alpha\left(W_{1}\right)=W_{2}$.

The simple reflection r_{5} is central in W_{1}; therefore

$$
\alpha\left(r_{5}\right) \in Z\left(W_{2}\right)=\left\langle r_{4}, w_{2}\right\rangle,
$$

where w_{2} is the longest element in W_{2}. As $\alpha\left(r_{5}\right)$ is a reflection and r_{4} is the only reflection in $Z\left(W_{2}\right)$ we can see that $\alpha\left(r_{5}\right)=r_{4}$. By Lemma 1.17 $\operatorname{Ref}\left(W_{1}\right)=\operatorname{Ref}\left(W_{\left\{a_{2}, a_{3}, a_{4}\right\}}\right) \dot{\cup}\left\{r_{5}\right\}$ while $\operatorname{Ref}\left(W_{2}\right)=\operatorname{Ref}\left(W_{\left\{a_{1}, a_{3}, a_{5}\right\}}\right) \dot{\cup}\left\{r_{4}\right\}$. As $\alpha\left(r_{5}\right)=r_{4}$ we can see that the reflections in $W_{\left\{a_{2}, a_{3}, a_{4}\right\}}$ are mapped to reflections in $W_{\left\{a_{1}, a_{3}, a_{5}\right\}}$ by α, and thus

$$
\alpha\left(W_{\left\{a_{2}, a_{3}, a_{4}\right\}}\right)=W_{\left\{a_{1}, a_{3}, a_{5}\right\}} .
$$

Let σ be the permutation (12)(345). Then $\tilde{\sigma}: W_{\left\{a_{1}, a_{3}, a_{5}\right\}} \rightarrow W_{\left\{a_{2}, a_{4}, a_{3}\right\}}$ given by $\tilde{\sigma}\left(r_{i}\right)=r_{\sigma i}$ is an isomorphism. Thus $\alpha \tilde{\sigma}$ is an automorphism of $W_{\left\{a_{1}, a_{3}, a_{5}\right\}}$, a Coxeter group of type H_{3}. Using Proposition $2.11 \alpha \tilde{\sigma}$ is either inner or we may follow $\alpha \tilde{\sigma}$ by an inner automorphism and obtain the automorphism ξ. Hence, following α by conjugation by an element of
$W_{\left\{a_{1}, a_{3}, a_{5}\right\}}$ we may assume that $\alpha\left(W_{1}\right)=W_{2}, \alpha\left(r_{5}\right)=r_{4}$ and either $\left.\alpha\right|_{W_{\left\{a_{1}, a_{3}, a_{5}\right\}}}=\xi$ or else $\alpha\left(\left\{r_{2}, r_{3}, r_{4}, r_{5}\right\}\right)=\left\{r_{1}, r_{3}, r_{4}, r_{5}\right\}$. In the second case α is inner by graph by Theorem 3.9. Suppose, for a contradiction, that $\left.\alpha\right|_{\left\{a_{1}, a_{3}, a_{5}\right\}}=\xi$. Then we have

$$
\begin{aligned}
& \alpha\left(r_{1}\right)=r_{x} \\
& \alpha\left(r_{2}\right)=r_{1} \\
& \alpha\left(r_{3}\right)=r_{a_{5}^{\prime}} \\
& \alpha\left(r_{4}\right)=r_{3} \\
& \alpha\left(r_{5}\right)=r_{4}
\end{aligned}
$$

where $a_{5}^{\prime}=-2 l a_{1}-l a_{3}-(l+1) a_{5}, l=(1+\sqrt{5}) / 2$. Note that $a_{5}^{\prime} \cdot a_{1}=(1-\sqrt{5}) / 4, a_{5}^{\prime} \cdot a_{3}=0$ and $a_{5}^{\prime} \cdot a_{4}=0$. As $r_{x} r_{a_{5}^{\prime}}$ and $r_{1} r_{3}$ both have order 3 , we can see that $x \cdot a_{5}^{\prime}= \pm 1 / 2$. Given that $r_{x}=r_{-x}$ we may replace x with $-x$, if necessary to ensure that $x \cdot a_{5}^{\prime}=-1 / 2$. Similar arguments show that $x \cdot a_{1}=\mathrm{c}\left(j \pi_{q}\right)$ for some j coprime to $q, x \cdot a_{3}=0$ and $x \cdot a_{4}=-\mathrm{c}\left(k \pi_{5}\right)$ for some k coprime to 5 . As usual note that $\mathrm{c}\left(\pi_{q}\right) \geq\left|\mathrm{c}\left(j \pi_{q}\right)\right|$ and $\mathrm{c}\left(\pi_{5}\right) \geq\left|\mathrm{c}\left(k \pi_{5}\right)\right|$.

$$
\text { Let } x_{0}=\left(\frac{1+\sqrt{5}}{2}\right) a_{1}+\left(\frac{1+\sqrt{5}}{4}\right) a_{3}-\mathrm{c}\left(k \pi_{5}\right) a_{4}+\left(\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2}\right) a_{5} \text {. }
$$

$$
\begin{aligned}
x_{0} \cdot a_{1}= & \frac{1+\sqrt{5}}{2}-\frac{1}{2}\left(\frac{1+\sqrt{5}}{4}\right) \\
& +0-\frac{1+\sqrt{5}}{4}\left(\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2}\right) \\
= & \frac{1}{8}(4+4 \sqrt{5}-1-\sqrt{5}-3-3 \sqrt{5} \\
& \left.\quad-2(1+\sqrt{5})(1-\sqrt{5}) \mathrm{c}\left(j \pi_{1}\right)\right) \\
= & \mathrm{c}\left(j \pi_{q}\right)=x \cdot a_{1}
\end{aligned}
$$

$$
x_{0} \cdot a_{3}=-\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)+\frac{1+\sqrt{5}}{4}+0+0
$$

$$
=0=x \cdot a_{3}
$$

$$
x_{0} \cdot a_{4}=0+0-\mathrm{c}\left(k \pi_{5}\right)+0
$$

$$
=x \cdot a_{4}
$$

$$
x_{0} \cdot a_{5}^{\prime}=\left(\frac{1+\sqrt{5}}{2}\right) a_{1} \cdot a_{5}^{\prime}+\left(\frac{1+\sqrt{5}}{4}\right) a_{3} \cdot a_{5}^{\prime}
$$

$$
-\mathrm{c}\left(k \pi_{5}\right) a_{4} \cdot a_{5}^{\prime}+\left(\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2}\right) a_{5} \cdot a_{5}^{\prime}
$$

$$
=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{4}\right)+0+0
$$

$$
+\left(\frac{3+2(1-\sqrt{5}) c\left(j \pi_{q}\right)}{2}\right)\left((1+\sqrt{5}) \frac{1+\sqrt{5}}{4}+0-\frac{3+\sqrt{5}}{2}\right)
$$

$$
=-\frac{1}{2}+\left(\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2}\right)\left(\frac{3+\sqrt{5}}{2}-\frac{3+\sqrt{5}}{2}\right)
$$

$$
=-\frac{1}{2}=x \cdot a_{5}^{\prime} .
$$

Thus x_{0} is the projection of x onto V_{2}, the space spanned by $\left\{a_{1}, a_{3}, a_{4}, a_{5}\right\}$.

Let

$$
\begin{aligned}
x_{2}=(2 & \left.+\sqrt{5}+2(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) a_{1}+\frac{1}{4}\left(5+3 \sqrt{5}+4(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) a_{3} \\
& +\frac{1}{2} a_{4}+\frac{1}{4}\left(7+3 \sqrt{5}+8(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) a_{5} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{2} \cdot a_{1}=2+\sqrt{5}+2(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)-\frac{1}{8}\left(5+3 \sqrt{5}+4(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) \\
&+0-\frac{1+\sqrt{5}}{16}\left(7+3 \sqrt{5}+8(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) \\
&= \mathrm{c}\left(\pi_{q}\right)=-a_{2} \cdot a_{1} \\
& x_{2} \cdot a_{3}=- \frac{1}{2}\left(2+\sqrt{5}+2(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) \\
&+\frac{1}{4}\left(5+3 \sqrt{5}+4(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right)+0+0 \\
&= \frac{1+\sqrt{5}}{4}=-\mathrm{c}\left(\pi_{5}\right)=-a_{2} \cdot a_{3} \\
& x_{2} \cdot a_{4}=\frac{1}{2}=-a_{2} \cdot a_{4} \\
& x_{2} \cdot a_{5}=- \frac{1+\sqrt{5}}{4}\left(2+\sqrt{5}+2(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right)+0+0 \\
&+\frac{1}{4}\left(7+3 \sqrt{5}+8(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) \\
&=0=-a_{2} \cdot a_{5} .
\end{aligned}
$$

Thus x_{2} is the projection of $-a_{2}$ onto V_{2}. As before this tells us that $u_{2}=x_{2}+a_{2}$ is orthogonal to V_{2}.

$$
\begin{aligned}
u_{2} \cdot u_{2}= & \left(x_{2}+a_{2}\right) \cdot u_{2}=a_{2} \cdot u_{2}=a_{2} \cdot x_{2}+1 \\
= & -\frac{1+\sqrt{5}}{4}\left(2+\sqrt{5}+2(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right) \\
& -\left(\frac{1+\sqrt{5}}{16}\right)\left(5+3 \sqrt{5}+4(3+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)\right)-\frac{1}{4}+0+1 \\
= & -\frac{1+\sqrt{5}}{2}-2(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)-2(3+\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right)<0,
\end{aligned}
$$

as $\mathrm{c}\left(\pi_{q}\right)>0$. Together with that fact that W_{2} is positive definite, this implies that W is non-degenerate.

We find that

$$
\begin{aligned}
x_{0} \cdot a_{5} & =-\left(\frac{1+\sqrt{5}}{4}\right)\left(\frac{1+\sqrt{5}}{2}\right)+0+0+\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2} \\
& =\frac{1}{4}\left(3-\sqrt{5}+4(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)\right)
\end{aligned}
$$

and hence it follows that

$$
\begin{aligned}
x_{0} \cdot x_{0}= & \frac{1+\sqrt{5}}{2} a_{1} \cdot x_{0}+\left(\frac{1+\sqrt{5}}{4}\right) a_{3} \cdot x_{0}-\mathrm{c}\left(k \pi_{5}\right) a_{4} \cdot x_{0} \\
& +\left(\frac{3+2(1-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)}{2}\right) a_{5} \cdot x_{0} \\
= & \mathrm{c}^{2}\left(k \pi_{5}\right)+\frac{9-3 \sqrt{5}}{8}+2(2-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)+2(3-\sqrt{5}) \mathrm{c}^{2}\left(j \pi_{q}\right) .
\end{aligned}
$$

Note that $\mathrm{c}^{2}\left(\pi_{5}\right)=(3+\sqrt{5}) / 8$. Now

$$
\begin{aligned}
1-x_{0} \cdot x_{0}-u_{2} \cdot u_{2}=1 & -\mathrm{c}^{2}\left(k \pi_{5}\right)-\frac{9-3 \sqrt{5}}{8}-2(2-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)-2(3-\sqrt{5}) \mathrm{c}^{2}\left(j \pi_{q}\right) \\
& +\frac{1+\sqrt{5}}{2}+2(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)+2(3+\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right) \\
& +\mathrm{c}^{2}\left(\pi_{5}\right)-\frac{3+\sqrt{5}}{8} \\
=(& \left.\mathrm{c}^{2}\left(\pi_{5}\right)-\mathrm{c}^{2}\left(k \pi_{5}\right)\right)+\left(2(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)-2(2-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)\right) \\
& +\left(2(3+\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right)-2(3-\sqrt{5}) \mathrm{c}^{2}\left(j \pi_{q}\right)\right) .
\end{aligned}
$$

We claim that this last expression is strictly positive. First observe that $\mathrm{c}^{2}\left(\pi_{5}\right)-\mathrm{c}^{2}\left(k \pi_{5}\right) \geq 0$. Next we have

$$
2(3+\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right)>2(3-\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right) \geq 2(3-\sqrt{5}) \mathrm{c}^{2}\left(j \pi_{q}\right)
$$

Finally, since $\mathrm{c}\left(j \pi_{q}\right) \geq-\mathrm{c}\left(\pi_{q}\right)$ and $2-\sqrt{5}<0$,

$$
2(2-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right) \leq 2(\sqrt{5}-2) \mathrm{c}\left(\pi_{q}\right)<2(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right) .
$$

Thus

$$
2(2+\sqrt{5}) \mathrm{c}\left(\pi_{q}\right)-2(2-\sqrt{5}) \mathrm{c}\left(j \pi_{q}\right)>0 \quad \text { and } \quad\left(2(3+\sqrt{5}) \mathrm{c}^{2}\left(\pi_{q}\right)-2(3-\sqrt{5}) \mathrm{c}^{2}\left(j \pi_{q}\right)\right)>0
$$

establishing our claim. Therefore $\frac{1-x_{0} \cdot x_{0}}{u_{2} \cdot u_{2}}<1$, as $u_{2} \cdot u_{2}<0$.
Following the proof of Theorem 3.16, if we write $x=x_{0}+\omega u_{2}$ then either $\omega \geq 1$ (if $x \in \Phi^{+}$) or $\omega \leq-1$ (if $x \in \Phi^{-}$), and hence $\omega^{2} \geq 1$. We know that x is a root, thus

$$
\begin{aligned}
1 & =x \cdot x=\left(x_{0}+\omega u_{2}\right) \cdot\left(x_{0}+\omega u_{2}\right) \\
& =x_{0} \cdot x_{0}+\omega^{2} u_{2} \cdot u_{2}
\end{aligned}
$$

and hence

$$
\omega^{2}=\frac{1-x_{0} \cdot x_{0}}{u_{2} \cdot u_{2}}<1
$$

which is a contradiction. So this case cannot arise and we conclude that all automorphisms are inner by graph. This completes the proof of Theorem 3.16.

If there are many maximal finite standard parabolic subgroups then, as the above example illustrates, there is a chance that all automorphisms preserve reflections. At the other extreme the following result looks at some nearly finite Coxeter groups where it is only assumed that one standard parabolic subgroup is finite.
3.20 Corollary Suppose W is a non-degenerate nearly finite Coxeter group such that W_{i} is of type A_{n-1} for $n \neq 6, D_{2 k+1}, E_{6}$ or E_{7}. If there is an $l \neq i$ such that $m_{i l}$ is odd, then all automorphisms of W are inner by graph.
Proof If $m_{i l}$ is odd then in the Coxeter diagram of W there is an edge with an odd label incident with the vertex corresponding to r_{i}. By assumption, all the edges in the diagram of W_{i} have odd labels. Thus, by Lemma 3.18, W has only one conjugacy class of reflections.

Let $\alpha \in \operatorname{Aut}(W)$ be any automorphism of W. Up to inner automorphisms we may assume that $\alpha\left(W_{i}\right)=W_{j}$ where W_{j} has the same type as W_{i}, by Theorem 3.14. Thus there is a permutation $\sigma \in \operatorname{Sym}_{n}$ such that $\tilde{\sigma}: W_{j} \rightarrow W_{i}$ given by $\tilde{\sigma}\left(r_{t}\right)=r_{\sigma t}$ is an isomorphism. Then $\alpha \tilde{\sigma}$ is an automorphism of a group of type A_{n-1} for $n \neq 6, D_{2 k+1}, E_{6}$ or E_{7}. By Propositions 2.4, 2.8 and 2.9 this automorphism is inner. In particular this implies that α maps the reflections in W_{i} to reflections in W_{j}. But W only has one class of reflections and hence α preserves reflections and the result follows by Theorem 3.16.

Chapter 4

Affine Weyl Groups, Hyperbolic Groups and Other Infinite Coxeter Groups

In the last chapter we showed that if W is a nearly finite Coxeter group, then any reflectionpreserving automorphism is inner by graph. The question remains whether the reflection preserving hypothesis is necessary. In this chapter it will be shown that all automorphisms of hyperbolic Coxeter groups and affine Weyl groups are inner by graph. The proofs in this chapter will follow the same plan. First it will be shown that any automorphism must preserve $\operatorname{Ref}(W)$, the set of reflections. In cases where the diagram of the group is a forest with no unusual labels this will finish the proof, by Corollary 1.44. In all but four of the remaining cases the group is a non-degenerate nearly finite group, and the result follows by Theorem 3.16. The last four cases are dealt with by separate arguments.

§4.1 Preliminaries

4.1 Proposition Suppose that W is a Coxeter group, with $\Pi=\left\{a_{1}, \ldots, a_{n}\right\}$ the set of simple roots. Suppose that α is an automorphism of W and

$$
\alpha\left(r_{i}\right)=r_{b_{i}}
$$

for all $r_{i} \in \Pi$. Let M and N be the $n \times n$ matrices whose (i, j) entries are (respectively) $a_{i} \cdot a_{j}$ and $b_{i} \cdot b_{j}$, then M and N have the same signature.
Proof Identify elements of V with their coordinate vectors (written as column vectors) relative to the basis Π, and let $X=\left(b_{1}|\cdots| b_{n}\right)$ be the matrix with the b_{i} as columns. We have $N=X^{t} M X$. If X is nonsingular we see that N and M have the same signature.

If X is singular then $\left\{b_{1}, \ldots, b_{n}\right\}$ span a proper subspace U of V. However, if $g=r_{v_{1}} r_{v_{2}} \ldots r_{v_{l}}$ for some $r_{v_{i}} \in \Phi$, and if $v \in V$ is arbitrary, then

$$
g v-v=\sum_{i=2}^{l}\left(r_{v_{i}}\right)\left(r_{v_{i+1}} \ldots r_{v_{l}}(v)\right)
$$

is in the space spanned by $v_{1}, v_{2}, \ldots, v_{l}$. Since $r_{b_{1}}, r_{b_{2}}, \ldots, r_{b_{n}}$ generate W it follows that U contains $g v-v$ for all $g \in W$ and $v \in V$. In particular, U contains $r_{i}\left(a_{i}\right)-a_{i}=2 a_{i}$ for all i, contradicting the fact that U is a proper subspace of V.
4.2 Corollary Let $\alpha: W \rightarrow W$ be a homomorphism, with $\alpha\left(r_{i}\right)=r_{b_{i}}$ for all i. If the matrices $\left(a_{i} \cdot a_{j}\right)$ and ($b_{i} \cdot b_{j}$) have different signatures, then α is not an automorphism.
4.3 Lemma If a reflection is conjugate to a simple reflection r_{i} with the property that $\left\langle r_{i}\right\rangle$ can be written as an intersection of maximal finite subgroups, then all automorphisms of W map that reflection to a reflection.
Proof Using Lemma 1.32 we know that r_{i} is mapped to a reflection by all automorphisms and the rest is clear.
4.4 Lemma If W is a Coxeter group such that W_{i} is finite for all i, then any automorphism of W maps reflections to reflections.

Proof If r_{i} is any simple root, then $\left\langle r_{i}\right\rangle=\bigcap_{j \neq i} W_{i}$ is the intersection of a collection of maximal finite standard parabolic subgroups. By Corollary 1.31, if α is any automorphism of W, then $\alpha\left\langle r_{i}\right\rangle$ is a parabolic subgroup of order 2. Thus $\left\langle r_{i}\right\rangle$ is conjugate to a parabolic subgroup of the form $\left\langle r_{k}\right\rangle$ for some simple reflection r_{k}. Hence $\alpha\left(r_{i}\right)$ is conjugate to r_{k} and so is a reflection.

This lemma applies exactly to the compact hyperbolic Coxeter groups and the affine Weyl groups.

§4.2 Affine Weyl Groups

In the Chapter 2 the automorphisms of the finite irreducible Coxeter groups were classified. It was mentioned, in Lemma 1.1, that a Coxeter group is finite if and only if it is positive definite. The obvious next class to consider is the class of positive semi-definite Coxeter groups; it is well-known that these are isomorphic to the affine Weyl groups.

The following is a list of the positive semi-definite Coxeter groups.

By convention the $\tilde{A}_{n}, \tilde{B}_{n}, \tilde{C}_{n}$ and \tilde{D}_{n} diagrams have $n+1$ vertices. Note that if W is a Coxeter group of one of the above types then W_{i} is finite for all i. Thus, by Lemma 4.4, if α is any automorphism of a group W of one of the above types, then α preserves $\operatorname{Ref}(W)$. Therefore except possibly for \tilde{A}_{1} and \tilde{A}_{n}, α is inner by graph, by Corollary 1.44.
$\tilde{A}_{n}: \quad$ Let W be a Coxeter group of type \tilde{A}_{n}, where $n>1$, with diagram

First observe that $a_{1}+a_{2}+\cdots+a_{n+1}$ is orthogonal to a_{i} for all i and so B is degenerate. Letting $\alpha\left(r_{i}\right)=r_{b_{i}}$ where $b_{i} \in \Phi$ we may define $\phi_{\alpha}: V \rightarrow V$ by $\phi_{\alpha}\left(a_{i}\right)=b_{i}$. Noting that there are two choices for b_{i} and replacing b_{i+1} with $-b_{i+1}$ at need we may ensure $b_{i} \cdot b_{i+1}=a_{i} \cdot a_{i+1}$
for $i=1$ to $n-1$. If $b_{n} \cdot b_{1}=a_{n} \cdot a_{1}$ then ϕ_{α} is orthogonal and α is inner by graph by Theorem 1.44. If $\phi_{\alpha}\left(a_{n}\right) \cdot \phi_{\alpha}\left(a_{1}\right)=-a_{n} \cdot a_{1}=1 / 2$ instead of $-1 / 2$ then

$$
\operatorname{det}\left(b_{i} \cdot b_{j}\right)=\operatorname{det}\left[\begin{array}{cccccc}
1 & -1 / 2 & 0 & \cdots & 0 & 1 / 2 \\
-1 / 2 & 1 & -1 / 2 & \cdots & 0 & 0 \\
0 & -1 / 2 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1 / 2 \\
1 / 2 & 0 & 0 & \cdots & -1 / 2 & 1
\end{array}\right]=\frac{1}{2^{n-2}} \neq 0
$$

This means that the matrices $\left(a_{i} \cdot a_{j}\right)$ and $\left(b_{i} \cdot b_{j}\right)$ have different signatures and hence, by Proposition 4.1, this case cannot arise. Hence $\operatorname{Aut}(W) \cong \operatorname{Inn}(W) \rtimes \operatorname{Gr}(W) \cong W \rtimes I_{2}(n)$, using Lemma 2.16.
$\tilde{A}_{1}:$ Let W be a Coxeter group of type \tilde{A}_{1} with diagram

$$
. \infty .
$$

Modulo inner by graph automorphisms we may assume that $\alpha\left(r_{1}\right)=r_{1}$. Now $r_{1} r_{2}$ generates an infinite cyclic subgroup that is characteristic (being the unique cyclic subgroup of index 2). So $\alpha\left(r_{1} r_{2}\right)$ is $r_{1} r_{2}$ or $r_{2} r_{1}$, whence $\alpha\left(r_{2}\right)$ is r_{2} or $r_{1} r_{2} r_{1}$, and so α is the identity or conjugation by r_{1}. Thus we have proved the following.
4.5 Proposition If W is a Coxeter group with B positive semi-definite, then all automorphisms of W are inner by graph, and hence

$$
\operatorname{Aut}(W) \cong W \rtimes \operatorname{Gr}(W)
$$

§4.3 Hyperbolic Coxeter Groups

In this section we follow the terminology of Humphrey's book [Hum90]. The following definitions are taken almost directly from $\S 6.8$ of [Hum90].
4.6 Definition Denote by $\omega_{s}, s \in \Pi$, the basis dual to the basis $a_{s}, s \in \Pi$, relative to B. The cone C is defined as follows.

$$
C=\left\{\lambda \in V \mid B\left(\lambda, a_{s}\right)>0 \text { for all } s \in \Pi\right\}=\left\{\sum c_{s} \omega_{s} \mid c_{s}>0\right\} .
$$

In particular, all ω_{s} lie in the closure D of C, which is a fundamental domain for the action of W on $\bigcup_{w \in W} w(C)$, a subset of the dual space.
4.7 Definition Define the irreducible Coxeter group W, with simple roots Π, to be hyperbolic if B has signature $(n-1,1)$ and $B(\lambda, \lambda)<0$ for all $\lambda \in C$.

Humphreys' definition, while being common, is not universally used. In $\S 6.9$ of [Hum90] Humphreys provides a list of the hyperbolic Coxeter groups. The only infinite classes of hyperbolic Coxeter groups are the rank three cases. If we exclude infinite bonds it is clear that if W is an infinite rank three non-degenerate Coxeter group then W_{i} is finite for all i and so W is nearly finite. Thus by Lemma 4.4 and Theorem 3.16 all automorphisms of W are inner by graph. The degenerate cases are dealt with by Proposition 4.5 , while rank 3 Coxeter groups with infinite bonds are dealt with in Chapter 5.

We now concentrate on the rank ≥ 4 case. See Table I on page 70 for a complete list of the groups mentioned in Humphreys. Immediately following Table I on page 74 is a full
explanation of how to read this table. For later reference we have numbered the hyperbolic Coxeter groups listed in [Hum90]. Table I gives this numbering, which roughly follows the ordering of the diagrams by size in [Hum90] but is otherwise arbitrary.

It should be noted at this stage that not all hyperbolic groups are nearly finite. For example, a group W of type \mathcal{H}_{17} is hyperbolic but no parabolic subgroup of the form W_{i} is finite. Note that all non-degenerate nearly finite groups have signature ($n-1,1$) and so satisfy part of the definition of hyperbolic Coxeter groups.

In view of Corollary 1.44 and Theorem 3.16 there are several ways of showing that all automorphisms of W are inner by graph. First we show that all automorphisms preserve reflections. If the Coxeter diagram of W is a forest with no unusual labels, then we are finished. Similarly if W is nearly finite. In other cases a different argument is used.

In some cases all reflections are conjugate to a simple reflection with the property mentioned in Lemma 4.3 and so all automorphisms preserve $\operatorname{Ref}(W)$. For example, if W is a Coxeter group of type \mathcal{H}_{32} on Humphreys' list with diagram

$$
\dot{1} \quad \dot{2}^{6} \quad \dot{3} \quad . \quad .
$$

the maximal finite standard parabolic subgroups of W are W_{2}, W_{3} and $W_{\left\{a_{2}, a_{3}\right\}}$. Now $\left\langle r_{2}\right\rangle=W_{\left\{a_{2}, a_{3}\right\}} \cap W_{3}$ and $\left\langle r_{3}\right\rangle=W_{\left\{a_{2}, a_{3}\right\}} \cap W_{2}$. Furthermore $r_{1}=r_{2} r_{1} r_{2} r_{1} r_{2}$ is conjugate to r_{2} and similarly r_{4} is conjugate to r_{3}. Any reflection in W is conjugate to a simple reflection and so by Lemma 4.3 all automorphisms of W map reflections to reflections.
4.8 Notation If W is a Coxeter group with Π the set of simple roots, then the parabolic subgroup $W_{\Pi \backslash\left\{a_{i_{1}}, a_{i_{2}}, \ldots\right\}}$ will be denoted by $W_{i_{1} i_{2} \ldots}$.
\mathcal{H}_{01} : Let W be a Coxeter group of type \mathcal{H}_{01} with diagram

$$
\dot{i}^{4} \dot{i} \dot{3}^{5} \dot{4}
$$

It is easily checked that the maximal finite standard parabolic subgroups are: W_{1} of type H_{3}, W_{2} of type $A_{1} \times I_{2}(5), W_{3}$ of type $I_{2}(4) \times A_{1}$ and W_{4} of type B_{3}. It is easy to see that

$$
\left\langle r_{1}\right\rangle=W_{2} \cap W_{3} \cap W_{4}
$$

and so, by Lemma 1.32, r_{1} is mapped to a reflection by all automorphisms. A similar argument can be used for the remaining reflections. A similar argument can be used for the groups: $\mathcal{H}_{01}-\mathcal{H}_{14}$ (the compact hyperbolic groups), $\mathcal{H}_{17}, \mathcal{H}_{21}, \mathcal{H}_{36}, \mathcal{H}_{37}$ and \mathcal{H}_{55}. Except for the compact groups the arguments are summarized in Table II on page 74. The first 14 groups listed there are the compact hyperbolic groups and we may use Lemma 4.4 to show that $\operatorname{Ref}(W)$ is preserved.
\mathcal{H}_{18} : Let W be a Coxeter group of type \mathcal{H}_{18} with diagram

```
1. -2
4. . . }\mp@subsup{}{}{3
```

The maximal finite standard parabolic subgroups are: $W_{3} \cong W_{4}$ of type A_{3} and W_{12} of type $I_{2}(6)$. Now

$$
\left\langle r_{3}\right\rangle=W_{12} \cap W_{4}
$$

and all simple reflections are conjugate to r_{3}. So, by Lemma 4.3, all simple reflections are mapped to reflections by any automorphism. Hence the set of reflections is preserved by all automorphisms.

A similar argument can be used for the groups: $\mathcal{H}_{18}-\mathcal{H}_{20}, \mathcal{H}_{22}, \mathcal{H}_{23}, \mathcal{H}_{25}, \mathcal{H}_{26}, \mathcal{H}_{32}$, $\mathcal{H}_{34}, \mathcal{H}_{42}, \mathcal{H}_{44}, \mathcal{H}_{45}, \mathcal{H}_{48}, \mathcal{H}_{50}, \mathcal{H}_{52}-\mathcal{H}_{54}, \mathcal{H}_{56}-\mathcal{H}_{58}, \mathcal{H}_{60}, \mathcal{H}_{61}, \mathcal{H}_{63}-\mathcal{H}_{66}, \mathcal{H}_{68}-\mathcal{H}_{70}$ and \mathcal{H}_{72}. These arguments are summarized in Table III on page 75.
\mathcal{H}_{15} : Let W be a Coxeter group of type \mathcal{H}_{15} with diagram

$$
\begin{array}{lr}
1 \cdot & \cdot 2 \\
4 \\
{ }_{4} \cdot & \cdot{ }_{4}
\end{array}
$$

The maximal finite standard parabolic subgroups are: $W_{1} \cong W_{3}$ of type B_{3} and W_{4} of type A_{3}. Now

$$
\left\langle r_{2}\right\rangle=W_{1} \cap W_{3} \cap W_{4}
$$

and so r_{2} is always mapped to a reflection. Using the argument from \mathcal{H}_{18} we can see that r_{1} and r_{3} are conjugate to r_{2} and so are also always mapped to reflections. Now look at W_{1} of type B_{3}. Suppose that α is an automorphism of W. Then $\alpha\left(W_{1}\right)$ is a maximal finite subgroup of W of order 48. Thus $\alpha\left(W_{1}\right)$ is a conjugate of either W_{1} or W_{3}, and so, up to inner automorphisms, we may assume that $\alpha\left(W_{1}\right)=W_{1}$ or W_{3}. Now there is a graph automorphism which interchanges W_{1} and W_{3} and hence, up to inner by graph automorphisms, we can assume that α fixes W_{1}. Thus $\left.\alpha\right|_{W_{1}}$ is an automorphism of a group of type B_{3}, and so r_{4} is mapped to a reflection, by Proposition 2.8. As inner by graph automorphisms preserve the set of reflections the original automorphism must also map reflections to reflections. (Note that it is conceivable that the image of a parabolic subgroup of type $B_{2 k+1}$ could be a parabolic subgroup of type $A_{1} \times D_{2 k+1}$, but for this diagram there are no parabolics of type $A_{1} \times D_{3}$.)

A similar argument can be used for the groups: $\mathcal{H}_{15}, \mathcal{H}_{35}, \mathcal{H}_{51}, \mathcal{H}_{62}$ and \mathcal{H}_{71}. The Table IV on page 76 summarizes the arguments.
\mathcal{H}_{30} : Let W be a Coxeter group of type \mathcal{H}_{30} with diagram

$$
\dot{1}^{5} \quad \dot{3} \quad \dot{3}^{6} \underset{4}{ }
$$

The maximal finite standard parabolic subgroups are: W_{2} of type $A_{1} \times I_{2}(6), W_{3}$ of type $I_{2}(5) \times A_{1}$ and W_{4} of type H_{3}. The simple reflections r_{1}, r_{2} and r_{3} can be dealt with by noting that they are all conjugate and

$$
\left\langle r_{1}\right\rangle=W_{2} \cap W_{3} \cap W_{4} .
$$

Suppose that α is an automorphism and look at $\alpha\left(W_{3}\right)$ which must be conjugate to a maximal finite standard parabolic subgroup. A consideration of the orders shows that, up to inner automorphisms, we may assume that α fixes W_{3} setwise. Now the centre of W_{3} is $\left\langle r_{4}\right\rangle$ and so $\alpha\left(r_{4}\right)$ is the non-identity element in

$$
Z\left(\alpha\left(W_{3}\right)\right)=Z\left(W_{3}\right)=\left\langle r_{4}\right\rangle
$$

and so $\alpha\left(r_{4}\right)=r_{4}$. Thus all automorphisms preserve the set of reflections.
In some cases this argument must be applied to a parabolic subgroup which is the intersection of several maximal finite standard parabolic subgroups. For example consider the argument for a group W of type \mathcal{H}_{39} with diagram

There are two classes of reflections with r_{1} and r_{4} as representatives. The maximal finite standard parabolics are W_{2}, W_{3}, W_{4} and W_{5} and it is easy to deal with r_{1} as

$$
\left\langle r_{1}\right\rangle=W_{2} \cap W_{3} \cap W_{4} \cap W_{5}
$$

Now observe that $\left\langle r_{4}\right\rangle$ is the centre of the parabolic subgroup $W_{3} \cap W_{5}$ which is of type $A_{1} \times A_{2}$. If α is any automorphism, then by Corollary $1.31 \alpha\left(W_{3} \cap W_{5}\right)$ is a parabolic
subgroup of order 12. Hence, up to inner automorphisms, we may assume that $\alpha\left(W_{3} \cap W_{5}\right)$ is a standard parabolic subgroup. There are only two types of Coxeter group with order 12, namely $A_{1} \times A_{2}$ and $I_{2}(6)$, but W does not have a standard parabolic subgroup of type $I_{2}(6)$ and so $\alpha\left(W_{3} \cap W_{5}\right)$ is a standard parabolic subgroup of type $A_{1} \times A_{2}$. In any case the centre of such a subgroup has the form $\left\langle r_{i}\right\rangle$ for some simple reflection r_{i} and hence r_{4} is mapped to a reflection.

Similar arguments can be used for the groups: $\mathcal{H}_{30}, \mathcal{H}_{31}, \mathcal{H}_{38}-\mathcal{H}_{41}, \mathcal{H}_{43}, \mathcal{H}_{46}, \mathcal{H}_{47}$, $\mathcal{H}_{49}, \mathcal{H}_{59}$ and \mathcal{H}_{67}. Table V on page 76 , summarizes the arguments.
\mathcal{H}_{28} : Let W be a Coxeter group of type \mathcal{H}_{28} with diagram

$$
i^{4} \dot{z}^{4} \dot{3}^{4} \dot{4}
$$

The maximal finite standard parabolic subgroups are: $W_{2} \cong W_{3}$ of type $A_{1} \times I_{2}(4)$ and finally W_{14} of type $I_{2}(4)$. The simple reflections r_{2} and r_{3} are easily dealt with as $\left\langle r_{2}\right\rangle=W_{3} \cap W_{14}$ and similarly for r_{3}. Suppose that $\alpha\left(r_{4}\right)$ is not a reflection. Modifying α by inner by graph automorphisms if necessary, we may assume that $\alpha\left(W_{2}\right)=W_{2}$. Now

$$
\left\langle r_{1}\right\rangle=Z\left(W_{2}\right) \cap W_{3}
$$

and so

$$
\begin{aligned}
\left\langle\alpha\left(r_{1}\right)\right\rangle & =\alpha\left(Z\left(W_{2}\right)\right) \cap \alpha\left(W_{3}\right) \\
& =Z\left(W_{2}\right) \cap \alpha\left(W_{3}\right)
\end{aligned}
$$

Now $W_{2} \cap \alpha\left(W_{3}\right)=\alpha\left(W_{2} \cap W_{3}\right)$ is a parabolic subgroup of W_{2} of type $A_{1} \times A_{1}$, and hence equals $w\left\langle r_{1}, r_{i}\right\rangle w^{-1}$ for some $w \in W_{2}$ and $i=3$ or 4 . So

$$
\begin{aligned}
Z\left(W_{2}\right) \cap \alpha\left(W_{3}\right) & =w\left\langle r_{1}, r_{i}\right\rangle w^{-1} \cap Z\left(W_{2}\right) \\
& =w\left(\left\langle r_{1}, r_{i}\right\rangle \cap Z\left(W_{2}\right)\right) w^{-1} \\
& =\left\langle w r_{1} w^{-1}\right\rangle
\end{aligned}
$$

Hence $\alpha\left(r_{1}\right)=w r_{1} w^{-1}$, a reflection. A symmetrical argument shows that $\alpha\left(r_{4}\right)$ is also a reflection.

A similar argument can be used for the groups: $\mathcal{H}_{28}, \mathcal{H}_{29}$ and \mathcal{H}_{33}.
The remaining arguments apply to only one group on the list.
\mathcal{H}_{16} : Let W be a Coxeter group of type \mathcal{H}_{16} with diagram

$$
\begin{array}{ll}
l_{1} & \cdot{ }^{2} \\
4 & { }_{4}^{4} \\
{ }_{4} & { }_{4}{ }^{3}
\end{array}
$$

The maximal finite standard parabolic subgroups are: $W_{3} \cong W_{4}$ of type B_{3} and W_{12} of type $I_{2}(4)$. It is easily shown that r_{3} and r_{4} map to reflections. Now

$$
\left\langle r_{1}, r_{2}\right\rangle=W_{3} \cap W_{4}
$$

is of type A_{2} and so $\alpha\left\langle r_{1}, r_{2}\right\rangle$ is, up to inner automorphisms, a standard parabolic subgroup of order 6 . Hence we may assume

$$
\alpha\left\langle r_{1}, r_{2}\right\rangle=\left\langle r_{1}, r_{2}\right\rangle .
$$

But all the automorphisms of A_{2} fix the set of reflections, and so r_{1} and r_{2} are mapped to reflections.
\mathcal{H}_{24} : Let W be a Coxeter group of type \mathcal{H}_{24} with diagram

$$
\dot{1}^{4} \cdot{ }^{4}{ }^{3}
$$

The maximal finite standard parabolic subgroups are: $W_{3} \cong W_{4}$ of type B_{3} and W_{2} of type $A_{1} \times A_{2}$. For r_{1} note that $\left\langle r_{1}\right\rangle=W_{2} \cap W_{3} \cap W_{4}$. Up to inner automorphisms, $\alpha\left(W_{3} \cap W_{4}\right)$ is a standard parabolic subgroup of order 8 and so we may assume

$$
\alpha\left(W_{2} \cap W_{3}\right)=W_{2} \cap W_{3}
$$

As r_{2} is a non-central involution in $W_{2} \cap W_{3}, \alpha\left(r_{2}\right)$ must also be a non-central involution in this subgroup. Hence $\alpha\left(r_{2}\right)$ is a reflection, and the remaining simple reflections are conjugate to r_{2}.
\mathcal{H}_{27} : Let W be a Coxeter group of type \mathcal{H}_{27} with diagram

$$
\dot{1}^{4} \dot{2}^{4} \dot{4}
$$

The maximal finite standard parabolic subgroups are: W_{1} of type B_{3}, W_{2} of type $A_{1} \times A_{2}$ and W_{3} of type $I_{2}(4) \times A_{1}$. The reflections r_{3} and r_{4} are conjugate and

$$
\left\langle r_{4}\right\rangle=W_{1} \cap W_{2} \cap W_{3} .
$$

Up to inner automorphisms W_{1}, of type B_{3}, is fixed since it is the unique standard parabolic subgroup of type $A_{1} \times A_{2}$. Therefore, by Proposition 2.8, r_{2} is mapped to a reflection. Finally

$$
\left\langle r_{1}\right\rangle=Z\left(W_{2}\right)
$$

and up to inner automorphisms we may assume W_{2} is fixed and therefore r_{1} is also fixed; in particular, it is mapped to a reflection.

§4.4 Automorphisms

We have just seen that if W is a hyperbolic Coxeter group, then any automorphism of W preserves reflections. Thus if the Coxeter diagram of W is a forest with no unusual labels or if W is nearly finite, then all automorphisms of W are inner by graph. These arguments cover all but 4 of the types listed in Table I. The exceptions are $\mathcal{H}_{17}, \mathcal{H}_{21}, \mathcal{H}_{57}$ and \mathcal{H}_{37}. In the first three cases a simple argument involving the signature of the form can be used; the final case is a little more complicated.
\mathcal{H}_{17} : Let W be a Coxeter group of type \mathcal{H}_{17} with diagram

Suppose we have an automorphism α. As shown in the previous section α maps reflections to reflections. Choose $b_{i} \in \Phi$ with $\alpha\left(r_{i}\right)=r_{b_{i}}$, noting that there are two choices for each b_{i}, one positive the other negative. Replacing b_{i} with $-b_{i}$, if necessary, we may choose b_{1} such that $b_{1} \cdot b_{4}=a_{1} \cdot a_{4}$. Now choose the sign of b_{2} so that $b_{1} \cdot b_{2}=a_{1} \cdot a_{2}$, and finally choose the sign of b_{3} so that $b_{2} \cdot b_{3}=a_{2} \cdot a_{3}$. We are now left with 2 possible values for $b_{3} \cdot b_{4}$, namely $b_{3} \cdot b_{4}= \pm \sqrt{2} / 2$. In the following discussion these choices will be denoted as follows

In the first of these two cases ϕ_{α} preserves the bilinear form, and so by Corollary 1.44 it follows that α is inner by graph. The second case is impossible since the matrix $\left(b_{i} \cdot b_{j}\right)$ turns out to be singular, contradicting Lemma 4.1. Virtually identical arguments to this apply for the groups \mathcal{H}_{21} and \mathcal{H}_{57} : in both cases ϕ_{α} must preserve the form since the alternative Gram matrix turns out to be singular.

Finally the exceptional case: let W be a Coxeter group of type \mathcal{H}_{37} with diagram

To save time label an edge with a minus sign if $b_{i} \cdot b_{j}=-a_{i} \cdot a_{j}$. If a vertex has two incident edges labelled with a minus sign then changing the choice of b_{i} corresponding to that vertex removes two minus signs and adds one. If all three edges are labelled with minuses then this removes them all. Thus we may reduce the number of minus signs until each vertex is incident with at most one minus. Hence we can have at most two minus signs and they cannot be incident. The case where there are two minus signs contradicts Lemma 4.1, since $\left(b_{i} \cdot b_{j}\right)$ turns out to be singular.

We are left with the possibility that there is exactly one minus. The standard parabolic subgroup $W_{\left\{a_{1}, a_{2}\right\}}$ is a maximal finite subgroup and so, up to inner by graph automorphisms, we may assume that it is fixed elementwise. Now suppose that $\alpha\left(r_{3}\right)=x$ and $\alpha\left(r_{4}\right)=y$. We may assume that

$$
\begin{equation*}
a_{1} \cdot x=a_{2} \cdot x=a_{1} \cdot y=a_{2} \cdot y=-\frac{1}{2} \tag{4.9}
\end{equation*}
$$

while $x \cdot y=1 / 2$. It is worthwhile noting at this point that as $r_{i} a_{j}=a_{i}+a_{j}$ for all i, j the roots are all integral linear combinations of the simple roots, and hence x and y must also be integer combinations of the a_{i}. In view of the equations 4.9 it follows that x and y both lie in the set $\left\{v_{r, s} \mid r, s \in \mathbb{Z}\right\}$ where

$$
v_{r, s}=(-1+r+s) a_{1}+(-1+r+s) a_{2}+r a_{3}+s a_{4}
$$

Now

$$
v_{r, s} \cdot v_{r, s}=1-3 r s
$$

and so if $v_{r, s}$ is a root we must have $1-3 r s=1$ where $r=0$ or $s=0$. Thus

$$
\begin{aligned}
& x=(-1+r) a_{1}+(-1+r) a_{2}+r a_{3} \\
& y=(-1+s) a_{1}+(-1+s) a_{2}+s a_{4},
\end{aligned}
$$

for some integers r, s. This gives $x \cdot y=1-3 r s / 2$. But $x \cdot y=1 / 2$, and so

$$
r s=\frac{1}{3}
$$

which implies that r and s are not both integers. Hence there is no such automorphism.
Thus we have proved the following theorem.
4.10 Theorem If W is a hyperbolic Coxeter group (in the sense of [Hum90]), then all automorphisms of W are inner by graph and hence

$$
\operatorname{Aut}(W)=\operatorname{Inn}(W) \rtimes \operatorname{Gr}(W)
$$

§4.5 Other Simple Diagrams

The results developed so far can clearly be used on a wide variety of Coxeter groups. For example, consider the following obvious generalizations of types, E, F, G and H.

$$
\begin{aligned}
& H_{r, s}: \quad \mathrm{i} \quad \dot{\mathrm{a}} \cdots{ }_{s-1}: \dot{s}^{5}{ }_{s+1+1+2} \cdots \cdot{ }_{s+t} \quad 2 \leq s \leq t \text { or } s=1 \text { and } t \geq 4 \text {. }
\end{aligned}
$$

Some of these types have already been covered: Types $E_{10}=\mathcal{H}_{70}, F_{3,3}=\mathcal{H}_{48}, F_{4,2}=\mathcal{H}_{47}$, $H_{1,4}=\mathcal{H}_{11}, H_{2,2}=\mathcal{H}_{02}, G_{1,3}=\mathcal{H}_{31}$ and $G_{2,2}=\mathcal{H}_{32}$ correspond to hyperbolic groups.
4.11 Lemma Suppose that the Coxeter group W is the direct product of two nontrivial irreducible parabolic subgroups W_{I} and W_{J} of types A_{n} and A_{m} respectively. If N is a normal subgroup of W then one or other of the following two alternatives must hold:

$$
\begin{align*}
& \text { (1) } \quad N=\left(W_{I} \cap N\right)\left(W_{J} \cap N\right), \tag{1}\\
& \text { (2) } \quad N=\{w \in W \mid l(w) \text { is even }\}=W^{+} .
\end{align*}
$$

Proof Suppose that alternative (1) does not hold, and let $w \in N$ with $w \notin\left(W_{I} \cap N\right)\left(W_{J} \cap N\right)$. Write $w=x y$ with $x \in W_{I}$ and $y \in W_{J}$, and observe that neither x nor y is in N. Since N is normal, conjugating by elements of W_{I} shows that $x^{\prime} y \in N$ whenever x and x^{\prime} are conjugate in W_{I}, and hence $x^{-1} x^{\prime}=(x y)^{-1}\left(x^{\prime} y\right) \in N$. So modulo $W_{I} \cap N$ the element x of W_{I} is equal to all its conjugates; that is, it is central in $W_{I} /\left(W_{I} \cap N\right)$. Similarly, $y\left(W_{J} \cap N\right)$ is central in in $W_{J} /\left(W_{J} \cap N\right)$. But all symmetric groups have the property that the only quotient with nontrivial centre is the abelianized group, which has order 2 . So $W_{I} \cap N$ and $W_{J} \cap N$ are, respectively, the derived groups W_{I}^{\prime} and W_{J}^{\prime} of W_{I} and W_{J}. Now N must be one of the three subgroups of W containing $W_{I}^{\prime} W_{J}^{\prime}$. But N cannot be $W_{I} W_{J}^{\prime}$ or $W_{I}^{\prime} W_{J}$, since in both these cases we would obtain $N=\left(W_{I} \cap N\right)\left(W_{J} \cap N\right)$. So $N=\{w \in W \mid l(w)$ is even $\}$.
4.12 Corollary Suppose that the Coxeter group W is the direct product of two nontrivial standard parabolic subgroups W_{I} and W_{J} of type A_{n} and A_{m} respectively. Then the only direct product decompositions of W are as follows.

$$
\begin{align*}
& \text { (1) } \quad W \cong W_{I} \times W_{J} . \tag{1}\\
& \text { (2) } \quad W \cong W_{I} \times W^{+} \text {if }|I|=1 . \\
& \text { (3) } \quad W \cong W_{J} \times W^{+} \text {if }|J|=1 . \tag{3}
\end{align*}
$$

Proof Suppose $W=G H$ with $G, H \triangleleft W$ and $G \cap H=\{1\}$. Suppose that neither G nor H is W^{+}. By Lemma $4.11 G=A B$ and $H=C D$ where $A, C \triangleleft W_{I}$ and $B, D \triangleleft W_{J}$, and it follows that $W_{I}=A C$ and $W_{J}=B D$; moreover, these are direct product decomposition of W_{I} and W_{J}. But no symmetric group has a nontrivial direct product decomposition; so we deduce that either $A=D=\{1\}$ or $B=C=\{1\}$, and hence that $\{G, H\}=\left\{W_{I}, W_{J}\right\}$. Then $H \neq W^{+}$, and so we may write $H=C D$ as above. Every proper normal subgroup of a symmetric group is contained in the alternating group; so if $C \neq W_{I}$ then $C=W^{+} \cap C \leq W^{+} \cap C D=\{1\}$. If $D \neq W_{J}$ then $D \leq W^{+} \cap D=\{1\}$. If $C=W_{I}$ and $D=W_{J}$ then $W^{+} \leq W=C D$ and contradiction. So either $C=W_{I}$ and $D=\{1\}$ or $D=W_{J}$ and $C=\{1\}$. As W^{+}has index 2 in W the result follows.

Now consider the type $E_{n}(n \geq 10)$. The hypotheses of Corollary 3.20 are satisfied: W_{4} is of type A_{n-1}, where $n-1 \neq 5$, and m_{43} is odd. So it follows immediately that all automorphisms are inner (as there are no graph automorphisms).

For $H_{1, n-1}(n \geq 5)$ we see that W_{2} is finite and is the unique maximal standard parabolic subgroup of type $A_{1} \times A_{n-2}$, and r_{1} is the unique nonidentity central element
of W_{2}. It follows that any automorphism must map r_{1} to a conjugate of itself, and since all reflections are conjugate we deduce that all automorphisms are reflection preserving. Hence by Theorem 3.16 it follows that all automorphisms are inner (since again there are no graph automorphisms).

For $G_{1, n-1}(n \geq 4)$ there are two classes of reflections, representatives of which are r_{1} and r_{2}. The argument used for $H_{1, n-1}$ applies to show that each automorphism maps r_{1} to a conjugate of itself. Now W_{1} is finite and is the unique standard parabolic subgroup of type A_{n-1}. Note that all the reflections in W_{1} are conjugate to r_{2}. If $n \neq 6$ then all automorphisms of A_{n-1} preserve reflections, and it follows that in this case all automorphisms preserve the class of reflections conjugate to r_{2}. If $n=6$ we consider instead W_{3}, which is the unique maximal standard parabolic subgroup of type $G_{2} \times A_{3}$. Without loss of generality we may assume that α is an automorphism of W satisfying $\alpha\left(W_{3}\right)=W_{3}$. Thus $\alpha\left(r_{1} r_{2}\right)^{3}=\left(r_{1} r_{2}\right)^{3}$, since $\left(r_{1} r_{2}\right)^{3}$ is the unique nonidentity element of $Z\left(W_{3}\right)$. The only conjugates of r_{1} in W_{3} are $r_{1}, r_{2} r_{1} r_{2}$ and $r_{1} r_{2} r_{1} r_{2} r_{1}$ and so α must permute these. It follows that

$$
\alpha\left(r_{2}\right)=\alpha\left(r_{1} r_{2} r_{1} r_{2} r_{1}\right) \alpha\left(r_{1} r_{2}\right)^{3}=s\left(r_{1} r_{2}\right)^{3}
$$

where s is $r_{1}, r_{2} r_{1} r_{2}$ or $r_{1} r_{2} r_{1} r_{2} r_{1}$. In all these cases we find that $\alpha\left(r_{2}\right)$ is conjugate to r_{2}, and so in this case also the class of reflections conjugate to r_{2} is preserved. It follows from Theorem 3.16 that all automorphisms are inner (there being no graph automorphisms).

Now consider the cases $F_{s, t}, G_{s, t}$ and $H_{s, t}(2 \leq s \leq t)$. Observe that W_{s} and W_{s+1} are the only standard parabolic subgroups of types $A_{s-1} \times A_{t}$ and $A_{s} \times A_{t-1}$. If α is an automorphism of W then, modulo graph automorphisms if $s=t$, we conclude that $\alpha\left(W_{s}\right)$ is conjugate to W_{s} and $\alpha\left(W_{s+1}\right)$ is conjugate to W_{s+1}. If $s=2$ then r_{1} is the unique nonidentity central element of W_{s}, and so $\alpha\left(r_{1}\right)$ is conjugate to r_{1}. If $s>2$ then, by Corollary 4.12, each automorphism of a group of type $A_{s-1} \times A_{t}$ preserves the factors (since $s-1<t$). If $s-1 \neq 5$ then all automorphisms of A_{s-1} preserve reflections, and so it follows that $\alpha\left(r_{1}\right)$ is a reflection. If $s-1=5$ we use W_{s+1} instead of W_{s}. By Corollary 4.12 any automorphism of a group of type $A_{s} \times A_{t-1}$ preserves or interchanges the factors, and since all automorphisms of a group of type A_{s} preserves reflections we again conclude that $\alpha\left(r_{1}\right)$ is a reflection.

If $t=2$ then $s=2$ and by symmetry we deduce that $\alpha\left(r_{s+t}\right)$ is a reflection. If $t>2$ then W_{s+1} has type $A_{s} \times A_{t-1}$, and if $t-1 \neq 5$ then any automorphism of such a group maps the reflections of the A_{t-1} factor to reflections. In particular, $\alpha\left(r_{s+t}\right)$ is a reflection.

If $t-1=5$ and $s>2$ then by considering W_{s} (of type $A_{s-1} \times A_{t}$) the same argument again proves that $\alpha\left(r_{s+t}\right)$ is a reflection.

Finally suppose that $s=2$ and $t=6$. Without loss of generality we may suppose that $\alpha\left(W_{3}\right)=W_{3}$ (of type $A_{2} \times A_{5}$). If $\alpha\left(r_{8}\right)$ is not a reflection then α must induce a nontrivial outer automorphism on the A_{5} factor; but we can still conclude that $\alpha\left(r_{8}\right)$ has odd length. So $\alpha\left(r_{8}\right) \notin W^{+}$. Now consider $W_{2}=\left\langle r_{1}\right\rangle \times W_{J}$, where $J=\left\{a_{j} \mid 3 \leq j \leq 8\right\}$. Since $\alpha\left(W_{2}\right)$ is conjugate to W_{2} we deduce that $w \alpha\left(W_{J}\right) w^{-1}$ is a direct factor of W_{2} for some $w \in W$. Since $w \alpha\left(W_{J}\right) w^{-1} \nsubseteq W^{+}$we deduce from Corollary 4.12 that $w \alpha\left(W_{J}\right) w^{-1}=W_{J}$, and since automorphisms of groups of type A_{6} preserve reflections, we deduce that in fact $\alpha\left(r_{8}\right)$ must be a reflection. Thus in any case all automorphisms preserve reflections. Theorem 3.16 then completes the proof that all automorphisms are inner by graph.

Note that this argument applies for Coxeter groups with the following diagram.

Table I: Automorphisms of Hyperbolic Coxeter Groups

The Compact Hyperbolic Coxeter Groups

\mathcal{H}_{01}	$.^{4} \cdot .^{5}$.	W_{1} is finite of type H_{3}
\mathcal{H}_{02}		W_{1} is finite of type H_{3}
\mathcal{H}_{03}	$\dot{i}^{5} \dot{i} \dot{3}^{5} \dot{4}$	W_{1} is finite of type H_{3}
\mathcal{H}_{04}		W_{1} is finite of type A_{3}
\mathcal{H}_{05}	$4_{4}{ }^{3}$	W_{1} is finite of type B_{3}
\mathcal{H}_{06}		W_{1} is finite of type B_{3}
\mathcal{H}_{07}	$\begin{aligned} & { }_{1} \cdot{ }^{5} \cdot \cdot^{2} \\ & { }_{4} \cdot{ }_{4}^{\cdot 3} \end{aligned}$	W_{1} is finite of type B_{3}
\mathcal{H}_{08}	${ }^{4} \cdot{ }_{5}{ }^{3}$	W_{1} is finite of type H_{3}
\mathcal{H}_{09}		W_{1} is finite of type H_{3}
\mathcal{H}_{10}	$\dot{i}^{4} \dot{i} \quad \dot{3} \dot{4}^{5} \dot{5}$	W_{1} is finite of type H_{4}
\mathcal{H}_{11}		W_{1} is finite of type H_{4}
\mathcal{H}_{12}	$\dot{i}^{5} \dot{2} \quad \dot{3} \quad \dot{4}^{5} \dot{5}$	W_{1} is finite of type H_{4}
\mathcal{H}_{13}	$\begin{array}{llll} i^{5} & \dot{2} & . & ._{5}^{4} \end{array}$	W_{1} is finite of type D_{4}
\mathcal{H}_{14}	$\dot{5} 4 \dot{4}$	W_{1} is finite of type B_{4}

The Non-Compact Hyperbolic Coxeter Groups

\mathcal{H}_{15}		\mathcal{H}_{15}	W_{1} is finite of type B_{3}
\mathcal{H}_{16}		p. 65	W_{4} is finite of type B_{3}
\mathcal{H}_{17}		\mathcal{H}_{01}	p. 66
\mathcal{H}_{18}		\mathcal{H}_{18}	W_{4} is finite of type A_{3}
\mathcal{H}_{19}	$\begin{aligned} & { }_{1} \cdot{ }_{6}^{6} \cdot{ }_{2} \\ & { }_{4} \cdot{ }_{4}^{\cdot{ }^{3}} \end{aligned}$	\mathcal{H}_{18}	W_{1} is finite of type B_{3}
\mathcal{H}_{20}		\mathcal{H}_{18}	W_{1} is finite of type H_{3}
\mathcal{H}_{21}	$\begin{aligned} & { }_{1} \cdot{ }_{6}^{6} \cdot{ }^{2} \\ & 4 \cdot{ }_{6}{ }^{3} \end{aligned}$	\mathcal{H}_{01}	p. 67
\mathcal{H}_{22}		\mathcal{H}_{18}	W_{4} is finite of type A_{3}
\mathcal{H}_{23}	i $\quad . \quad{ }^{-3}$	\mathcal{H}_{18}	W_{4} is finite of type A_{3}
\mathcal{H}_{24}		p. 66	W_{4} is finite of type B_{3}
\mathcal{H}_{25}		\mathcal{H}_{18}	W_{4} is finite of type H_{3}
\mathcal{H}_{26}	$\mathrm{i}^{6} \mathrm{i}^{\text {a }}$. ${ }^{3}$	\mathcal{H}_{18}	W_{2} is finite of type $A_{1} \times A_{2}$
\mathcal{H}_{27}	$i^{4} \dot{i}^{4} \dot{i}$	p. 66	Γ is a forest
\mathcal{H}_{28}	$\mathrm{i}^{4} \dot{2}^{4} \dot{3}^{4} \dot{4}$	\mathcal{H}_{28}	Γ is a forest
\mathcal{H}_{29}	$\dot{i}^{4} \dot{i^{2}} \quad \dot{3}^{6} \dot{4}$	\mathcal{H}_{28}	Γ is a forest
\mathcal{H}_{30}	$\mathrm{i}^{5} \dot{2} \quad \dot{3}^{6}{ }_{4}$	\mathcal{H}_{30}	W_{4} is finite of type H_{3}
\mathcal{H}_{31}	$\dot{i} \quad \dot{3} \dot{3}^{6}$	\mathcal{H}_{30}	Γ is a forest
\mathcal{H}_{32}		\mathcal{H}_{18}	Γ is a forest
\mathcal{H}_{33}	$\mathrm{i}^{6} \dot{\mathrm{i}}^{6} \dot{3}^{6} \dot{4}$	\mathcal{H}_{28}	Γ is a forest
\mathcal{H}_{34}	e^{6}	\mathcal{H}_{18}	Γ is a forest
\mathcal{H}_{35}		\mathcal{H}_{15}	Γ is a forest
\mathcal{H}_{36}	$\mathrm{i}^{4}{\stackrel{4}{4} \cdot{ }_{4}^{4} \cdot{ }^{-3}}^{4}$	\mathcal{H}_{01}	Γ is a forest

The Non-Compact Hyperbolic Coxeter Groups

The Non-Compact Hyperbolic Coxeter Groups

Reading Table I The first column lists the name we will use, the second column gives the Coxeter Diagram. In the compact hyperbolic case all maximal parabolic subgroups are finite and all automorphisms preserve reflections. The final column gives the type of the parabolic subgroup W_{1}.

With the non-compact hyperbolic Coxeter groups some work must be done to show that all automorphism preserve reflections. In those cases the third column lists the argument used. For example, the group \mathcal{H}_{26} has an \mathcal{H}_{18} in the third column; this indicates that the style of argument used for \mathcal{H}_{18} in the text applies to this group. Other arguments are referred to by a page number. For example, the p. 66 listed against \mathcal{H}_{27} indicates that the proof that all automorphisms of a Coxeter group of type \mathcal{H}_{27} preserve reflections is on p. 66. For ease of reference the standard arguments and the pages on which they appear are as follows.

$$
\begin{array}{ll}
\mathcal{H}_{01} & \text { p. } 63 \\
\mathcal{H}_{18} & \text { p. } 63 \\
\mathcal{H}_{15} & \text { p. } 64 \\
\mathcal{H}_{30} & \text { p. } 64 \\
\mathcal{H}_{28} & \text { p. } 65
\end{array}
$$

The final column either specifies a finite maximal standard parabolic subgroup, in the cases where W is nearly finite, or indicates that the diagram is a forest (with no unusual labels), or again lists the page on which the proof is given.

Table II

The first column names the group being dealt with. The second column lists the simple reflections in the order in which they are dealt with in subsequent columns. The third column lists the maximal finite standard parabolics. The final column shows the intersections of maximal finite subgroups which give subgroups of the form $\left\langle r_{i}\right\rangle$ for r_{i} from the list of class representatives, in the order in which they are listed.

Group	Reflections	Maximal finite subgroups	$\left\langle r_{i}\right\rangle=$
\mathcal{H}_{17}	$r_{1}, r_{2}, r_{3}, r_{4}$	$W_{12}, W_{13}, W_{14}, W_{23}, W_{24}, W_{34}$	$W_{23} \cap W_{34}, W_{13} \cap W_{34}, W_{12} \cap W_{14}$, $W_{12} \cap W_{23}$
\mathcal{H}_{21}	$r_{1}, r_{2}, r_{3}, r_{4}$	$W_{12}, W_{13}, W_{14}, W_{23}, W_{24}, W_{34}$	$W_{23} \cap W_{34}, W_{13} \cap W_{34}, W_{12} \cap W_{14}$, $W_{12} \cap W_{23}$
\mathcal{H}_{36}	$r_{1}, r_{2}, r_{3}, r_{4}$	$W_{2}, W_{13}, W_{14}, W_{34}$	$W_{2} \cap W_{34}, W_{13} \cap W_{14}, W_{2} \cap W_{14}$, $W_{2} \cap W_{13}$
\mathcal{H}_{37}	$r_{1}, r_{2}, r_{3}, r_{4}$	$W_{12}, W_{13}, W_{14}, W_{23}, W_{24}, W_{34}$	$W_{23} \cap W_{34}, W_{13} \cap W_{34}, W_{12} \cap W_{14}$, $W_{12} \cap W_{23}$
\mathcal{H}_{55}	$r_{1}, r_{2}, r_{3}, r_{4}$, r_{5}, r_{6}	$W_{2}, W_{i j}, i \neq j, \quad i, j \neq 2$	$W_{2} \cap W_{34} \cap W_{56}, W_{13} \cap W_{45} \cap W_{46}$, $W_{2} \cap W_{14} \cap W_{56}, W_{2} \cap W_{13} \cap W_{56}$, $W_{2} \cap W_{13} \cap W_{46}, W_{2} \cap W_{13} \cap W_{45}$

Table III

The columns are the same as those in the previous table except that the second column only lists representatives of the classes of reflections.

Group	Classes	Maximal finite subgroups	$\left\langle r_{i}\right\rangle=$
\mathcal{H}_{18}	r_{3}	W_{3}, W_{4}, W_{12}	$W_{12} \cap W_{4}$
\mathcal{H}_{19}	r_{1}, r_{2}	W_{1}, W_{2}, W_{34}	$W_{2} \cap W_{34}, W_{1} \cap W_{34}$
\mathcal{H}_{20}	r_{1}	W_{1}, W_{2}, W_{34}	$W_{2} \cap W_{34}$
\mathcal{H}_{22}	r_{2}	W_{2}, W_{4}, W_{13}	$W_{13} \cap W_{4}$
\mathcal{H}_{23}	r_{1}	W_{2}, W_{3}, W_{4}	$W_{2} \cap W_{3} \cap W_{4}$
\mathcal{H}_{25}	r_{1}	W_{2}, W_{3}, W_{4}	$W_{2} \cap W_{3} \cap W_{4}$
\mathcal{H}_{26}	r_{1}, r_{2}	$W_{2}, W_{13}, W_{14}, W_{34}$	$W_{2} \cap W_{34}, W_{13} \cap W_{14}$
\mathcal{H}_{32}	r_{2}, r_{3}	W_{2}, W_{3}, W_{14}	$W_{3} \cap W_{14}, W_{2} \cap W_{14}$
\mathcal{H}_{34}	r_{1}, r_{2}	W_{1}, W_{2}, W_{34}	$W_{2} \cap W_{34}, W_{1} \cap W_{34}$
\mathcal{H}_{42}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5}$
\mathcal{H}_{44}	r_{1}, r_{2}	$W_{1}, W_{2}, W_{34}, W_{35}, W_{45}$	$W_{2} \cap W_{34} \cap W_{35}, W_{1} \cap W_{34} \cap W_{35}$
\mathcal{H}_{45}	r_{1}	$W_{2}, W_{4}, W_{13}, W_{15}, W_{35}$	$W_{2} \cap W_{4} \cap W_{35}$
\mathcal{H}_{48}	r_{3}, r_{4}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{16}$	$W_{2} \cap W_{4} \cap W_{5} \cap W_{16}, W_{2} \cap W_{3} \cap W_{5} \cap W_{16}$
\mathcal{H}_{50}	r_{2}, r_{3}	$\begin{aligned} & W_{2}, W_{3}, W_{4}, W_{15}, \\ & W_{16}, W_{56} \end{aligned}$	$\left\lvert\, \begin{aligned} & W_{3} \cap W_{4} \cap W_{15} \cap W_{16}, \\ & W_{2} \cap W_{4} \cap W_{15} \cap W_{16} \end{aligned}\right.$
\mathcal{H}_{52}	r_{1}, r_{4}, r_{6}	$\begin{aligned} & W_{2}, W_{3}, W_{5}, W_{14}, \\ & W_{16}, W_{46} \end{aligned}$	$\begin{aligned} & W_{2} \cap W_{3} \cap W_{5} \cap W_{46}, W_{2} \cap W_{3} \cap W_{5} \cap W_{16} \\ & W_{2} \cap W_{3} \cap W_{5} \cap W_{14} \end{aligned}$
\mathcal{H}_{53}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5} \cap W_{6}$
\mathcal{H}_{54}	r_{1}, r_{2}	$\begin{aligned} & W_{2}, W_{3}, W_{14}, W_{15}, W_{16}, \\ & W_{45}, W_{46}, W_{56} \end{aligned}$	$\begin{aligned} & W_{2} \cap W_{3} \cap W_{45} \cap W_{56}, \\ & W_{3} \cap W_{14} \cap W_{56} \end{aligned}$
\mathcal{H}_{56}	r_{1}	$W_{1}, W_{4}, W_{5}, W_{6}, W_{23}$	$W_{4} \cap W_{5} \cap W_{6} \cap W_{23}$
\mathcal{H}_{57}	r_{1}	$W_{i j}, i \neq j$	$W_{23} \cap W_{45} \cap W_{56}$
\mathcal{H}_{58}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5} \cap W_{6}$
\mathcal{H}_{60}	r_{7}	$W_{1}, W_{2}, W_{3}, W_{4}, W_{5}, W_{6}$	$W_{1} \cap W_{2} \cap \cdots \cap W_{6}$
\mathcal{H}_{61}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}, W_{7}$	$W_{2} \cap W_{3} \cap \cdots \cap W_{7}$
\mathcal{H}_{63}	r_{8}	$W_{1}, W_{2}, W_{3}, W_{4}, W_{5}, W_{6}, W_{7}$	$W_{1} \cap W_{2} \cap \cdots \cap W_{7}$
\mathcal{H}_{64}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}, W_{7}, W_{8}$	$W_{2} \cap W_{3} \cap \cdots \cap W_{8}$
\mathcal{H}_{65}	r_{1}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}, W_{7}, W_{8}$	$W_{2} \cap W_{3} \cap \cdots \cap W_{8}$
\mathcal{H}_{66}	r_{1}	$\begin{aligned} & W_{2}, W_{3}, W_{4}, W_{5}, \\ & W_{6}, W_{7}, W_{8}, W_{9} \\ & \hline \end{aligned}$	$W_{2} \cap W_{3} \cap \cdots \cap W_{9}$
\mathcal{H}_{68}	r_{9}	$\begin{aligned} & W_{1}, W_{2}, W_{3}, W_{4}, \\ & W_{5}, W_{6}, W_{7}, W_{8} \end{aligned}$	$W_{1} \cap W_{2} \cap \cdots \cap W_{8}$
\mathcal{H}_{69}	r_{1}	$\begin{aligned} & W_{2}, W_{3}, W_{4}, W_{5}, \\ & W_{6}, W_{7}, W_{8}, W_{9} \end{aligned}$	$W_{2} \cap W_{3} \cap \cdots \cap W_{9}$
\mathcal{H}_{70}	r_{10}	$\begin{aligned} & W_{1}, W_{2}, W_{3}, W_{4}, W_{5}, \\ & W_{6}, W_{7}, W_{8}, W_{9} \end{aligned}$	$W_{1} \cap W_{2} \cap \cdots \cap W_{9}$
\mathcal{H}_{72}	r_{1}	$\begin{aligned} & W_{2}, W_{4}, W_{5}, W_{6}, W_{7}, W_{8}, \\ & W_{9}, W_{13}, W_{1,10}, W_{3,10} \end{aligned}$	$W_{2} \cap W_{4} \cap \cdots \cap W_{9} \cap W_{3,10}$

Table IV

As well as the columns used in the previous tables the fifth column lists the simple reflection which corresponds to ' r_{1} ' in a parabolic subgroup of type $B_{2 k+1}$. The final column lists that standard parabolic subgroup of type $B_{2 k+1}$.

Group	Classes	Maximal fin. sbgps.	$\left\langle r_{i}\right\rangle=$	$r_{1}{ }^{\prime}$	$B_{2 k+1}$
\mathcal{H}_{15}	r_{2}, r_{4}	W_{1}, W_{3}, W_{4}	$W_{1} \cap W_{3} \cap W_{4}$	r_{4}	W_{1}
\mathcal{H}_{35}	r_{1}, r_{3}, r_{4}	W_{2}, W_{3}, W_{4}	$W_{2} \cap W_{3} \cap W_{4}$	r_{3}, r_{4}	W_{4}, W_{3} (resp.)
\mathcal{H}_{51}	r_{1}, r_{6}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{6}$	$W_{2} \cap \cdots \cap W_{6}$	r_{6}	W_{4}
\mathcal{H}_{62}	r_{1}, r_{8}	W_{2}, \ldots, W_{8}	$W_{2} \cap W_{8}$	r_{8}	W_{4}
\mathcal{H}_{71}	r_{2}, r_{10}	$W_{2}, \ldots, W_{9}, W_{1,10}$	$W_{3} \cap \cdots \cap W_{9} \cap W_{1,10}$	r_{10}	W_{4}

Table V
In addition to the usual first four columns there is a column which shows the centre of a parabolic subgroup written as the intersection of maximal finite standard parabolic subgroups.

Group	Classes	Maximal fin. sbgps.	$\left\langle r_{i}\right\rangle=$	Centre
\mathcal{H}_{30}	r_{1}, r_{4}	W_{2}, W_{3}, W_{4}	$W_{2} \cap W_{3} \cap W_{4}$	$\left\langle r_{4}\right\rangle=Z\left(W_{3}\right)$
\mathcal{H}_{31}	r_{1}, r_{4}	W_{2}, W_{3}, W_{4}	$W_{2} \cap W_{3} \cap W_{4}$	$\left\langle r_{4}\right\rangle=Z\left(W_{3}\right)$
\mathcal{H}_{38}	r_{1}, r_{4}, r_{5}	$W_{2}, W_{3}, W_{4}, W_{5}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5}$	$\begin{aligned} & \left\langle r_{4}\right\rangle=Z\left(W_{3} \cap W_{5}\right), \\ & \left\langle r_{5}\right\rangle=Z\left(W_{3} \cap W_{4}\right) \end{aligned}$
\mathcal{H}_{39}	r_{1}, r_{4}	$W_{2}, W_{3}, W_{4}, W_{5}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5}$	$\left\langle r_{4}\right\rangle=Z\left(W_{3} \cap W_{5}\right)$
\mathcal{H}_{40}	r_{1}, r_{4}	$W_{2}, W_{3}, W_{4}, W_{5}$	$W_{2} \cap W_{3} \cap W_{4} \cap W_{5}$	$\left\langle r_{4}\right\rangle=Z\left(W_{3} \cap W_{5}\right)$
\mathcal{H}_{41}	r_{2}, r_{4}, r_{1}	$W_{2}, W_{3}, W_{4}, W_{15}$	$\begin{aligned} & W_{3} \cap W_{4} \cap W_{15}, \\ & W_{2} \cap W_{3} \cap W_{15} \end{aligned}$	$\left\langle r_{1}\right\rangle=Z\left(W_{2} \cap W_{4}\right)$
\mathcal{H}_{43}	r_{2}, r_{1}	$W_{2}, W_{3}, W_{5}, W_{14}$	$W_{3} \cap W_{5} \cap W_{14}$	$\left\langle r_{1}\right\rangle=Z\left(W_{2} \cap W_{3}\right)$
\mathcal{H}_{46}	r_{2}, r_{4}	$W_{1}, W_{3}, W_{4}, W_{5}$	$W_{1} \cap W_{3} \cap W_{4} \cap W_{5}$	$\left\langle r_{4}\right\rangle=Z\left(W_{3} \cap W_{5}\right)$
\mathcal{H}_{47}	r_{6}, r_{1}	$W_{1}, W_{2}, W_{3}, W_{4}, W_{5}$	$W_{1} \cap \cdots \cap W_{5}$	$\left\langle r_{1}\right\rangle=Z\left(W_{2} \cap W_{3} \cap W_{4}\right)$
\mathcal{H}_{49}	r_{2}, r_{3}, r_{6}	$W_{2}, W_{3}, W_{4}, W_{5}, W_{16}$	$\begin{aligned} & W_{3} \cap W_{4} \cap W_{5} \cap W_{16}, \\ & W_{2} \cap W_{4} \cap W_{5} \cap W_{16} \\ & \hline \end{aligned}$	$\left\langle r_{6}\right\rangle=Z\left(W_{3} \cap W_{4} \cap W_{6}\right)$
\mathcal{H}_{59}	r_{1}, r_{7}	$\begin{aligned} & W_{2}, W_{3}, W_{4}, W_{5}, \\ & W_{6}, W_{7} \end{aligned}$	$W_{2} \cap \cdots \cap W_{7}$	$\left\langle r_{7}\right\rangle=Z\left(W_{3} \cap \cdots \cap W_{6}\right)$
\mathcal{H}_{67}	r_{1}, r_{9}	$\begin{aligned} & W_{2}, W_{3}, W_{4}, W_{5}, \\ & W_{6}, W_{7}, W_{8}, W_{9} \end{aligned}$	$W_{2} \cap \cdots \cap W_{9}$	$\left\langle r_{9}\right\rangle=Z\left(W_{3} \cap \cdots \cap W_{8}\right)$

Chapter 5

Rank 3 Coxeter Groups

§5.1 Groups with Finite Bonds

As mentioned in the last chapter if W is an infinite rank 3 Coxeter group with finite labels then all automorphisms of W are inner by graph. It is clear that W is nearly finite and that all automorphisms preserve reflections (by Lemma 4.4) and the result follows by Theorem 3.16 if W is non-degenerate. If W is degenerate then the result is part of Proposition 4.5. The rank 3 finite Coxeter groups are dealt with in Chapter 2.

§5.2 Groups With Infinite Bonds

The bulk of this chapter we deal with the rank three Coxeter groups with one or more edges labelled with an infinity. If W is a Coxeter group with r_{i} and r_{j} reflections corresponding to vertices in the diagram joined by an edge labelled with an infinity, then $r_{i} r_{j}$ has infinite order and we set $a_{i} \cdot a_{j}=-1$. Looking at rank three irreducible Coxeter groups with at least one infinite bond there are five cases to consider:

where $m, n \geq 3$. We will call these $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \mathcal{I}_{4}$ and \mathcal{I}_{5} respectively.
The automorphism group of a Coxeter group where $o\left(r_{i} r_{j}\right) \in\{2, \infty\}$ for all i and j has been found by Mühlherr in [Mü98], where he completes the work started by James, [Jam88], and Tits, [Tit88]. These papers could be used to find the automorphisms of groups of type \mathcal{I}_{1} or \mathcal{I}_{4}; instead we present an alternative approach. We will use the relations given in [Mü98] to describe the structure of $\operatorname{Aut}(W)$ when W is of type \mathcal{I}_{1}.
5.1 Definition Let W be a Coxeter group with Π the set of simple roots. If $a_{i} \in \Pi$ and $K \subseteq \Pi$, then denote by $\sigma_{i, K}$ the function $\left\{r_{i} \mid a_{i} \in \Pi\right\} \rightarrow W$ defined by

$$
\sigma_{i, K}\left(r_{j}\right)= \begin{cases}r_{i} r_{j} r_{i} & \text { if } a_{j} \in K \text { and } \\ r_{j} & \text { otherwise }\end{cases}
$$

In circumstances where $\sigma_{i, K}$ extends to an endomorphism of W we also use $\sigma_{i, K}$ to denote that endomorphism. If $K=\left\{a_{j}\right\}$ or $\left\{a_{j}, a_{k}\right\}$ then we write $\sigma_{i, j}$ or $\sigma_{i, j k}$, respectively, for $\sigma_{i, K}$.
\mathcal{I}_{1} : Let W be a Coxeter group of type \mathcal{I}_{1} with diagram

$$
{ }_{1 \cdot}^{\infty} \stackrel{2}{\infty}_{\infty}^{\infty}
$$

Observe that $W=\operatorname{gp}\left\langle r_{1}, r_{2}, r_{3} \mid r_{1}^{2}=r_{2}^{2}=r_{3}^{2}=1\right\rangle$ is the free product of three groups of order 2. Every element of W has a unique reduced expression and an expression is reduced if and only if no two consecutive terms are equal. Taking any reduced expression and replacing each r_{i}, for some fixed i, by a reduced expression starting and ending with r_{i} results in a longer reduced expression.

5.2 Lemma If $i \neq j$, then $\sigma_{i, j}$ is an automorphism of W.

Proof As we have seen the group W has the presentation

$$
W=\operatorname{gp}\left\langle r_{1}, r_{2}, r_{3} \mid r_{1}^{2}=r_{2}^{2}=r_{3}^{2}=1\right\rangle .
$$

For all k it is clear that $\sigma_{i, j}\left(r_{k}\right)$ is an involution and so $\sigma_{i, j}$ is an endomorphism of W. The observation that $\sigma_{i, K}^{2}=1$ for all i and K completes the proof.

The maximal finite standard parabolic subgroups are $\left\langle r_{i}\right\rangle$ for $i=1,2$ and 3 , therefore all automorphisms of W preserve reflections. Let α be an automorphism of W. Then $\alpha\left(r_{1}\right)$ is a conjugate of r_{i} for some i and up to graph automorphisms we may assume that $i=1$. Similarly we can ensure that for all $j, \alpha\left(r_{j}\right)$ is a conjugate of r_{j}. The following lemma helps classify those elements that are conjugates of the r_{i} and together generate W.
5.3 Lemma Let W be a Coxeter group of type \mathcal{I}_{1}.
(1) Suppose that $x_{3}=r_{3} w_{3} r_{3} w_{3}^{-1} r_{3}$ is a reduced expression in W. Then

$$
r_{3} \notin\left\langle r_{1}, r_{2}, x_{3}\right\rangle .
$$

(2) Suppose that $x_{2}=r_{j} w_{2} r_{2} w_{2}^{-1} r_{j}$ and $x_{3}=r_{k} w_{3} r_{3} w_{3}^{-1} r_{k}$ are reduced expressions in W where $\{j, k\}=\{2,3\}$. Then

$$
\begin{equation*}
r_{3} \notin\left\langle r_{1}, x_{2}, x_{3}\right\rangle . \tag{3}
\end{equation*}
$$

Suppose that $x_{1}=r_{i} w_{1} r_{1} w_{1}^{-1} r_{i}, x_{2}=r_{j} w_{2} r_{2} w_{2}^{-1} r_{j}$ and $x_{3}=r_{k} w_{3} r_{3} w_{3}^{-1} r_{k}$ are reduced expressions in W where $\{i, j, k\}=\{1,2,3\}$. Then

$$
r_{3} \notin\left\langle x_{1}, x_{2}, x_{3}\right\rangle .
$$

Proof For part (1) observe that since x_{3} has order 2 there is an epimorphism

$$
f: W \rightarrow H=\left\langle r_{1}, r_{2}, x_{3}\right\rangle \leq W
$$

given by $r_{1} \mapsto r_{1}, r_{2} \mapsto r_{2}$ and $r_{3} \mapsto x_{3}$. For each $w \in W$ the element $f(w)$ is computed by replacing each r_{3} in the reduced expression for w by x_{3}. Since the reduced expression for x_{3} begins and ends with r_{3}, the resulting expression for $f(w)$ must also be reduced: no two consecutive factors can be equal. So f is an isomorphism.

If the expression for w involves at least one r_{3} then $l(f(w)) \geq l\left(x_{3}\right) \geq 3$, and so $f(w) \neq r_{3}$. If w does not involve r_{3} then $f(w)=w \neq r_{3}$. So $r_{3} \notin H$.

The proofs for (2) and (3) are essentially the same as for (1).
5.4 Proposition Let W be a Coxeter group of type \mathcal{I}_{1} with diagram
then

$$
\begin{aligned}
\operatorname{Aut}(W) & =\left\langle\sigma_{1,2}, \operatorname{Gr}(W)\right\rangle \\
& =\left(\operatorname{Inn}(W) \rtimes\left\langle\sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1}\right\rangle\right) \rtimes \operatorname{Gr}(W) .
\end{aligned}
$$

Proof If $\rho \in \operatorname{Sym}_{3}$ let γ_{ρ} be the corresponding graph automorphism. If $i \neq j$ then $\sigma_{i, j}=\rho_{(1 i)(2 j)} \sigma_{1,2} \rho_{(1 i)(2 j)}^{-1}$. Furthermore if $\{i, j, k\}=\{1,2,3\}$ then $\sigma_{i, j} \sigma_{i, k}=\sigma_{i, j k}$ is conjugation by r_{i} and hence is inner. Let

$$
A=\left\langle\sigma_{1,2}, \operatorname{Gr}(W)\right\rangle=\left\langle\operatorname{Inn}(W), \sigma_{1,3}, \sigma_{2,3}, \sigma_{3,1}, \operatorname{Gr}(W)\right\rangle
$$

and suppose that α is an automorphism of W with $\alpha \notin A$. Replacing α by a suitable element of $\alpha \operatorname{Gr}(W) \subset \alpha A$, we may assume

$$
\begin{aligned}
& \alpha\left(r_{1}\right)=x r_{1} x^{-1} \\
& \alpha\left(r_{2}\right)=y r_{2} y^{-1} \\
& \alpha\left(r_{3}\right)=z r_{3} z^{-1}
\end{aligned}
$$

where each of these expressions is reduced. Assume that α is chosen such that $l(x)+l(y)+l(z)$ is minimal. Since $\alpha \neq 1$ at least one of x, y, z is nontrivial and without loss of generality we may assume that $z \neq 1$. Let $z=r_{k} z^{\prime}$ where $l\left(z^{\prime}\right)<l(z)$. If $l\left(r_{k} y\right)<l(y)$ then following α by conjugation by r_{k} yields the automorphism α^{\prime} where

$$
\begin{aligned}
\alpha^{\prime}\left(r_{1}\right) & =\left(r_{k} x\right) r_{1}\left(r_{k} x\right)^{-1} \\
\alpha^{\prime}\left(r_{2}\right) & =\left(r_{k} y\right) r_{2}\left(r_{k} y\right)^{-1} \\
\alpha^{\prime}\left(r_{3}\right) & =z^{\prime} r_{3} z^{\prime-1} .
\end{aligned}
$$

Now $l\left(r_{k} x\right)+l\left(r_{k} y\right)+l\left(z^{\prime}\right) \leq l(x)+1+l(y)-1+l(z)-1<l(x)+l(y)+l(z)$ and so $\alpha^{\prime} \in A$ contradicting the assumption that $\alpha \notin A$. Thus $l\left(r_{k} y\right)>l(y)$ and similarly $l\left(r_{k} x\right)>l(x)$.

Suppose that $x=y=1$. If $k=1$ then we find that

$$
\begin{aligned}
\alpha \sigma_{1,3}: r_{1} & \mapsto r_{1} \\
r_{2} & \mapsto r_{2} \\
r_{3} & \mapsto \alpha\left(r_{1} r_{3} r_{1}\right) \\
& =r_{1}\left(z r_{3} z^{-1}\right) r_{1} \\
& =z^{\prime} r_{3} z^{\prime-1}
\end{aligned}
$$

The total length has again been reduced and we are led to a contradiction as before, since $\sigma_{1,3} \in A$. A similar argument applies for $k=2$ and hence $k=3$. But then we have $W=\left\langle r_{1}, r_{2}, r_{3} z^{\prime} r_{3} z^{\prime-1} r_{3}\right\rangle$ contradicting Lemma 5.3, and this case cannot occur.

Now suppose that $x=1$ but that $y \neq 1$; say $y=r_{j} y^{\prime}$, where $l\left(y^{\prime}\right)<l(y)$. Observe that $j \neq k$ as $l\left(r_{k} y\right)>l(y)$. If $j=1$ or $k=1$ then considering either $\alpha \sigma_{1, j}$ or $\alpha \sigma_{i, k}$ leads to a contradiction. Thus $\{j, k\}=\{2,3\}$, and $W=\left\langle r_{1}, r_{j} y^{\prime} r_{2} y^{\prime-1} r_{j}, r_{k} z^{\prime} r_{3} z^{\prime-1} r_{k}\right\rangle$ contradicting Lemma 5.3. Similarly $x \neq 1$ and $y=1$ is impossible.

Finally suppose that $x \neq 1$ and $y \neq 1$. Let $x=r_{i} x^{\prime}$ and $y=r_{j} y^{\prime}$ where $l\left(x^{\prime}\right)<l(x)$ and $l\left(y^{\prime}\right)<l(y)$. If any two of r_{i}, r_{j}, r_{k} are equal then following α by conjugation by this element yields a contradiction while the case $\{i, j, k\}=\{1,2,3\}$ contradicts Lemma 5.3. Hence there is no such α and we have $\operatorname{Aut}(W)=A$.

Following [Mü98] let $\operatorname{Spe}(W)=\left\langle\operatorname{Inn}(W), \sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1}\right\rangle$. Then $\operatorname{Spe}(W)$ is the group of automorphisms of W that preserve the conjugacy classes of reflections. Thus

$$
\operatorname{Aut}(W)=\operatorname{Spe}(W) \rtimes \operatorname{Gr}(W)
$$

The proof to this point has shown that $\operatorname{Spe}(W)$ is generated by the automorphisms of the form $\sigma_{i, j}$ and $\sigma_{i, j k}$. The theorem in [Mü98] shows that a presentation of $\operatorname{Spe}(W)$ on these
generators is given by the relations

$$
\begin{aligned}
\sigma_{1,2}^{2} & =1 \\
\sigma_{1,23}^{2} & =1 \\
\sigma_{1,2} \sigma_{2,3} & =\sigma_{1,23} \\
\sigma_{1,2} \sigma_{2,13} & =\sigma_{1,23} \sigma_{2,13} \sigma_{1,23} \sigma_{1,2} \\
\sigma_{1,2} \sigma_{3,12} & =\sigma_{3,12} \sigma_{1,2} \\
\sigma_{1,2} \sigma_{1,23} & =\sigma_{1,23} \sigma_{1,2}
\end{aligned}
$$

together with the relations found by applying any permutation in Sym_{3} to the above.
Modifying our notation, let us write $i_{1}=\sigma_{1,23}, i_{2}=\sigma_{2,13}$ and $i_{3}=\sigma_{3,12}$; these in fact correspond to the inner automorphisms of W given by r_{1}, r_{2}, r_{3}. Written in terms of the generators $\sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1}, i_{1}, i_{2}, i_{3}$ the defining relations become

$$
\begin{gathered}
\sigma_{1,2}^{2}=\sigma_{2,3}^{2}=\sigma_{3,1}^{2}=1 \\
i_{1}^{2}=i_{2}^{2}=i_{3}^{2}=1 \\
\sigma_{1,2} i_{2} \sigma_{1,2}=i_{1} i_{2} i_{1}, \quad \sigma_{2,3} i_{3} \sigma_{2,3}=i_{2} i_{3} i_{2}, \quad \sigma_{3,1} i_{1} \sigma_{3,1}=i_{3} i_{1} i_{3} \\
\sigma_{1,2} i_{3} \sigma_{1,2}=i_{3}, \quad \sigma_{2,3} i_{1} \sigma_{2,3}=i_{1}, \quad \sigma_{3,1} i_{2} \sigma_{3,1}=i_{2} \\
\sigma_{1,2} i_{1} \sigma_{1,2}=i_{1}, \quad \sigma_{2,3} i_{2} \sigma_{2,3}=i_{2}, \quad \sigma_{3,1} i_{3} \sigma_{3,1}=i_{3}
\end{gathered}
$$

Thus i_{1}, i_{2}, i_{3} generate a normal subgroup \bar{W} isomorphic to W, and the action of the subgroup S generated by $\sigma_{1,2}, \sigma_{2,3}$, and $\sigma_{3,1}$ on \bar{W} corresponds to the action of $\sigma_{1,2}, \sigma_{2,3}$, and $\sigma_{3,1}$ on W. Since the only further relations between $\sigma_{1,2}, \sigma_{2,3}$, and $\sigma_{3,1}$ are $\sigma_{1,2}^{2}=\sigma_{2,3}^{2}=\sigma_{3,1}^{2}=1$ we see that S is the free product of three groups of order 2 , and $\operatorname{Spe}(W)$ is isomorphic to the semidirect product $\bar{W} \rtimes S$. Thus

$$
\begin{aligned}
\operatorname{Aut}(W) & =\left(\operatorname{Inn}(W) \rtimes\left\langle\sigma_{1,2}, \sigma_{2,3}, \sigma_{3,1}\right\rangle\right) \rtimes \operatorname{Gr}(W) \\
& =(\bar{W} \rtimes S) \rtimes \operatorname{Gr}(W) \\
& \cong(W \rtimes W) \rtimes \operatorname{Sym}_{3}
\end{aligned}
$$

\mathcal{I}_{2} : Let W be a Coxeter group of type \mathcal{I}_{2} with diagram

$$
\begin{aligned}
& m_{1} \stackrel{2}{\infty}_{\cdot 3}^{\infty}
\end{aligned}
$$

where $m \geq 3$. Observe that W is the free product of a group of order 2 with a group of type $I_{2}(m)$. The maximal finite subgroups are W_{3} and $\left\langle r_{3}\right\rangle$ and so any automorphism of W maps r_{3} to a conjugate of itself. Up to inner automorphisms we may assume that if α is any automorphism, then $\alpha\left(W_{3}\right)=W_{3}$. Thus $\left.\alpha\right|_{W_{3}}$ is an automorphism of a group of type $I_{2}(m)$ with $m \geq 3$, and hence preserves reflections. So α preserves $\operatorname{Ref}(W)$, by Proposition 2.13.
5.5 Definition Let $\zeta: W_{3} \rightarrow W_{3}$ be any automorphism of W_{3} and define α_{ζ} from $\left\{r_{i} \mid a_{i} \in \Pi\right\}$ to W by

$$
\begin{aligned}
& \alpha_{\zeta}\left(r_{1}\right)=\zeta\left(r_{1}\right) \\
& \alpha_{\zeta}\left(r_{2}\right)=\zeta\left(r_{2}\right) \\
& \alpha_{\zeta}\left(r_{3}\right)=r_{3}
\end{aligned}
$$

The next lemma shows that α_{ζ} extends to an automorphism of W. We also use α_{ζ} to denote that automorphism.
5.6 Lemma For all ζ the function α_{ζ} is an automorphism of W. If $\zeta \neq 1$ then α_{ζ} is not an inner automorphism of W.
Proof It is clear that α_{ζ} is an endomorphism of W and that $\alpha_{\zeta} \alpha_{\zeta^{-1}}=1$. If α_{ζ} were conjugation by $w \in W$ then w would centralize r_{3}. If we recall that W is the free product of $\left\langle r_{3}\right\rangle$ and a dihedral group it is clear that $\mathcal{C}_{W}\left(r_{3}\right)=\left\{1, r_{3}\right\}$. As $\zeta \neq 1$ we must have $w=r_{3}$. But conjugation by r_{3} does not fix W_{3} setwise; hence α_{ζ} is not inner.

Let μ be the automorphism of W_{3} which is conjugation by r_{1}, and let α be the automorphism of W which is conjugation by r_{1}. Then

$$
\begin{aligned}
& \alpha \alpha_{\mu}\left(r_{1}\right)=r_{1} \\
& \alpha \alpha_{\mu}\left(r_{2}\right)=\alpha\left(r_{1} r_{2} r_{1}\right)=r_{2} \\
& \alpha \alpha_{\mu}\left(r_{3}\right)=\alpha\left(r_{3}\right)=r_{1} r_{3} r_{1} .
\end{aligned}
$$

Thus $\alpha \alpha_{\mu}=\sigma_{1,3}$. Similarly if ν is the automorphism of W_{3} which is conjugation by r_{2} and β is the automorphism of W which is conjugation by r_{2} then $\beta \alpha_{\nu}=\sigma_{2,3}$.
5.7 Lemma Suppose that W is a Coxeter group of type \mathcal{I}_{2} or \mathcal{I}_{4} with diagram

$$
{ }_{1}^{m} \cdot{ }_{\infty}^{2}{ }_{0}^{\infty} \quad \text { or } \quad \quad_{i}^{\infty} \dot{3}_{\dot{2}}^{\infty}
$$

If $x_{3}=w r_{3} w^{-1}$ is a reduced expression, where $w \in W$, then

$$
\left\langle r_{1}, r_{2}, x_{3}\right\rangle=W
$$

if and only if $w \in\left\langle r_{1}, r_{2}\right\rangle$.
Proof Let $\rho_{i}=\left(r_{3} r_{2}\right)^{i} r_{3}$. Then as $w \in W$ we can find a unique expression for w of the form

$$
w=p_{0} \rho_{i_{0}} p_{1} \rho_{i_{1}} \cdots p_{n} \rho_{i_{n}} p_{n+1}
$$

where $p_{0}, p_{n+1} \in\left\langle r_{1}, r_{2}\right\rangle$ and $p_{1}, \ldots p_{n} \in\left\langle r_{1}, r_{2}\right\rangle \backslash\left\langle r_{2}\right\rangle$. Note that the case $n=-1$ corresponds to $w \in\left\langle r_{1}, r_{2}\right\rangle$. Since we have assumed that $w r_{3} w^{-1}$ is reduced, it follows that $p_{n+1} \neq 1$ (unless $w=1$). If $n \geq 0$ then

$$
\left\langle r_{1}, r_{2}, w r_{3} w^{-1}\right\rangle=\left\langle r_{1}, r_{2}, r_{3} w^{\prime} r_{3} w^{\prime-1} r_{3}\right\rangle
$$

(for some w^{\prime} such that $r_{3} w^{\prime} r_{3} w^{\prime-1} r_{3}$ is reduced) and no term including an r_{3} can have length 1. Thus if $\left\langle r_{1}, r_{2}, x_{3}\right\rangle=W$ then $n=-1$, and so $w \in\left\langle r_{1}, r_{2}\right\rangle$.
5.8 Proposition Let W be a Coxeter group of type \mathcal{I}_{2} with diagram
then $\operatorname{Aut}(W)=\operatorname{Inn}(W) \rtimes\left\langle\alpha_{\zeta} \mid \zeta \in \operatorname{Aut}\left(W_{3}\right)\right\rangle$.
Proof Let α be an automorphism of W, a Coxeter group of type \mathcal{I}_{2}, and suppose, for a contradiction, that $\alpha \notin \operatorname{Inn}(W)\left\langle\alpha_{\zeta} \mid \zeta \in \operatorname{Aut}\left(W_{3}\right)\right\rangle$. Replacing α by a suitable element of $(\operatorname{Inn}(W)) \alpha$ we may assume that $\alpha\left(W_{3}\right)=W_{3}$. If $\zeta^{-1}=\left.\alpha\right|_{W_{3}}$ then $\alpha \alpha_{\zeta}$ is an automorphism of W fixing r_{1} and r_{2}. Thus we may assume that α fixes r_{1} and r_{2} and (since α preserves the conjugacy class of r_{3}) that $\alpha\left(r_{3}\right)=w r_{3} w^{-1}$. By Lemma 5.7, as α is an automorphism, we must have $w \in W_{3}$. If

$$
w=r_{i_{1}} r_{i_{2}} \ldots r_{i_{n}}
$$

where $i_{j} \in\{1,2\}$ then

$$
\alpha=\sigma_{i_{n}, 3} \sigma_{i_{n-1}, 3} \cdots \sigma_{i_{1}, 3} \in\left\langle\operatorname{Inn}(W), \alpha_{\zeta} \mid \zeta \in \operatorname{Aut}\left(W_{3}\right)\right\rangle
$$

a contradiction. Since Lemma 5.6 gives $\operatorname{Inn}(W) \cap\left\langle\alpha_{\zeta} \mid \zeta \in \operatorname{Aut}\left(W_{3}\right)\right\rangle=\{1\}$ the result follows.
$\mathcal{I}_{3}: \quad$ Let W be a Coxeter group of type \mathcal{I}_{3} with diagram

where $m, n \geq 3$. The maximal finite subgroups are W_{1} and W_{3}. Thus $\left\langle r_{2}\right\rangle=W_{1} \cap W_{3}$ and hence any automorphism of W maps r_{2} to a reflection. Up to inner automorphisms $\left.\alpha\right|_{W_{1}}$ is an automorphism of a group of type $I_{2}(m)$ with $m \geq 3$ and hence r_{1} is always mapped to a reflection, similarly for r_{3}.

Let w_{i} be the longest element of W_{i} and let $c_{i}=w_{i} r_{2}$, for $i=1,3$. If m is even then $c_{3}=r_{a}$ where $a=\frac{1}{\mathrm{~s}\left(\pi_{m}\right)}\left(a_{1}+\mathrm{c}\left(\pi_{m}\right) a_{2}\right)$ is the unique root in $\Phi_{\left\{a_{1}, a_{2}\right\}}^{+}$that is orthogonal to a_{2}. Similarly, if n is even then $c_{1}=r_{b}$ where $b=\frac{1}{\mathrm{~s}\left(\pi_{n}\right)}\left(a_{3}+\mathrm{c}\left(\pi_{n}\right) a_{2}\right)$. It follows from Theorem B of [BH99] that

$$
C_{W}\left(r_{2}\right)= \begin{cases}\left\langle r_{2}\right\rangle & \text { if } m \text { and } n \text { are odd, } \\ \left\langle r_{2}\right\rangle \times\left\langle r_{a}\right\rangle & \text { if } m \text { is even and } n \text { is odd, } \\ \left\langle r_{2}\right\rangle \times\left\langle r_{b}\right\rangle & \text { if } m \text { is odd and } n \text { is even, } \\ \left\langle r_{2}\right\rangle \times\left\langle r_{a}, r_{b}\right\rangle & \text { if } m \text { and } n \text { are even. }\end{cases}
$$

where $C_{W}\left(r_{2}\right)$ is the centralizer of r_{2} in W. (See also [Bri96].) If m and n are both even then

$$
a \cdot b=\frac{-\left(1+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right)}{\mathrm{s}\left(\pi_{m}\right) \mathrm{s}\left(\pi_{n}\right)}<-1,
$$

and it follows that $\{a, b\}$ is a root basis in the sense of Definition 1.38. Thus r_{a} and r_{b} are simple reflections for the reflection subgroup of W they generate. The root system of this reflection subgroup is the set $\left\{x \in \Phi \mid x \cdot a_{2}=0\right\}$.
5.9 Definition Let μ be an automorphism of W_{3} which fixes r_{2} and ν an automorphism of W_{1} which fixes r_{2}. Define $\alpha_{\mu, \nu}: W \rightarrow W$ to be the endomorphism satisfying

$$
\begin{aligned}
& \alpha_{\mu, \nu}\left(r_{1}\right)=\mu\left(r_{1}\right) \\
& \alpha_{\mu, \nu}\left(r_{2}\right)=r_{2} \\
& \alpha_{\mu, \nu}\left(r_{3}\right)=\nu\left(r_{3}\right),
\end{aligned}
$$

provided such an endomorphism exists.
In fact $\alpha_{\mu, \nu}$ exists in all cases. Clearly $\alpha_{\mu, \nu}\left(r_{i}\right)$ is an involution for all i. Now

$$
\alpha_{\mu, \nu}\left(r_{1} r_{2}\right)=\alpha_{\mu, \nu}\left(r_{1}\right) \alpha_{\mu, \nu}\left(r_{2}\right)=\mu\left(r_{1}\right) r_{2}=\mu\left(r_{1} r_{2}\right)
$$

and hence $\left(\alpha_{\mu, \nu}\left(r_{1}\right) \alpha_{\mu, \nu}\left(r_{2}\right)\right)^{m}=1$. Similarly $\left(\alpha_{\mu, \nu}\left(r_{2}\right) \alpha_{\mu, \nu}\left(r_{3}\right)\right)^{n}=1$, and thus the required relations hold. and similarly for the rest. Thus $\alpha_{\mu, \nu}$ defines an endomorphism of W. It is clear that if $\mu, \mu^{\prime} \in \operatorname{Aut}\left(W_{3}\right)$ and $\nu, \nu^{\prime} \in \operatorname{Aut}\left(W_{1}\right)$ all fix r_{2} then

$$
\alpha_{\mu, \nu} \alpha_{\mu^{\prime}, \nu^{\prime}}=\alpha_{\mu \mu^{\prime}, \nu \nu^{\prime}} .
$$

Furthermore, $\alpha_{\mu, \nu}=1$ if and only if $\mu=1$ and $\nu=1$. Thus

$$
\mathcal{A}=\left\{\alpha_{\mu, \nu} \mid \mu \in \operatorname{Aut}\left(W_{3}\right), \nu \in \operatorname{Aut}\left(W_{1}\right) \text { and } \mu\left(r_{2}\right)=\nu\left(r_{2}\right)=r_{2}\right\}
$$

is a subgroup of $\operatorname{Aut}(W)$ isomorphic to the direct product of the stabilizers of r_{2} in $\operatorname{Aut}\left(W_{3}\right)$ and $\operatorname{Aut}\left(W_{1}\right)$.
5.10 Lemma With μ, ν as above, if $\alpha_{\mu, \nu}$ is an inner automorphism then μ and ν are both identity automorphisms or both conjugation by r_{2}.

Proof If $\alpha_{\mu, \nu}$ is an inner automorphism, say $\alpha_{\mu, \nu}(x)=w x w^{-1}$, then we have

$$
\begin{aligned}
& w r_{2} w^{-1}=r_{2} \\
& w r_{1} w^{-1} \in\left\langle r_{1}, r_{2}\right\rangle \\
& w r_{3} w^{-1} \in\left\langle r_{2}, r_{3}\right\rangle .
\end{aligned}
$$

Thus we have $w a_{2}= \pm a_{2}$ and, using 1.12, $w a_{1}=\frac{\mathrm{s}\left((h-1) \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{1}+\frac{\mathrm{s}\left(h \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} a_{2}$ for some h and $w a_{3}=\frac{\mathrm{s}\left((k-1) \pi_{n}\right)}{\mathrm{s}\left(\pi_{n}\right)} a_{1}+\frac{\mathrm{s}\left(k \pi_{n}\right)}{\mathrm{s}\left(\pi_{n}\right)} a_{2}$ for some k. Identifying elements of W with their matrices relative to $\left\{a_{1}, a_{2}, a_{3}\right\}$,

$$
w=\left[\begin{array}{ccc}
\mathrm{s}\left((h-1) \pi_{m}\right) / \mathrm{s}\left(\pi_{m}\right) & 0 & 0 \\
\mathrm{~s}\left(h \pi_{m}\right) & \pm 1 & \mathrm{~s}\left((k-1) \pi_{n}\right) / \mathrm{s}\left(\pi_{n}\right) \\
0 & 0 & \mathrm{~s}\left(k \pi_{n}\right) / \mathrm{s}\left(\pi_{n}\right)
\end{array}\right]
$$

As w can be written as a product of reflections $\operatorname{det}(w)= \pm 1$. Hence

$$
\frac{\mathrm{s}\left((h-1) \pi_{m}\right)}{\mathrm{s}\left(\pi_{m}\right)} \times \frac{\mathrm{s}\left(k \pi_{n}\right)}{\mathrm{s}\left(\pi_{n}\right)}= \pm 1
$$

Each of the two factors on the left of this equation is 0 or is at least 1 in absolute value; thus we must have

$$
\begin{aligned}
\mathrm{s}\left((h-1) \pi_{m}\right) & = \pm \mathrm{s}\left(\pi_{m}\right) \\
\mathrm{s}\left(k \pi_{n}\right) & = \pm \mathrm{s}\left(\pi_{n}\right) .
\end{aligned}
$$

Looking at each possibility we find that $w a_{1}$ is $\pm a_{1}$ or $\pm r_{2}\left(a_{1}\right)$ and $w a_{3}$ is $\pm a_{3}$ or $r_{2}\left(a_{3}\right)$. Thus

$$
\begin{aligned}
& w r_{1} w^{-1}=r_{1} \quad \text { or } \quad r_{2} r_{1} r_{2} \\
& w r_{2} w^{-1}=r_{2} \\
& w r_{3} w^{-1}=r_{3} \quad \text { or } \quad r_{2} r_{3} r_{2} .
\end{aligned}
$$

If $w \neq 1$ or r_{2}, then renumbering (swapping r_{1} and r_{2} if necessary) gives

$$
\begin{aligned}
& w r_{1} w^{-1}=r_{1} \\
& w r_{2} w^{-1}=r_{2} \\
& w r_{3} w^{-1}=r_{2} r_{3} r_{2} .
\end{aligned}
$$

But then

$$
\begin{aligned}
-1 & =a_{1} \cdot a_{3} \\
& =w a_{1} \cdot w a_{3} \\
& = \pm\left(a_{1} \cdot r_{2} a_{3}\right) \\
& = \pm\left(a_{1} \cdot\left(a_{3}+2 \mathrm{c}\left(\pi_{m}\right) a_{2}\right)\right) \\
& = \pm\left(-1-2 \mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right) .
\end{aligned}
$$

But this forces $\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)=0$ or $\left|\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right|=1$ contradicting $3 \leq m, n<\infty$. Therefore $\alpha_{\mu, \nu}$ is inner only when μ and ν are both the identity or both conjugation by r_{2}.

We shall prove that $\operatorname{Aut}(W)$ is generated by inner automorphisms, graph automorphisms (if $m=n$) and the automorphisms $\alpha_{\mu, \nu}$ described above. Let α be an arbitrary element of $\operatorname{Aut}(W)$. Up to graph automorphisms we may assume that $\alpha\left(W_{3}\right)$ is conjugate to W_{3} and $\alpha\left(W_{1}\right)$ is conjugate to W_{1}; so up to inner and graph automorphisms we may assume that $\alpha\left(W_{3}\right)=W_{3}$ and $\alpha\left(W_{1}\right)=u W_{1} u^{-1}$ for some $u \in W$. At the expense of modifying α by a further inner automorphism, we may assume that u is the minimal length element in $W_{3} u W_{1}$. Now

$$
\alpha\left(\left\langle r_{2}\right\rangle\right)=\alpha\left(W_{3}\right) \cap \alpha\left(W_{1}\right)=W_{3} \cap u W_{1} u^{-1},
$$

and by Corollary 1.28 we deduce that $\alpha\left(r_{2}\right)=r_{i}=u r_{j} u^{-1}$ for some $i \in\{1,2\}$ and $j \in\{2,3\}$. Furthermore $a_{i}=u\left(a_{j}\right)$, since $u\left(a_{2}\right)$ and $u\left(a_{3}\right)$ are both positive.

If m and n are both odd then the only $w \in W$ with $w\left(a_{2}\right)=a_{2}$ is $w=1$, and it follows that the equation $u\left(a_{i}\right)=a_{j}$ determines u uniquely (since a_{1}, a_{2}, a_{3} all lie in the same W-orbit). If $j=3$ then either $u=r_{3} r_{2} \stackrel{n-1}{\sim}$. (if $i=2$) or $u=\left(r_{2} r_{1} \stackrel{m-1}{\cdot}\right.$. $)\left(r_{3} r_{2} \cdot \stackrel{n-1}{-1}\right.$) (if $i=1$). However, both of these contradict the fact that u has minimal length in $W_{3} u W_{1}$. Similarly, $j=2$ and $i=1$ leads to $u=r_{2} r_{1} \stackrel{m-1}{\ldots}$., which again contradicts the minimality of u. So $i=j=2$ and $u=1$. This gives $\alpha\left(W_{3}\right)=W_{3}, \alpha\left(W_{1}\right)=W_{1}$ and $\alpha\left(r_{2}\right)=r_{2}$, and it follows that $\alpha=\alpha_{\mu, \nu}$, where $\mu=\left.\alpha\right|_{W_{3}}$ and $\nu=\left.\alpha\right|_{W_{1}}$.

If n is odd and m even then r_{1} is not conjugate to either r_{2} or r_{3}, and so we must have $i=2$. There are two elements $w \in W$ with $w\left(a_{2}\right)=a_{2}$, namely 1 and $r_{1} r_{2} \ldots \stackrel{m-1}{\ldots}$. So if $j=2$ then either $u=1$ or $u=r_{1} r_{2} \stackrel{m-1}{\sim}$, and if $j=3$ then either $u=r_{3} r_{2} \stackrel{n-1}{\sim}$. or $u=\left(r_{1} r_{2} \stackrel{m-1}{\sim} \cdot\right)\left(r_{3} r_{2} \stackrel{n-1}{\sim} \cdot\right)$. Again, only the case $u=1$ is consistent with the fact that u is minimal length in $W_{1} u W_{3}$, and as above we deduce that $\alpha=\alpha_{\mu, \nu}$.

If m is odd and n is even then r_{3} is not conjugate to either r_{2} or r_{1}, and so we must have $j=2$. The only elements of W with $w\left(a_{2}\right)=a_{2}$ are $w=1$ and $w=r_{3} r_{2} . n-1$. . We deduce that if $i=2$ then either $u=1$ or $u=r_{3} r_{2} \stackrel{n-1}{\square}$, and if $i=1$ then either $u=r_{1} r_{2} \stackrel{m-1}{\cdots}$. or $u=\left(r_{1} r_{2} \stackrel{m-1}{\cdot} \cdot\right)\left(r_{3} r_{2} \stackrel{n-1}{\sim} \cdot\right)$. Only $u=1$ is possible, and again $\alpha=\alpha_{\mu, \nu}$.

We are left with the case in which m and n are both even. For the next calculation we allow $n=2$ as we shall refer to this calculation again in case \mathcal{I}_{5}. Since r_{1}, r_{2}, r_{3} lie in separate conjugacy classes we deduce that $i=j=2$, and u lies in the subgroup $\left\{w \mid w\left(a_{2}\right)=a_{2}\right\}$. As explained above, this group is generated by the reflections $r_{a}=r_{1} r_{2} \stackrel{m-1}{n}$. and $r_{b}=r_{3} r_{2} . \stackrel{n-1}{\sim}$, and so u is an alternating product of r_{a} 's and r_{b} 's. Note that if the expression for u ends with r_{b} then $u(b)$ is negative, and since b is in the root system of W_{1} this contradicts the minimality of u in $W_{3} u W_{1}$. Similarly, u cannot begin with r_{a}. So

$$
u=\left(r_{b} r_{a}\right)^{k}
$$

for some k.
Thus we have $W=\left\langle\alpha\left(r_{1}\right), \alpha\left(r_{2}\right), \alpha\left(r_{3}\right)\right\rangle=\left\langle r_{1}, r_{2}, r_{x}\right\rangle$, where $x=\left(r_{b} r_{a}\right)^{k} a_{3}$. Now

$$
\begin{aligned}
x & =\left(r_{b} r_{a}\right)^{k} a_{3} \\
& =\left(r_{b} r_{a}\right)^{k}\left(\mathrm{~s}\left(\pi_{n}\right) b-\mathrm{c}\left(\pi_{n}\right) a_{2}\right) \\
& =\mathrm{s}\left(\pi_{n}\right)\left(r_{b} r_{a}\right)^{k} b-\mathrm{c}\left(\pi_{n}\right)\left(r_{b} r_{a}\right)^{k} a_{2} \\
& =\mathrm{s}\left(\pi_{n}\right)\left(r_{b} r_{a}\right)^{k} b-\mathrm{c}\left(\pi_{n}\right) a_{2}
\end{aligned}
$$

since a and b are orthogonal to a_{2}. But $\{a, b\}$ forms a root basis where

$$
a \cdot b=\frac{-\left(1+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right)}{\mathrm{s}\left(\pi_{m}\right) \mathrm{s}\left(\pi_{n}\right)}=-\cosh (t)
$$

for some t (since $a \cdot b<-1$). The elements of the (infinite dihedral) root system generated by a and b can be found by calculations analogous to those used to establish 1.12 and 1.13(the finite case). We find that

$$
\left(r_{b} r_{a}\right)^{k} b=\frac{\sinh ((k+1) t)}{\sinh (t)} b+\frac{\sinh (k t)}{\sinh (t)} a .
$$

We are given $a_{1} \cdot a_{2}=-\mathrm{c}\left(\pi_{m}\right)$ and as $\left(r_{b} r_{a}\right)^{k} a_{2}=a_{2}$ we have

$$
a_{2} \cdot x=a_{2} \cdot\left(r_{b} r_{a}\right)^{k} a_{3}=\left(r_{b} r_{a}\right)^{k} a_{2} \cdot\left(r_{b} r_{a}\right)^{k} a_{3}=a_{2} \cdot a_{3}=-\mathrm{c}\left(\pi_{n}\right) .
$$

Finally

$$
\begin{aligned}
x \cdot a_{1}= & \mathrm{s}\left(\pi_{n}\right) \frac{\sinh ((k+1) t)}{\sinh (t)} b \cdot a_{1} \\
& +\mathrm{s}\left(\pi_{n}\right) \frac{\sinh (k t)}{\sinh (t)} a \cdot a_{1}+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right) \\
= & \mathrm{s}\left(\pi_{n}\right) \frac{\sinh ((k+1) t)}{\sinh (t)} \frac{\left(-1-\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right)}{\mathrm{s}\left(\pi_{n}\right)} \\
& +\mathrm{s}\left(\pi_{n}\right) \frac{\sinh (k t)}{\sinh (t)} \mathrm{s}\left(\pi_{m}\right)+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right) \\
= & \frac{\sinh ((k+1) t)}{\sinh (t)}\left(-1-\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)\right)+\frac{\sinh (k t)}{\sinh (t)} \mathrm{s}\left(\pi_{m}\right) \mathrm{s}\left(\pi_{n}\right)+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right) \\
\leq & -\frac{\sinh ((k+1) t)}{\sinh (t)}+\frac{\sinh (k t)}{\sinh (t)}+\mathrm{c}\left(\pi_{m}\right) \mathrm{c}\left(\pi_{n}\right)<1
\end{aligned}
$$

If $x \cdot a_{1}>-1$ then it follows that the restriction of our bilinear form to the space V^{\prime} spanned by a_{1} and x is positive definite. By the main theorem of [Deo89], or alternatively Theorem 3.3 of [Dye90], the reflection subgroup $W^{\prime}=\left\langle r_{1}, r_{x}\right\rangle$ is a Coxeter group on V^{\prime}. This implies, by Lemma 1.1, that W^{\prime} is finite, a contradiction as $r_{x} r_{1}=\alpha\left(r_{3} r_{1}\right)$ is infinite, and so $\left|x \cdot a_{1}\right| \geq 1$. Hence $x \cdot a_{1}<-1$. Thus $\left\{a_{1}, a_{2}, x\right\}$ is a root basis for $\left\langle r_{1}, r_{2}, r_{x}\right\rangle=W$. Hence every root in Φ^{+}can be expressed as a positive linear combination of a_{1}, a_{2} and x. But it is clearly impossible to express a_{3} as a positive linear combination of a_{1}, a_{2} and x unless the coefficient of a_{1} in x is zero. This coefficient is $\frac{\mathrm{s}\left(\pi_{n}\right)}{\mathrm{s}\left(\pi_{m}\right)} \sinh (k t)$, which is zero if and only if $k=0$. This gives $x=a_{3}$ and so α is the identity. Thus we have proved the following.
5.11 Proposition Let W be a Coxeter group of type \mathcal{I}_{3} with diagram

$$
\begin{aligned}
& m{ }^{2}{ }_{n} \\
& { }^{1} \cdot \infty^{\cdot 3}
\end{aligned}
$$

and $\mathcal{A}=\left\{\alpha_{\mu, \nu} \mid \mu \in \operatorname{Aut}\left(W_{3}\right), \nu \in \operatorname{Aut}\left(W_{1}\right)\right.$ and $\left.\mu\left(r_{2}\right)=\nu\left(r_{2}\right)=r_{2}\right\}$. Then

$$
\operatorname{Aut}(W)=\operatorname{Inn}(W) \mathcal{A} \quad(\text { if } m \neq n)
$$

or

$$
\operatorname{Aut}(W)=\operatorname{Inn}(W) \mathcal{A} \operatorname{Gr}(W) \quad(\text { if } m=n)
$$

where in the latter case we have $|\operatorname{Gr}(W)|=2$. Further $\operatorname{Inn}(W) \cap \mathcal{A}$ has order 2, generated by conjugation by r_{2}.
\mathcal{I}_{4} : Let W be a Coxeter group of type \mathcal{I}_{4} with diagram

$$
\dot{i}^{\infty} \dot{i}_{\dot{3}}
$$

The maximal finite standard parabolic subgroups are W_{2} and $\left\langle r_{2}\right\rangle$. Thus any automorphism of W maps r_{2} to a conjugate of itself. The finite standard parabolics include the two just mentioned together with $\left\langle r_{1}\right\rangle$ and $\left\langle r_{3}\right\rangle$. So, by Proposition 2.3, representatives of the conjugacy classes of involutions are r_{1}, r_{2}, r_{3} and $r_{1} r_{3}$.
5.12 Definitions Define $\psi: W \rightarrow W$ by

$$
\begin{aligned}
& \psi\left(r_{1}\right)=r_{1} \\
& \psi\left(r_{2}\right)=r_{2} \\
& \psi\left(r_{3}\right)=r_{1} r_{3}
\end{aligned}
$$

Let γ be the obvious graph automorphism of W.
5.13 Lemma The function ψ is an automorphism of W which does not preserve reflections.
Proof The observations that r_{1}, r_{2} and $r_{1} r_{3}$ are involutions and that

$$
\psi\left(r_{1}\right) \psi\left(r_{3}\right)=r_{3}=\psi\left(r_{3}\right) \psi\left(r_{1}\right)
$$

show that ψ is an endomorphism of W which does not preserve reflections. Noting that $\psi^{2}=1$ completes the proof.

Let $\alpha \in \operatorname{Aut}(W)$. If α does not preserve reflections then either $\alpha\left(r_{1}\right)$ or $\alpha\left(r_{3}\right)$ belongs to the class of $r_{1} r_{3}$. Up to graph automorphisms we may assume that $\alpha\left(r_{3}\right)$ is in the class of $r_{1} r_{3}$. If $\alpha\left(r_{1}\right)$ is conjugate to r_{1}, then $\psi \alpha$ preserves reflections, and if $\alpha\left(r_{1}\right)$ is conjugate to r_{3} then $\psi \gamma \alpha$ preserves reflections. So we may suppose that α preserves reflections. Furthermore, up to inner automorphisms $\alpha\left(W_{2}\right)=W_{2}$ and hence up to inner by graph automorphisms we may assume

$$
\begin{aligned}
& \alpha\left(r_{1}\right)=r_{1} \\
& \alpha\left(r_{3}\right)=r_{3}
\end{aligned}
$$

We know that $\alpha\left(r_{2}\right)=w r_{2} w^{-1}$ and (by Lemma 5.7) as α is surjective we must have $w \in W_{2}$. Hence α is inner, being conjugation by w. We have therefore proved most of the following.
5.14 Proposition If W is a Coxeter group of type \mathcal{I}_{4} with diagram

$$
\dot{1}^{\infty} \underset{i}{\infty}
$$

then $\operatorname{Aut}(W)=\operatorname{Inn}(W) \rtimes\langle\psi, \gamma\rangle$.
Proof It only remains to show that none of the automorphisms in $\langle\psi, \gamma\rangle$ are inner. As $\langle\psi, \gamma\rangle \cong \mathrm{Sym}_{3}$ we check the five non-identity automorphisms. Since

$$
\begin{aligned}
\psi\left(r_{3}\right) & =r_{1} r_{3} \\
\gamma\left(r_{1}\right) & =r_{3} \\
\psi \gamma\left(r_{3}\right) & =r_{1} \\
\gamma \psi \gamma\left(r_{1}\right) & =r_{1} r_{3} \\
\psi \gamma \psi \gamma\left(r_{1}\right) & =r_{3}
\end{aligned}
$$

none of the non-identity automorphisms preserve the conjugacy classes of reflections. So they cannot be inner.
$\mathcal{I}_{5}: \quad$ Let W be a Coxeter group of type \mathcal{I}_{5} with diagram

$$
\dot{i}^{m} \dot{b}_{3}^{\infty}
$$

The maximal finite standard parabolics are W_{2} and W_{3}. Given that $\left\langle r_{1}\right\rangle=W_{2} \cap W_{3}$ we know that any automorphism of W maps r_{1} to a reflection. If $\alpha\left(r_{1}\right)$ is conjugate to r_{2} but not r_{1} then m must be even; however, in this case r_{2} is not conjugate to the reflections in W_{2}, whereas $\alpha\left(r_{1}\right)$ is in subgroups from both conjugacy classes of maximal finite parabolics. Thus $\alpha\left(r_{1}\right)$ is a conjugate of r_{1}.

Representatives of the classes of involutions are $r_{1}, r_{2}, r_{3}, r_{1} r_{3}$ and the longest element of W_{3}; this last only occurs if m is even and if m is odd then r_{1} and r_{2} are conjugate. Now r_{3} is not conjugate to any element in a parabolic subgroup of order $2 m$ and so cannot be mapped to an element in W_{3} by any automorphism. Thus, if $\alpha \in \operatorname{Aut}(W)$ then $\alpha\left(r_{3}\right)$ is conjugate to r_{3} or $r_{1} r_{3}$.
5.15 Definitions Let $\psi: W \rightarrow W$ be the automorphism given by

$$
\psi\left(r_{1}\right)=r_{1}, \quad \psi\left(r_{2}\right)=r_{2} \quad \text { and } \quad \psi\left(r_{3}\right)=r_{1} r_{3},
$$

and for any automorphism ζ of W_{3} such that $\zeta\left(r_{1}\right)=r_{1}$ let $\alpha_{\zeta}: W \rightarrow W$ be the automorphism given by

$$
\alpha_{\zeta}\left(r_{1}\right)=r_{1}, \quad \alpha_{\zeta}\left(r_{2}\right)=\zeta\left(r_{2}\right) \quad \text { and } \quad \alpha_{\zeta}\left(r_{3}\right)=r_{3} .
$$

(Thus α_{ζ} is analogous to $\alpha_{\zeta, 1}$ for the \mathcal{I}_{3} case.) Let

$$
\mathcal{B}=\operatorname{gp}\left\langle\psi,\left\{\alpha_{\zeta} \mid \zeta \in \operatorname{Aut}\left(W_{3}\right) \text { such that } \zeta\left(r_{1}\right)=r_{1}\right\}\right\rangle
$$

Notice that $\alpha_{\zeta} \psi=\psi \alpha_{\zeta}$ for all ζ. Notice also that if $\zeta \in \operatorname{Aut}\left(W_{3}\right)$ is conjugation by r_{1} then α_{ζ} is conjugation by r_{1} on W. It is not hard to see that this is the only nontrivial inner automorphism in the group \mathcal{B}. For suppose that $w \in W$ induces an inner automorphism that lies in \mathcal{B}. Since all elements of \mathcal{B} map r_{3} to r_{3} or $r_{1} r_{3}$, it follows that $w r_{3} w^{-1}=r_{3}$, since $r_{1} r_{3}$ is not a reflection. Furthermore, $w r_{1} w^{-1}=r_{1}$, and $w r_{2} w^{-1}=r_{x}$ for some x in the root system of W_{3}. So $w\left(a_{2}\right)$ is in the root system of W_{3}, and since $w\left(a_{2}\right) \cdot w\left(a_{1}\right)=a_{2} \cdot a_{1}$ it follows that $w\left(a_{2}\right)$ is either a_{2} or $r_{1}\left(a_{2}\right)$. The former possibility gives the identity automorphism and the latter gives conjugation by r_{1}.

Now let α be any automorphism of W. Then up to the automorphism ψ we may assume that α preserves reflections. Up to inner automorphisms we may assume that $\alpha\left(W_{3}\right)=W_{3}$ and $\alpha\left(r_{1}\right)=r_{1}$. Then $\mu=\left.\alpha\right|_{W_{3}}$ is an automorphism of W_{3} that fixes r_{1}, and so replacing α with $\alpha_{\mu^{-1}} \alpha$ we get an automorphism of W that fixes both r_{1} and r_{2}. As $\alpha\left(r_{3}\right)$ is a conjugate of r_{3} the methods used for \mathcal{I}_{3} finish the proof of the following.
5.16 Proposition If W is a Coxeter group of type \mathcal{I}_{5} with diagram

$$
\dot{i}^{m} \dot{i}^{\infty}{ }_{3}
$$

then $\operatorname{Aut}(W)=\operatorname{Inn}(W) \mathcal{B}$ and $|\operatorname{Inn}(W) \cap \mathcal{B}|=2$.
Note that if ζ is conjugation by r_{1} then α_{ζ} is inner, being conjugation by r_{1}. All other ζ give rise to outer automorphisms.

There is one case still outstanding: $\tilde{A}_{1} \times A_{1}$. Let W be a Coxeter group of type $\tilde{A}_{1} \times A_{1}$ with diagram

$$
\stackrel{\stackrel{2}{4}}{{ }_{1} \cdot \infty^{\cdot 3}}
$$

The finite standard parabolic subgroups are $\left\langle r_{1}\right\rangle,\left\langle r_{2}\right\rangle,\left\langle r_{3}\right\rangle,\left\langle r_{1}, r_{2}\right\rangle$ and $\left\langle r_{2}, r_{3}\right\rangle$. It is clear that $\left\langle r_{2}\right\rangle=Z(W)$ thus we have $\alpha\left(r_{2}\right)=r_{2}$ for all automorphisms α of W.
5.17 Definition Define $\alpha_{12}: W \rightarrow W$ by

$$
\begin{aligned}
& \alpha_{12}\left(r_{1}\right)=r_{1} r_{2} \\
& \alpha_{12}\left(r_{2}\right)=r_{2} \\
& \alpha_{12}\left(r_{3}\right)=r_{3} .
\end{aligned}
$$

It is easily seen that α_{12} is an automorphism of W. Let γ denote the obvious graph automorphism.

Let α be any automorphism of W. Following α with an inner by graph automorphism if necessary we may assume that $\alpha\left(W_{3}\right)=W_{3}$. Now $\alpha\left(r_{2}\right)=r_{2}$ and so either $\alpha\left(r_{1}\right)=r_{1}$ or $\alpha\left(r_{1}\right)=r_{1} r_{2}$. If $\alpha\left(r_{1}\right)=r_{1} r_{2}$, then $\alpha_{12} \alpha\left(r_{1}\right)=\alpha_{12}\left(r_{1} r_{2}\right)=r_{1} r_{2} r_{2}=r_{1}$. Thus, replacing α with $\alpha_{12} \alpha$ we may assume that $\alpha\left(r_{1}\right)$ is conjugate to r_{1}. Then $\alpha\left(r_{3}\right)$ is conjugate to
r_{3} or $r_{2} r_{3}$. If $\alpha\left(r_{3}\right)=w^{\prime} r_{2} r_{3} w^{\prime-1}$ then $\gamma \alpha_{12} \gamma \alpha\left(r_{1}\right)=r_{1}$ and $\gamma \alpha_{12} \gamma \alpha\left(r_{3}\right)=w r_{3} w^{-1}$, where $w=\gamma \alpha_{12} \gamma\left(w^{\prime}\right)$. So we may assume up to inner, γ and α_{12}, that

$$
\begin{aligned}
& \alpha\left(r_{1}\right)=r_{1} \\
& \alpha\left(r_{2}\right)=r_{2} \\
& \alpha\left(r_{3}\right)=w r_{3} w^{-1}
\end{aligned}
$$

As r_{2} is central we may assume that $w \in W_{2}$, and hence $\left.\alpha\right|_{W_{2}}$ is an automorphism of a Coxeter group of type \tilde{A}_{1} with $r_{1} \mapsto r_{1}$. Thus $\left.\alpha\right|_{W_{2}}$ is inner, by Proposition 4.5, and therefore α is inner.
5.18 Proposition If W is a Coxeter group of type $\tilde{A}_{1} \times A_{1}$ with diagram

$$
\begin{gathered}
\stackrel{2}{\bullet} \\
{ }_{1} \cdot \infty^{\cdot 3}
\end{gathered}
$$

then $\operatorname{Aut}(W)=\operatorname{Inn}(W) \rtimes\left\langle\alpha_{12}, \gamma\right\rangle$.
Proof It is easily checked that $\left\langle\alpha_{12}, \gamma\right\rangle$ is a group of type $I_{2}(4)$ and that none of the nonidentity automorphisms in this group preserves the classes of reflections. Thus

$$
\operatorname{Inn}(W) \cap\left\langle\alpha_{12}, \gamma\right\rangle=\{1\}
$$

References

[BH99] Brigitte Brink and Robert B. Howlett, Normalizers of parabolic subgroups in Coxeter groups, Inventiones Mathematicae 136 (1999), 323-351.
[Bou68] N. Bourbaki, Groupes et algèbres de lie. chapitres 4, 5 et 6, Hermann, Paris, 1968.
[Bri96] Brigitte Brink, On centralizers of reflections in Coxeter groups, Bulletin of the London Mathematical Society 28 (1996), 465-470.
[Bri98] Brigitte Brink, The dominance minimal roots, Journal of Algebra 206 (1998), 371412.
[Car72] R. W. Carter, Conjugacy classes in the weyl group, Compositio Mathematica 25 (1972), 1-59.
[Car85] Roger W. Carter, Finite groups of lie type: Conjugacy classes and complex characters, J. Wiley \& Sons, 1985.
[Deo82] V. V. Deodhar, On the root system of a Coxeter group, Communications in Algebra 10 (1982), 611-630.
[Deo89] V. V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Archiv der Mathematik 53 (1989), 543-546.
[Dye90] M. Dyer, Reflection subgroups of Coxeter systems, Journal of Algebra 135 (1990), 57-73.
[FH] W. N. Franzsen and R. B. Howlett, Automorphisms of Coxeter groups of rank three, Proceedings of the American Mathematical Society (to appear).
[HRT97] R. B. Howlett, P. J. Rowley, and D. E. Taylor, On outer automorphism groups of Coxeter groups, Manuscripta Mathematica 93 (1997), 499-513.
[Hum90] James E. Humphreys, Reflection groups and Coxeter groups, vol. 29, Cambridge University Press, 1990, Cambridge Studies in Advanced Mathematics.
[Jam88] L. D. James, Complexes and Coxeter groups-operations and outer automorphisms, Journal of Algebra 113 (1988), 339-345.
[Mü98] B. Mühlherr, Automorphisms of graph-universal Coxeter groups, Journal of Algebra 200 (1998), 629-649.
[Max98] G. Maxwell, The normal subgroups of finite and affine Coxeter groups, Proceedings of the London Mathematical Society 3 (1998), no. 76, 359-382.
[Tit88] J. Tits, Sur le groupe des automorphismes de certain groupes de Coxeter, Journal of Algebra 113 (1988), 346-357.

Index and Notation

\mathcal{A},	82
\tilde{A}_{1}	
automorphism,	62
diagram,	61
$\tilde{A}_{1} \times A_{1}$	
automorphisms,	88
$a b \cdot \stackrel{n}{ } \cdot$	33
affine Weyl groups,	61
$\alpha_{\mu, \nu}$,	82
A_{n},	7
A_{n} diagram,	7
automorphisms,	21
longest element,	7
normal subgroups,	40
\tilde{A}_{n}	
automorphisms,	62
diagram,	61
$B=B(u, v)$	
degenerate,	1
non-degenerate,	1
positive definite,	1
\mathcal{B},	87
\tilde{B}_{2}	
automorphisms,	62
diagram,	61
B_{n},	7
automorphisms,	28
diagram,	8
longest element,	8
$\sim_{\text {n }}$ normal subgroups,	40
\tilde{B}_{n}	
automorphisms,	62
diagram,	61
bond,	1
centralizer $\left(C_{W}(w)\right)$,	82
chain joining	
conjugacy classes,	39
reflections r and r^{\prime},	16, 40
c_{i},	82
$\underset{\sim}{\operatorname{cl}}\left(w_{k}\right)$,	20
\tilde{C}_{n}	
automorphisms,	62
diagram,	61
$\mathrm{c}(\theta)$,	4
Coxeter diagram,	
finite type,	36
Coxeter group,	
degenerate,	
graph universal,	
non-degenerate,	
positive definite,	1

disjoint union $(\dot{\cup})$,	2
D_{n},	8
automorphisms,	28
diagram,	8
longest element,	9
normal subgroups,	41
\tilde{D}_{n}	
automorphisms,	62
diagram,	61

E_{6}, 9
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42

E_{6}
automorphisms, 62
diagram, 61
E_{7}, 10
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42
\tilde{E}_{7}
automorphisms, 62
diagram, 61
$E_{8}, \quad 10$
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42
\tilde{E}_{8}
automorphisms, 62
diagram, 61
edge, 1
$\mathcal{E}_{n}, \quad 21$
$E_{n}, \quad 68$
$\mathcal{E}_{n}^{\prime}, \quad 21$
$\mathcal{E}_{n}^{?}, \quad 21$
$F_{4}, \quad 10$
automorphisms, 30
diagram, 10
longest element, 10
normal subgroups, 42
\tilde{F}_{4}
automorphisms, 62
diagram, 61
finite type, $\quad 36$
forest, 14
$F_{r, s}, \quad 68$
fundamental domain, 62
\tilde{G}_{2}
automorphisms, 62
diagram, 61
γ, 19
graph automorphisms, 5
graph universal, i
$G_{r, s}, \quad 68$
$\operatorname{Gr}(W)$, 5
H_{3}, 11
automorphisms, 32
diagram, 11
longest element, 11
normal subgroups, 43
H_{4}, 11
automorphisms, 32
diagram, 11
longest element, 11
normal subgroups, 43
\mathcal{H}_{n}
see Table I, 70
$H_{r, s}, \quad 68$
\mathcal{I}_{1}
automorphisms, 78
diagram, 77
$I_{2}(m), \quad 9$
automorphisms, 33
diagram, 9
longest element, 9
\mathcal{I}_{2}
automorphisms, 81
diagram, 77
\mathcal{I}_{3}
automorphisms, 85
diagram, 77
\mathcal{I}_{4}
automorphisms, 86
diagram, 77
\mathcal{I}_{5}
automorphisms, 87
diagram, 77
infinite bond, $\quad 77$
infinite dihedral group, 84
inner by graph, 15
involution, 19
irreducible
group, 1
matrix, 35
length, 2
linked, 39
$l(w), \quad 2$
maximal finite subgroup, 11
$N(w), 2$
nearly finite, 35
negative root, 1
parabolic subgroup, 4
maximal finite standard, 13
Φ, 1
$\Phi^{+}, \quad 1$
$\Phi^{-}, \quad 1$
$\Phi_{I}, \quad 4$
$\phi_{\alpha}, \quad 14$
$\Pi, \quad 1$
$\pi_{k}, \quad 4$
positive definite, 1
26/1/2001 positive root, 191

Errata

Page 56 line 14. Replace the diagram

$$
\begin{array}{clll}
5 & \stackrel{2}{\bullet} & 4 \\
3 \cdot & q & \\
& \bullet & & \bullet \\
1 & 5 & 5
\end{array}
$$

with the diagram

$$
\begin{array}{ccc}
5 & \begin{array}{l}
2 \\
\bullet
\end{array} & 4 \\
{ }_{3} & q & \\
1 & 5 & 5
\end{array}
$$

Page 56, line 21. Replace ' $q \leq 5$ ' with ' $q=5$ '.

Page 56, line 24. Replace the sentence 'Thus $\operatorname{Aut}(W)=R(W)$.' with: Thus Aut $(W)=R(W)$ if $q \geq 5$. If $q=3$ or 4 then W_{3} is the unique maximal finite standard parabolic subgroup of its type. The general argument in the proof of Theorem 3.16 then shows that all automorphisms are inner by graph if $q=3$ or 4 . We now concentrate on the $q \geq 5$ case.

