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Introduction

There are surprisingly few results known about the automorphisms of infinite Coxeter groups.
The only complete results are for finite rank graph universal Coxeter groups. A Coxeter
group is graph universal if the labels on all edges in the Coxeter diagram are ∞. In the paper
[Jam88], James found the automorphism groups of graph universal Coxeter groups whose
diagrams have the form:

...∞ ∞ ∞

This result was extended by Tits, [Tit88], to include all irreducible graph universal Coxeter
groups whose diagrams do not contain triangles. Finally Mühlherr, [Mü98], found the au-
tomorphism group of any graph universal Coxeter group. In that paper Mühlherr gives a
presentation for this automorphism group.

For the most part I will be looking at the automorphism group of a Coxeter group
with finite labels. The only paper that I could find that deals with the finite label case is
[HRT97]. In this paper Howlett, Rowley and Taylor show that the outer automorphism group
of a Coxeter group of finite rank whose diagram has no infinite bonds is itself finite. The
automorphisms of the finite irreducible Coxeter groups are well known.

In the following it will be shown that for a large class of finite rank Coxeter groups
all automorphisms are inner by graph. That is Aut(W ), the automorphism group of the
Coxeter group W , is generated by the inner automorphisms and automorphisms arising from
symmetries of the Coxeter diagram. Indeed, in most cases, Aut(W ) is the semidirect product
of Inn(W ) and the group of graph automorphisms.

In the first chapter some basic properties of Coxeter groups are established. In particu-
lar it is shown that maximal finite standard parabolic subgroups are maximal finite subgroups.
Finally it is shown that if the diagram of a given infinite Coxeter group, W , is a forest with
labels in the set { 2, 3, 4, 6 }, then any automorphism of W that preserves the set of reflections
is inner by graph.

The second chapter deals mainly with the automorphism groups of the irreducible fi-
nite Coxeter groups. In the finite case it is possible for a graph automorphism to be inner;
for example, conjugation by the longest element in type An induces the obvious graph au-
tomorphism. The final section in Chapter 2 shows that this cannot happen if the Coxeter
group has no finite irreducible components.

Nearly finite Coxeter groups are then defined; these are infinite Coxeter groups of rank
n that have a finite standard parabolic subgroup of rank n−1. When W is a non-degenerate
irreducible nearly finite Coxeter group then all reflection-preserving automorphisms are inner
by graph. If this subgroup is of type An−1 (n �= 6), D2k+1, E6 or E7 and W only has one
conjugacy class of reflections, then all automorphisms are inner by graph.

Chapter 4 deals completely with the affine Weyl groups and the hyperbolic groups (in
the sense of [Hum90]). Using the methods developed in previous chapters it is shown that
in all cases the automorphism group is the semidirect product of Inn(W ) and the group of
graph automorphisms.

Finally the rank 3 Coxeter groups are considered in full. Having shown in Chapter 4
that if all the bonds are finite then the automorphisms are inner by graph the groups with
infinite bonds are considered. The automorphisms of the rank 3 graph universal Coxeter
groups are found. Finally the rank 3 groups with both finite and infinite bonds are considered.
The case of rank 3 Coxeter groups with finite bonds is also covered in [FH].
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Chapter 1

Properties of Coxeter Groups

We recall that a Coxeter group is a group with a presentation of the form

W = gp〈{ ra | a ∈ Π } | (rarb)mab = 1 for all a, b ∈ Π〉

where Π is some indexing set, whose cardinality is called the rank of W , and the parameters
mab satisfy the following conditions: mab = mba, mab = 1 if and only if a = b and each mab

lies in the set {m ∈ Z | m ≥ 1 } ∪ {∞}. The relation (rarb)mab = 1 is omitted if mab = ∞.

§1.1 Some Basic Facts

The (Coxeter) diagram of W is a graph with vertex set Π in which an edge (or bond) labelled
mab joins a, b ∈ Π whenever mab ≥ 3. We say that the group is irreducible if this graph is
connected.

Let V be the real vector space with basis Π and let B be a bilinear form on V with

B(a, b) = − cos(π/mab) if mab �= ∞,

and
B(a, b) ≤ −1 if mab = ∞.

for all a, b ∈ Π. There is clearly a unique such form with B(a, b) = −1 whenever mab = ∞
and unless otherwise stated we assume that B is defined in this manner. For each a ∈ V
such that B(a, a) = 1 we define σa : V → V by σav = v − 2B(a, v)a; it is well known
(see, for example, Corollary 5.4 of [Hum90]) that W has a faithful representation on V
given by ra 
→ σa for all a ∈ Π. We shall identify elements of W with their images in this
representation; thus ra = σa is the reflection in the hyperplane perpendicular to a. We also
call this the reflection along the root a. The action of W on V preserves the form B. If the
form B is degenerate, non-degenerate or positive definite then we will often just say that W
is degenerate, non-degenerate or positive definite respectively.

The elements of the basis Π are called simple roots, and the reflections ra for a ∈ Π are
called simple reflections. We call Φ = {wa |w ∈ W, a ∈ Π } the root system of W . Usually
the reflection along the simple root ai will be denoted by ri to simplify subscripts.

The following lemma collects together some facts which will be useful later.
1.1 Lemma Given the above representation of the Coxeter group W , the following are
true.

(1) If v ∈ Φ and v =
∑

a∈Π λaa, then either λa ≥ 0 for all a ∈ Π or λa ≤ 0 for all
a ∈ Π. In the former case we call v a positive root, in the latter case a negative
root, and we define Φ+ and Φ− to be the set of all positive roots and the set of
all negative roots respectively.

(2) If w ∈W is a reflection, then w = rα for some α ∈ Φ. Furthermore, α = xa for
some x ∈W and a ∈ Π, whence w = xrax

−1 is conjugate to a simple reflection.

(3) W is a finite group if and only if the bilinear form B is positive definite.

Proof Section 5.4 in [Hum90] contains a proof of 1, while 2 appears as Proposition 1.14.
Theorem 4.1 in [Deo82] contains a proof of 3.
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2 Basic Facts

1.2 Definition If w is an element of the Coxeter group W , then the length of w is the
length of the shortest expression of w as a product of simple reflections. We denote this
length by l(w). Any expression of w as a product of l(w) simple roots will be called a reduced
expression for w.

Regarding w as a linear transformation of V we see that det(w) = (−1)l(w), since all
reflections have determinant −1.

It is easily seen that l(w) = 0 if and only if w = 1 and l(w−1) = l(w). If w can be
expressed as a product of l simple reflections then it is obvious that for any a ∈ Π the element
w′ = wra can be expressed as a product of l+1 simple reflections. So l(w′) ≤ l(w)+1. Since
also w = w′ra the same reasoning shows that l(w) ≤ l(w′) + 1. But since

(−1)l(w) = detw = (detw′)(det ra) = − detw′ = (−1)l(w′)+1

it follows that l(w′) �= l(w). So we have proved.
1.3 Lemma If w ∈W and a ∈ Π, then

l(wra) = l(w) ± 1.

1.4 Lemma If w,w′ ∈W , then

l(ww′) ≡ l(w) + l(w′) (mod 2).

Proof We have (−1)l(ww′) = det(ww′) = detw detw′ = (−1)l(w)+l(w′).

1.5 Definition If w ∈W , then let

N(w) =
{
a ∈ Φ+ |wa ∈ Φ− }

.

Define also n(w) = |N(w)|, the cardinality of the set N(w). (It is shown below that the set
N(w) is always finite.)
1.6 Lemma If a ∈ Π is a simple root, then N(a) = { ra }, in particular

ra(Φ+\ { a }) = Φ+\ { a } .

Proof As raa = −a it remains to show that

ra(Φ+\ { a }) = Φ+\ { a } .
Assuming that c ∈ Φ+\ { a }, then c =

∑
Π λbb where λb ≥ 0 for all b, and there is a b0 �= a

such that λb0 > 0, as the only multiples of a in Φ are ±a. Then

rac = c− 2B(a, c)a

= (λa − 2B(a, c))a + λb0b0 +
∑
Π′

λbb.

Now λb0 > 0 and so rac ∈ Φ+ and is clearly not a.

1.7 Lemma If w ∈W and a ∈ Π, then

(a) If wa ∈ Φ+, then N(wra) = raN(w) ∪̇ { a }.
(b) If wa ∈ Φ−, then N(wra) = ra(N(w)\ { a }).
(c) If w−1a ∈ Φ+, then N(raw) = N(w) ∪̇ {

w−1a
}
.

(d) If w−1a ∈ Φ−, then N(raw) = N(w)\{−w−1a
}
.

(Here the symbol ∪̇ stands for the disjoint union.)
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Proof Let w ∈W and a ∈ Π. If wa ∈ Φ+ then a /∈ N(w), while wraa = w(−a) = −wa ∈ Φ−,
and so a ∈ N(wra). By Lemma 1.6, raN(w) ⊂ Φ+ and wra(raN(w)) = wN(w) ⊂ Φ− and
so raN(w) ⊂ N(wra). Now, if b ∈ N(wra) and b �= a, then b ∈ Φ+ but w(rab) = wrab ∈ Φ−

and so rab ∈ N(w). Hence
N(wra) = raN(w) ∪̇ { a } .

A similar argument proves the second claim.
Looking at the last claim, we have been given that w−1a ∈ Φ− and so −w−1a ∈ Φ+,

but w(−w−1a) = −a ∈ Φ−. Thus −w−1a ∈ N(w). Notice however, that

raw(−w−1a) = ra(−a) = a ∈ Φ+

and so −w−1a /∈ N(raw). Now if b ∈ N(raw), then rawb = −c ∈ Φ− where c ∈ Φ+. Observe
that c �= a, since c = a would imply that b = w−1a, contrary to the fact that w−1a ∈ Φ− and
b ∈ Φ+. Thus

wb = −rac ∈ Φ−.

Therefore b ∈ N(w). Now b �= −w−1a and so we have

N(raw) ⊆ N(w)\{−w−1a
}
.

The reverse inclusion is clear, since if b ∈ N(w)\{−w−1a
}
, then

rawb ∈ ra(Φ−\ { a }) = Φ−\ {−a }

and so b ∈ N(raw). Thus:
N(raw) = N(w)\{−w−1a

}
.

A similar argument proves the third claim.

Suppose that w = r1r2 . . . rt, where l(w) = t. Using Lemma 1.7, if we build up N(w)
starting from N(r1), then

N(r1r2) ⊆ r2N(r1) ∪̇ { a2 } = { r2a1, a2 }

where ai is the simple root associated with the reflection ri. An induction proof completes
the proof of the following.
1.8 Corollary If w ∈W , then n(w) ≤ t = l(w). In particular N(w) is always a finite set.

The following is Theorem 1.7 of [Hum90], Part 3 being called the Deletion Condition
there.
1.9 Theorem Suppose that w = r1r2 . . . rt and n(w) < t. Then we can find 1 ≤ i < j ≤ t
such that

(1) ai = ri+1 . . . rj−1aj .

(2) ri+1ri+2 . . . rj = riri+1 . . . rj−1.

(3) w = r1 . . . r̂i . . . r̂j . . . rt.

As before ri denotes the reflection along the simple root ai.

Proof Following the steps in the proof of Corollary 1.8, it can be seen that if n(w) < t, then
we can find a j such that r1r2 . . . rj−1aj ∈ Φ−. Now aj ∈ Φ+ and so we can find an index i
such that

ri+1 . . . rj−1aj ∈ Φ+

riri+1 . . . rj−1aj ∈ Φ−.

But N(ri) = { ai } and so
ai = ri+1 . . . rj−1aj .
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It is easily seen that wrvw−1 = rwv and so

(ri+1 . . . rj−1)rj(rj−1 . . . ri+1) = rri+1...rj−1aj
= rai

= ri.

Thus ri+1 . . . rj = ri . . . rj−1 and therefore ri . . . rj = ri+1 . . . rj−1. Using this equation in the
expression for w:

w = r1 . . . (ri . . . rj) . . . rt
= r1 . . . (ri+1 . . . rj−1) . . . rt
= r1 . . . r̂i . . . r̂j . . . rt.

1.10 Corollary If w ∈W , then n(w) = l(w).
Proof If l(w) = t, then by the above we cannot have n(w) < t or else we can shorten a
reduced expression for w as a product of simple reflections. Thus n(w) ≥ l(w) and hence, by
Corollary 1.8,

n(w) = l(w).

1.11 Lemma The Coxeter group W is finite if and only if the associated root system, Φ,
is also finite.

Proof If W is finite then the set of simple reflections is finite, and so Π is finite. As
Φ = {wa |w ∈W,a ∈ Π } it follows that Φ is also finite.

Conversely, suppose that Φ is finite. For w ∈W define ρw ∈ Sym(Φ) by

ρw : a 
→ wa.

If ρw = ρw′ , then w−1w′ fixes all roots a ∈ Φ, in particular all positive roots. Thus

l(w−1w′) = n(w−1w′) = 0

and so w−1w′ = 1. Thus ρ : W → Sym(Φ) is injective. Hence, if Φ is finite,

|W | ≤ |Sym(Φ)| = |Φ|!.

For each I ⊆ Π we define WI = gp〈{ ra | a ∈ I }〉; these subgroups are called the
standard parabolic subgroups of W . Clearly WI preserves the subspace VI spanned by I;
furthermore it acts on this subspace as a Coxeter group with root system ΦI = Φ ∩ VI . A
parabolic subgroup of W is any subgroup of the form wWIw

−1 for some w ∈W and I ⊆ Π.
To save space in our later calculations we shall write s(θ) for sin θ and c(θ) for cos θ.

We shall also use πk for π/k (for any positive integer k) and u · v for B(u, v). It is readily
checked that if I = {a, b} is a two-element subset of Π, then ΦI consists of all vectors v of
the form

s((h− 1)πm)
s(πm)

a1 +
s
(
hπm

)
s(πm)

a2, (1.12)

where h ∈ Z. Observe that v · a1 = − c
(
hπm

)
and v · a2 = c((h − 1)πm). Replacing h by

m− h+ 1 gives the equivalent formula

s
(
hπm

)
s(πm)

a1 +
s((h − 1)πm)

s(πm)
a2, (1.13)

where now v · a = c((h − 1)πm) and v · b = − c
(
hπm

)
. The positive roots in ΦI are the

vectors of the form 1.12 or 1.13 with 1 ≤ h ≤ m. We see that positive numbers appearing as
coefficients of a or b in roots v ∈ Φ+

{a,b} are never less than 1. This result in fact extends to
the entire root system. First a technical lemma.
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1.14 Lemma Suppose that v ∈ Φ+ and w = r1r2 . . . rl has minimal length such that
w−1v = b ∈ Π. Then ri . . . rlb is positive for all i.

Proof Suppose, to the contrary, that rj . . . rlb ∈ Φ− for some j. Then we can find i such
that ri+1 . . . rlb ∈ Φ− but x = ri . . . rlb ∈ Φ+. So, x ∈ Φ+ while rix ∈ Φ−, and therefore
x ∈ N(ri) = { ai }. Hence

ai = (r1 . . . ri−1)−1x ∈ Π

which contradicts the minimality of l.

1.15 Lemma (Brink [Bri98]) Suppose that v =
∑

a∈Π λaa ∈ Φ+. For each a ∈ Π, if
λa > 0, then λa ≥ 1.
Proof Choose w with minimal length such that w−1v = b ∈ Π, say l(w) = l. We prove this
lemma by induction on l.

If l = 0, then v ∈ Π and the result is trivial. If l = 1, then

v = rab = b− 2(a · b)a

where a · b = −1 or − cos(πm) for some m ≥ 2. (Note that this formula corresponds to h = 2
in 1.12.) If m = 2, then rab = b. Otherwise the coefficient of a in v is either 2 or

2 cos(πm) ≥ 2 cos π3 = 1.

Assuming that l ≥ 2, let r1r2 . . . rl be a reduced expression for w. Thus v = r1r2 . . . rlb. By
Lemma 1.14, r2 . . . rlb ∈ Φ+, say r2 . . . rlb =

∑
a∈Π µaa. By induction the µ’s are all zero or

at least 1. Then

v = r1r2 . . . rlb

= r1
∑
a∈Π

µaa

=
∑
a∈Π

µar1a.

The only coefficient we need to check is the coefficient of a1 which is

µa1 +
∑

a∈Π−{a1}

(− 2(a · a1)
)
.

Now µa1 is zero or at least 1, as are all the terms of the form −2(a · a1), and so the result
follows.

1.16 Definitions In a Coxeter group W let Ref(W ) denote the set of reflections in W .
Clearly symmetries of the Coxeter diagram give rise to automorphisms which permute

the simple reflections; we call these graph automorphisms. Let Gr(W ) denote the group of
graph automorphisms of W .
1.17 Lemma Let W be a rank n Coxeter group with simple roots Π. If I and J are
disjoint subsets of Π such that no edge of the Coxeter diagram joins a root in I with a root
in J , then

Ref(WI∪J ) = Ref(WI)∪̇Ref(WJ ).
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Proof It is clear that
Ref(WI) ∪ Ref(WJ ) ⊆ Ref(WI∪J ).

Suppose that r is a reflection in WI∪J . Then r is conjugate to a simple reflection by
Lemma 1.1. Without loss we can find w ∈WI∪J and ai ∈ I such that

r = wriw
−1.

Now WI∪J = WI ×WJ and so w = wiwj = wjwi for some wi ∈WI and wj ∈WJ . Thus

r = wriw
−1

= wiwjriw
−1
j w−1

i

= wiriw
−1
i ∈WI .

Hence r is a reflection in WI .
Now if r ∈ Ref(WI)∩Ref(WJ ), then following the above proof we can find ri, wi ∈WI

and rj , wj ∈WJ such that
wiriw

−1
i = r = wjrjw

−1
j

and hence ri = w−1
j riwj = w−1

i rjwi = rj , which contradicts the fact that I and J are disjoint.

1.18 Corollary If W is a rank n Coxeter group, I ⊂ Π and we can find a simple root
a ∈ Π\I such that a · b = 0 for all b ∈ I, then

Ref(WI∪{a}) = Ref(WI)∪̇{ra}.

§1.2 Longest Elements

Let W be a finite Coxeter group and w ∈ W have maximal length in W . If N(w) �= Φ+,
then we can find a simple root a /∈ N(w). (If Π ⊂ N(w), all positive linear combinations
of Π which are roots will be in N(w), by Lemma 1.1, and this means Φ+ ⊂ N(w).) Thus
wa ∈ Φ+ and so, by Lemma 1.7, l(wra) = n(wra) = n(w) + 1 = l(w) + 1, which contradicts
the maximality of l(w). Hence if w has maximal length, then l(w) = |Φ+|.

Furthermore, if u ∈ W is any element, then using an appropriate simple root at each
step we may find an element v ∈W such that uv has maximal length and l(uv) = l(u)+ l(v).
We denote by w0 the element of maximal length in the finite Coxeter group, W .
1.19 Lemma The element of maximal length in a finite Coxeter group is uniquely defined
and is an involution.

Proof Suppose that u, v ∈ W have maximal length. Then N(u) = N(v) = Φ+. If a ∈ Π,
then va ∈ −Φ+ and uva ∈ Φ+. Thus l(uv) = 0 and therefore uv = 1. If we note that
l(u−1) = l(u) is also maximal we can see that u−1v = 1 implying that u = v. Similarly, if w0

is the (unique) element of maximal length, then w0w0 = 1, and therefore w0 is an involution.

1.20 Lemma If W is finite with longest element w0, then for w ∈W

l(ww0) = l(w0) − l(w).
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Proof We have seen that for any w ∈ W we can find a u ∈ W such that uw = w0 = w−1
0

and l(w0) = l(u) + l(w). But, then

l(ww0) = l(u−1) = l(u) = l(w0) − l(w).

1.21 Definition If W is a possibly infinite Coxeter group and I ⊂ Π such that the
parabolic subgroup WI is finite, then we denote the longest element of WI by wI .

Now consider the the irreducible finite Coxeter groups.

An: Let W be a Coxeter group of type An with diagram

1 2 3 n−1 n

. . .

It is well known that the number of positive roots is n(n + 1)/2. Let wi = r1r2 · · · ri where
rj is the reflection in the hyperplane perpendicular to the simple root aj . Then

w0 = wnwn−1 · · ·w2w1.

Observe that this expression for w0 has length n(n+ 1)/2 which is equal to |Φ+|. Therefore
this will be a reduced expression for w0 if it does equal w0. Note that if j < i − 1, then
wjai = ai, thus

wnwn−1 · · ·w2w1ai = wnwn−1 · · ·wi−1ai

provided i > 1. Now

wi−1ai = r1r2 · · · ri−1ai

= r1r2 · · · ri−2(ai−1 + ai)
= a1 + a2 + · · · + ai

by induction, and therefore
wiwi−1ai = wi(a1 + · · · ai)

= r1r2 · · · ri(a1 + · · · + ai)
= r1 · · · ri−1(a1 + · · · ai−1)
= r1a1 (by induction)
= −a1.

Thus wnwn−1 . . . w1ai = wnwn−1 · · ·wi+1ai. Note that this is also valid for i = 1. Then

wi+1(−a1) = r1r2(−a1)
= r1(−a1 − a2)
= −a2

and another induction will show that wn · · ·w2w1ai = −an−i+1. Therefore wn · · ·w1 does
indeed send each positive root to a negative root and so must equal w0. Unless n = 1 the
longest element w0 is not central, in fact conjugation by w0 is the graph automorphism that
interchanges ri and rn−i+1.

Bn: Let W be a Coxeter group of type Bn with diagram

4

1 2 3 n−1 n

. . .
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In this case |Φ+| = n2. This time we let wi = riri−1 · · · r2r1r2 · · · ri. Observe that this is the
reflection along the root bi = riri−1 · · · r2(a1). A short calculation shows that

bi = a1 +
√

2a2 + · · · +
√

2ai.

Now if i > j > 1 we find that

bi · bj = (bj +
√

2aj+1 + · · · +
√

2ai) · bj
= 1 + (

√
2aj+1 + · · · +

√
2ai) · bj

= 1 + (
√

2aj+1) · (
√

2aj)
= 1 − 1 = 0,

and a similar calculation also shows that bi ·b1 = 0 for i > 1. So the n roots b1, b2, . . ., bn form
an orthonormal basis for V , and it follows that wnwn−1 · · ·w1, the product of the reflections
along the bi, is the negative of the identity transformation on V . So wnwn−1 · · ·w1(a) = −a
for all positive roots a, and it follows that wnwn−1 · · ·w1 = w0, the longest element. Fur-
thermore, the given expression for wi has length 2i − 1, and so the resulting expression for
w0 has length

∑n
i=1(2i − 1) = n2 = |Φ+|. So this expression is reduced. In these groups w0

is central.

Dn: Let W be a Coxeter group of type Dn with diagram

1

2

3 4 n−1 n

. . .

In this case |Φ+| = n(n−1). Let wi = riri−1 · · · r2r1r3r4 · · · ri for i > 2, w2 = r2 and w1 = r1
let w′

0 = wnwn−1 · · ·w1. Then the following lemma holds.
1.22 Lemma Given the notation from above, w′

0 acts as follows on the simple roots

a1 
→
{−a1 if n is even
−a2 if n is odd

a2 
→
{−a2 if n is even
−a1 if n is odd

aj 
→ −aj if j > 2.

Proof We first prove that wi interchanges a1 and a2 if i > 2 and fixes aj for i > j > 2.

wia1 = ri · · · r2r1r3a1

= ri · · · r2r1(a1 + a3)
= ri · · · r3r2a3

= ri · · · r3(a2 + a3)
= ri · · · r4a2

= a2.

As w2
i = 1 we can also see that wia2 = a1. If i > j > 2, then

wiaj = ri · · · r3r2r1r3 · · · rj+1aj

= ri · · · r1 · · · rj(aj + aj+1)
= ri · · · r1 · · · rj−1aj+1

= ri · · · rjaj+1

= ri · · · rj+1(aj + aj+1)
= ri · · · rj+2aj

= aj .
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Now we look at the cases wiai and wi−1ai, where i > 3.

wi−1ai = ri−1 · · · r1 · · · ri−1ai

= ri−1 · · · r1 · · · ri−2(ai−1 + ai)
= ri−1ai + ri−1wi−2ai−1

= ai + ai−1 + (ai−1 + 2ai−2 + · · · + 2a3 + a2 + a1) by induction
= ai + 2ai−1 + · · · + 2a3 + a2 + a1.

If we now observe that ai · (ai + 2ai−1 + · · · + 2a3 + a2 + a1) = 0, then

wiai = riwi−1riai

= −riwi−1ai

= −wi−1ai

wiwi−1ai = −ai.and hence

If follows that if i > 3

wnwn−1 · · ·w1ai = wn · · ·wiwi−1ai

= −wn · · ·wi+1ai

= −ai.

The same is true for i = 3, as is readily checked. Finally note that

wnwn−1 · · ·w2w1a1 = −wn · · ·w3a1

= −wn · · ·w4a2

and an induction proof finishes this argument. Similar calculations apply for a2.

Thus w′
0 = w0 is central if n is even, while if n is odd, then conjugation by w0 is the

graph automorphism that interchanges r1 and r2. We shall see in Chapter 2 that when n is
even this graph automorphism is an outer automorphism. A simple calculation will confirm
that the expression given for w0 is reduced.

I2(m): Let W be a Coxeter group of type I2(m) with diagram

m

1 2

In all cases a reduced expression for the longest element is r1r2 · · · where the product extends
to m terms. If m is even, then this element is the half-turn η and so is central. If m is
odd, then r1r2 · · · is a reflection and so is not central, in fact conjugation by w0 is the graph
automorphism that interchanges r1 and r2.

The longest element and its effect upon the simple roots is merely stated for the
remaining finite Coxeter groups.

E6: Let W be a Coxeter group of type E6 with diagram

1 2 3

4

5 6



10 Longest Elements

The longest element has length 36 and can be written, for example, as:

w0 = r6r1r2r1r3r2r1r4r3r2r1r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1r4r3r2r5r3r4r6r5r3r2,

w0a1 = −a6

w0a2 = −a5

w0a3 = −a3

w0a4 = −a4

w0a5 = −a2

w0a6 = −a1.

Thus conjugation by w0 induces the obvious graph automorphism.

E7: Let W be a Coxeter group of type E7 with diagram

1 2 3

4

5 6 7

The longest element has length 63 and can be written as:

w0 = r7r1r2r1r3r2r1r4r3r2r1r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1

× r7r6r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1r7r6r5r3r2r4r3r5r6,

w0 is central.

E8: Let W be a Coxeter group of type E8 with diagram

1 2 3

4

5 6 7 8

The longest element has length 120 and can be written as:

w0 = r8r1r2r1r3r2r1r4r3r2r1r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1

× r7r6r5r3r2r1r4r3r2r5r3r4r6r5r3r2r1r7r6r5r3r2r4r3r5r6r7r8r7r6r5r3r2r1

× r4r3r2r5r3r4r6r5r3r2r1r7r6r5r3r2r4r3r5r6r7r8r7r6r5r3r2r1r4r3r2r5r3r4

× r6r5r3r2r1r7r6r5r3r2r4r3r5r6r7,

w0 is central.

F4: Let W be a Coxeter group of type F4 with diagram

4

1 2 3 4

The longest element has length 24 and can be written as:

w0 = r4r1r2r1r3r2r1r3r2r3r4r3r2r1r3r2r3r4r3r2r1r3r2r3,

w0 is central.
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H3: Let W be a Coxeter group of type H3 with diagram

5

1 2 3

The longest element has length 15 and can be written as:

w0 = r3r1r2r1r2r1r3r2r1r2r1r3r2r1r2,

w0 is central.

H4: Let W be a Coxeter group of type H4 with diagram

5

1 2 3 4

The longest element has length 60 and can be written as:

w0 = r4r1r2r1r2r1r3r2r1r2r1r3r2r1r2r3r4r3r2r1r2r1r3r2r1r2r3r4r3r2r1r2r1r3r2r1r2

× r3r4r3r2r1r2r1r3r2r1r2r3r4r3r2r1r2r1r3r2r1r2r3,

w0 is central.

§1.3 Finite Subgroups of Infinite Coxeter Groups

If α is an automorphism of an infinite Coxeter group, W , then the image of a finite subgroup
of W is again finite. In particular a maximal finite subgroup of W must be mapped to a
maximal finite subgroup. In this section we characterise these subgroups.

Suppose that W is any Coxeter group with Π as the set of simple roots. We shall make
use of the following result, which is due to Tits and appears in [Bou68], Exercise 2d, p. 130.
1.23 Lemma If W is a Coxeter group and H ≤W is finite, then H is contained in a finite
parabolic subgroup of W .

Let V ∗ be the dual space of V and { δa | a ∈ Π } the basis of V ∗ such that for all a, b ∈ Π

δa(b) =
{

1 if a = b
0 if a �= b.

For each f ∈ V ∗ define
ζ(f) =

{
v ∈ Φ+ | f(v) < 0

}
,

and let C be the set of all f ∈ V ∗ for which ζ(f) = ∅; equivalently,

C = { f ∈ V ∗ | f(a) ≥ 0 for all a ∈ Π } .
For each w ∈ W and f ∈ V ∗, define fw : V → R by v 
→ f(wv); this gives a right action of
W on V ∗.
1.24 Lemma Let f ∈ V ∗ with |ζ(f)| <∞. Then fw ∈ C for some w ∈W .

Proof Choose w ∈W with |ζ(fw)| minimal, and let f ′ = fw. Assume, for a contradiction,
that ζ(f ′) �= ∅; that is, f ′(v) < 0 for some v ∈ Φ+. Writing v =

∑
a∈Π λaa, we see that

f(v) =
∑
a ∈ Πλaf(a), and since the coefficients λa are all non-negative we must have

f(a) < 0 for at least one a ∈ Π. Now

(f ′ra)(a) = f ′(raa) = f ′(−a) = −f ′(a) > 0,

and so a /∈ ζ(fa), writing fa for f ′ra. It follows that rac ∈ Φ+ for all c ∈ ζ(fa), and
furthermore rac ∈ ζ(f ′) since

f ′(ra)(c) = (fa)(c) < 0.

Therefore v 
→ rav is a one to one map from ζ(fa) to ζ(f ′), and as a is not in the image of
this map we deduce that |ζ(fa)| < |ζ(f ′)|, contradicting the minimality of |ζ(fw)|.
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1.25 Lemma Let f ∈ C and define J = { a ∈ Π | f(a) = 0 } . Then WJ is the stabilizer of
f in W .

Proof Let S = {w ∈W | fw = f }, the stabilizer of f . If a ∈ J , then for all v ∈ V ,

(fra)(v) = f(rav) = f(v − 2(v · a)a) = f(v) − 2(v · a)f(a) = f(v),

and so fra = f . Thus WJ ⊆ S.
To prove the reverse inclusion, we use induction on l(w) to show that if w ∈ S then

w ∈ WJ . If l(w) = 0, then w ∈ WJ trivially. If w �= 1, let w′ ∈ W and a ∈ Π be such that
w = w′ra and l(w′) = l(w) − 1. This tells us, by Lemma 1.7, that w′a ∈ Φ+. Then

0 ≤ f(a) = (fw)(a) = f(wa) = f(w′raa) = −f(w′a) ≤ 0

as w′a ∈ Φ+ and f ∈ C. Thus f(a) = 0; that is a ∈ J . Now by the first part of the proof we
have ra ∈ S, and so

fw′ = (fw)ra = fra = f.

Hence w′ ∈WJ by induction, and it follows that w = w′ra ∈WJ .

Proof (of 1.23) We use induction on |Π|. If |W | <∞ we have nothing to prove; so suppose,
without loss of generality, that W is infinite. Let f =

∑
a∈Π δa, so that f(a) = 1 for all a ∈ Π

and thus f(v) > 0 for all v ∈ Φ+, and define f ′ =
∑

h∈H fh. Note that f ′h = f ′ for all
h ∈ H. Define also A =

⋃
h∈H N(h), observing that A is finite, since H is finite and N(h) is

finite for all h ∈ H (as |N(w)| = l(w) for w ∈W , by Corollary 1.10).
Let v ∈ Φ+\A. Then hv ∈ Φ+ for all h ∈ H and so

f ′(v) =
∑
h∈H

(fh)(v) =
∑
h∈H

f(hv) > 0.

Hence ζ(f ′) ∩ (Φ+\A) = ∅; that is ζ(f ′) ⊆ A. In particular, ζ(f ′) is finite. By Lemma 1.24

there is a w ∈W such that f ′ = f ′′w for some f ′′ ∈ C. Then for all h ∈ H,

f ′′whw−1 = (f ′′w)hw−1 = f ′hw−1 = (f ′h)w−1 = f ′w−1 = f ′′.

Thus, by Lemma 1.25, whw−1 ⊆WJ , where

J = { a ∈ Π | f ′′(a) = 0 } .

Now Φ+ is infinite as W is infinite; so Φ+\A �= ∅, and it follows in particular that f ′ �= 0,
since f(v) > 0 whenever v ∈ Φ+\A. Hence f ′′ �= 0 also and thus J �= Π. Now by induction
there is I ⊂ J and u ∈W such that WI is finite and u(whw−1)u−1 ⊆WI .

One immediate consequence of Lemma 1.23 is that every maximal finite subgroup of a
Coxeter group is parabolic.

The following can be found as Theorem 2.7.4 of [Car85].
1.26 Lemma (Kilmoyer) Let I, J ⊆ Π and suppose that d ∈ W is the minimal length
element of WIdWJ . Then WI ∩ dWJd

−1 = WK , where K = I ∩ dJ .

1.27 Corollary The intersection of a finite number of parabolic subgroups is a parabolic
subgroup.

Proof If H and K are parabolic subgroups of W , then we can find w ∈W such that w−1Hw
is a standard parabolic subgroup of W . Using the above lemma we can see that w−1(H∩K)w
is a standard parabolic subgroup of W and hence H ∩K is a parabolic subgroup. Induction
completes the proof.
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1.28 Corollary Let I, J ⊂ Π and t ∈W . Then for some u ∈WI ,

WI ∩ tWJt
−1 = uWKu

−1

where K = I ∩ dJ ⊆ Π, with d the minimal length element of WItWJ .

Proof We can write t = udv where u ∈WI and v ∈WJ , and d is the minimal length element
in WItWJ . By Lemma 1.26

WI ∩ tWJ t
−1 = u(WI ∩ dWJd

−1)u−1 = uWKu
−1.

Suppose that I ⊆ Π is such that |WI | is finite while WJ is infinite for all J with
I � J ⊆ Π. Then WI is a maximal finite standard parabolic subgroup of W .

1.29 Lemma Let WI be a maximal finite standard parabolic subgroup. Then WI is not
conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof Suppose that WI ⊆ tWKt
−1 for some d ∈W and some K ⊆ Π such that WK is finite.

We may assume that t is of minimal length in WItWK , and by Corollary 1.28 it follows that
I ⊆ tK. Since WI is a maximal finite standard parabolic subgroup, t �= 1. So we may choose
a simple root e such that t−1e = f is negative. As t has minimal length in tWK it takes
positive roots in the root system of WK to positive roots. But −f is a positive root while
t(−f) = −e is negative, and we conclude that f is not in the root system of WK . Thus when
f = t−1e is expressed as a linear combination of simple roots some g /∈ K appears with a
negative coefficient. It follows that if h is any positive root in the root system of WI∪{e}
which is not in the root system of WI , then t−1h involves g with a negative coefficient. But
WI∪{e} is infinite, while WI is not. So t−1 takes an infinite number of positive roots to
negative roots, and hence has infinite length, which is a contradiction.

1.30 Corollary If W is any infinite Coxeter group, then all maximal finite standard
parabolic subgroups of W are maximal finite subgroups of W .

Proof If WI is a maximal finite standard parabolic subgroup but not a maximal finite
subgroup then by Lemma 1.23 WI ≤ tWJt

−1 for some t ∈ W and some J ⊆ Π with
|WI | < |WJ | <∞. But this contradicts Lemma 1.29.

1.31 Corollary If W is an infinite Coxeter group, H is a subgroup of W which can be
written as the intersection of a finite collection of maximal finite subgroups and α ∈ Aut(W ),
then α(H) is a parabolic subgroup of W .

Proof From Corollary 1.30 if H is the intersection of a finite collection of maximal finite
subgroups, then α(H) is the intersection of a finite collection of parabolic subgroups. The
result follows from Corollary 1.27.

1.32 Corollary If W is an infinite Coxeter group, α ∈ Aut(W ) and ri is a simple reflection
such that 〈ri〉 can be written as an intersection of maximal finite subgroups, then α(ri) is a
reflection.

Proof By the above α〈ri〉 is a parabolic subgroup of W of order 2.

Thus, if every reflection is conjugate to a simple reflection, ri, such that 〈ri〉 can
be written as an intersection of maximal finite subgroups, then every automorphism of W
preserves reflections.
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§1.4 Automorphisms That Preserve Reflections

Let W be a Coxeter group with set of simple roots Π, Coxeter diagram Γ and let α be an
automorphism of W such that α preserves Ref(W ), the set of reflections in W .
1.33 Lemma Let W be a Coxeter group of finite rank and α an automorphism of W that
preserves reflections, then

α
(
Ref(W )

)
= Ref(W ),

and therefore α−1 also preserves reflections.

Proof As each reflection is conjugate to a simple reflection, by Lemma 1.1, if W has rank
n, then there are at most n conjugacy classes of reflections. Say

Ref(W ) = C1∪̇C2∪̇ · · · ∪̇Cm.

If α is an automorphism of W with the property that α(r) ∈ Ref(W ) for all r ∈ Ref(W ), then
it is clear that for each i ∈ { 1, 2, . . . ,m } there is a j ∈ { 1, 2, . . . ,m } such that α(Ci) = Cj .
As there are only finitely many conjugacy classes of reflections α merely permutes them.

Given a reflection-preserving automorphism α, define a function φα : Π → V as follows.
If a ∈ Π, then α(ra) = rx for some x ∈ Φ ⊂ V , let φα(a) = x or −x making the choice
arbitrarily at present. If ai, aj ∈ Π and the bond joining the corresponding vertices in Γ is
labelled with an m, then (rirj)m = 1. If φα(ai) = ±xi and φα(aj) = ±xj , then rxi

rxj
also

has order m and hence

φα(ai) · φα(aj) = (±xi) · (±xj) = c(lπm)

for some l coprime to m.
1.34 Lemma If Γ is a forest, then we can choose signs so that φα is a function such that

φα(ai) · φα(aj) ≤ 0

for all simple roots ai �= aj .

Proof By induction on the rank of W . If W has rank 2, then we may choose the sign of
φα(a1) at will, and then we can choose the sign of φα(a2) so that

φα(a1) · φα(a2) ≤ 0.

If W is any Coxeter group with Γ a forest, then we choose a vertex, ai say, of degree
one. Look at the (parabolic) subgroup WΠ\{ai}; by induction we may choose φα such that
φα(aj) · φα(ak) ≤ 0 for all aj , ak �= ai. If ai is joined to aj , then we may choose the sign of
φα(ai) so that

φα(ai) · φα(aj) ≤ 0

without affecting any of the other inner products.

Much of the time it will not be true that φα(ai) · φα(aj) = ai · aj even if they agree
in sign. However, if m = 2, 3, 4 or 6, then the only numbers l ∈ { 1, 2, . . . ,m− 1 } coprime
to m are l = 1 and l = m − 1. If we note that c

(
(m − 1)πm

)
= − c(πm) then we see that

φα(ai) · φα(aj) = ± c(πm). Hence we deduce the following:
1.35 Corollary If W is a Coxeter group whose graph Γ is a forest with labels in the set
{ 2, 3, 4, 6 }, then we can choose φα so that

φα(ai) · φα(aj) = ai · aj

for all simple roots ai and aj .

We will see that if the labels are not all from the set { 2, 3, 4, 6 }, then B is not necessar-
ily preserved. For Coxeter groups of typesH3 andH4 in particular we will find automorphisms
that preserve the signs of the inner products but

φα(a1) · φα(a2) = − c (2π5) =
1 −√

5
4

instead of the original value of − c(π5) = (−1−√
5)/4. In fact these are the only possibilities

we need to consider if m = 5.
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1.36 Definition From now on any label in a Coxeter diagram which does not come from
the set { 2, 3, 4, 6 } will be called unusual. Furthermore the phrase inner by graph will mean
that an automorphism lies in the subgroup of Aut(W ) generated by the inner and graph
automorphisms. The subgroup of inner automorphisms is a normal subgroup of Aut(W ),
therefore any inner by graph automorphism can be written as the product of an inner and
a graph automorphism. Finally we will denote by R(W ) the subgroup of Aut(W ) consisting
of all automorphisms that preserve reflections.

Now Π is a basis for V and so φα can be extended to a linear map V → V . If
φα(ai) · φα(aj) = ai · aj for all ai, aj ∈ Π, then φα is an orthogonal transformation.
1.37 Lemma If α is an automorphism of W that preserves Ref(W ) and φα is defined as
above so that

φα(ai) · φα(aj) = ai · aj

for all ai, aj ∈ Π, then α(w) = φαwφ
−1
α for all w ∈W .

Proof It suffices to prove this when w is a simple reflection, since the general case then
follows by a straightforward induction on l(w). Now if a ∈ Π and v ∈ V we find that

(
φαraφ

−1
α

)
(v) = φα

(
ra
(
φ−1

α (v)
))

= φα

(
φ−1

α (v) − 2
(
a · φ−1

α (v)
)
a
)

= v − 2
(
φα(a) · v)φα(a)

= rφα(a)(v)
= α(ra)(v)

by the definition of φα. Since this holds for all v ∈ V we conclude that α(ra) = φαraφ
−1
α , as

desired.

Note If we have defined φα to satisfy the conditions of Lemma 1.37, then −φα also satisfies
those conditions.

The next result is Theorem 4.1 in [HRT97], the statement of which requires the fol-
lowing definition.
1.38 Definition Given a Coxeter group W with associated vector space V and bilinear
form B a subset P ⊂ V is a root basis (relative to B) if

(i) for all a, b ∈ P

B(a, b) = − cπmab
if mab �= ∞

B(a, b) ≤ −1 if mab = ∞

(ii) the zero vector is not contained in the set

{∑
a∈P

λaa
∣∣λa ≥ 0 for all a, λa �= 0 for some a

}
.

In particular, notice that the set of simple roots of a Coxeter group forms a root basis which
is in fact linearly independent.
1.39 Theorem (Howlett, Rowley, Taylor [HRT97]) Let Φ1 and Φ2 be irreducible root
systems spanning the spaces V1 and V2 with root bases Π1 and Π2 respectively. Suppose that
ϕ : V1 → V2 maps Φ1 bijectively onto Φ2 and takes the bilinear form on V1 to that of V2.
Then Π2 = ±ϕwΠ1 for some w ∈W1.

To deal with the problems associated with reducible Coxeter groups we make the
following definitions.
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1.40 Definition If W is a Coxeter group with r1 and r2 any two simple reflections, then
we say that there is a chain joining r1 and r2 if there is a path in the Coxeter diagram of
W joining the node corresponding to r1 to the node corresponding to r2. Furthermore, if
r, r′ ∈ Ref(W ), then we say that there is a chain joining r and r′ if there are simple roots
r1 and r2 such that r is conjugate to r1, r′ is conjugate to r2 and there is a chain joining r1
and r2.

Let W be a Coxeter group of finite rank with diagram Γ, and suppose that the irre-
ducible components of Γ are Γi for 1 ≤ i ≤ m, say Π = L1∪̇L2∪̇ · · · ∪̇Lm is the corresponding
decomposition of Π. Then, by Lemma 1.17

Ref(W ) = Ref(WL1)∪̇ · · · ∪̇Ref(WLm
)

and the following lemma is clear.
1.41 Lemma If r, r′ ∈ Ref(W ), then there is a chain joining r and r′ if and only if
r, r′ ∈ Ref(WLi

) for some i.

1.42 Lemma Let α be an automorphism that preserves Ref(W ) and r, r′ ∈ Ref(W ). Then
there is a chain joining r and r′ if and only if there is a chain joining α(r) and α(r′).
Proof Without loss we may assume that r = r1 and r′ = r2 are simple reflections. Suppose
that r1 and r2 correspond to adjacent nodes in the diagram of W ; then r1 and r2 do not
commute and hence α(r1) and α(r2) are reflections which do not commute. Therefore α(r1)
and α(r2) ∈ Ref(WLi

) for some i, as if they were in different components they would commute.
Hence there is a chain joining α(r1) and α(r2). Induction on the length of the chain joining
r1 and r2 finishes the proof of one of the implications. The reverse implication follows by
applying the same argument to α−1.

1.43 Theorem Let W be a finite rank Coxeter group and suppose that α is an automor-
phism that preserves reflections and we can define φα so that φα(ai) · φα(aj) = ai · aj for all
i and j. Then α is inner by graph.

Proof Using the notation developed above, Π = L1∪̇ · · · ∪̇Lm and

W = WL1 ×WL2 × · · · ×WLm
.

Let α(r1) ∈ Ref(WLt
) where a1 ∈ L1. Then for all ai ∈ L1 there is a chain joining r1 and ri

and so there is a chain joining α(r1) and α(ri) and hence

α(WL1) ⊆WLt
.

If r ∈ Ref(WLt
)\α(WL1), then there is a chain joining r and α(r1) as both lie in WLt

. But
α−1(r) /∈WL1 and so there is no chain joining α−1(r) and r1, a contradiction, by Lemma 1.42.
Thus we have α(WL1) = WLt

.
Looking at φα|ΦL1

the conditions of Theorem 1.39 are satisfied and so there is a
w ∈WL1 such that

ΠLt
= ±φαwΠL1 .

Now we can change the sign of φα on L1 without affecting the value of any inner products
and can therefore ignore the possible negative. Furthermore if Lj �= L1, then wΠLj

= ΠLj
is

fixed elementwise and so preceding α by conjugation by w−1 we may assume

ΠLt
= φαΠL1 .

Repeating this for each component we find that, up to inner automorphisms

φαΠ = Π.

Thus φα is a permutation of Π. Now if the nodes corresponding to ai and aj in Γ are joined
by an edge labelled m, then ai ·aj = − c(πm) and hence φα(ai) ·φα(aj) = − c(πm). Therefore
the nodes corresponding to φα(ai) and φα(aj) must be joined by an edge labelled m. Thus
φα induces an automorphism of Γ and hence a graph automorphism of W . It is easily seen
that this automorphism is α which is therefore a graph automorphism.
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1.44 Proposition If W is a Coxeter group whose Coxeter diagram is a forest with no
unusual labels, then all automorphisms of W that preserve Ref(W ) are the inner by graph
automorphisms.

Proof By Corollary 1.35 and Theorem 1.44.



Chapter 2

Automorphisms of Finite Coxeter Groups

Let W be a finite irreducible Coxeter group, then W has type An, Bn, Dn, E6, E7, E8, F4,
H3, H4 or I2(m). In the following α will be an automorphism of W .
2.1 Lemma If w0, the longest element in the finite Coxeter group W , is central and
l(w0) is even, then

ψ : W →W

w 
→ (w0)l(w)w

defines an automorphism of W which is an outer automorphism except in the case I2(4l).
Proof If w,w′ ∈ W , then by Lemma 1.4 l(ww′) = l(w) + l(w′) + 2k for some integer k. By
Lemma 1.19 w0 is an involution and so w2k

0 = 1. So

ψ(ww′) = (w0)l(ww′)ww′

= (w0)l(w)+l(w′)+2kww′

= (w0)l(w)(w0)l(w′)ww′

= (w0)l(w)w(w0)l(w′)w′

= ψ(w)ψ(w′).

If ψ(w) = ψ(w′), then (w0)l(w)w = (w0)l(w′)w′, and if l(w) + l(w′) is even, it follows that
w = w′. Now suppose that l(w) + l(w′) is odd in which case w0w = w′. By Lemma 1.20

l(w′) = l(w0w) = l(w0) − l(w)
l(w0) = l(w) + l(w′)

and l(w0) is odd, contradicting the hypothesis that l(w0) is even. So ψ is injective and hence
an automorphism. Note that the assumption that l(w0) is even is necessary, since otherwise
we would find that

α(w0) = w
l(w0)
0 w0 = 1,

whence α is not injective.
If a ∈ Φ, then w0raw0 = ra, as w0 is central; so w0a = ±a. Since w0

(
Φ+

)
= Φ− we

deduce that w0(a) = −a for all a, and hence w0 acts as −1 on V . So ψ(ra) = w0ra = −ra
which has an (n − 1)-dimensional −1-eigenspace and a 1-dimensional 1-eigenspace. Thus
ψ(ra) is not a reflection unless n = 2. So we are finished unless W is of type I2(m).

Suppose that W is a Coxeter group of type I2(m); then l(w0) is even if and only if
m = 2k is even. In this case suppose the simple roots are a1 and a2 with corresponding
simple reflections r1 = ra1 and r2 = ra2 . The longest element is

w0 = (r1r2)m/2 = (r1r2)k.

Looking at the effect of ψ on r1 and r2

ψ(r1) = (w0)1r1
= (r1r2)kr1

= (r1r2 · · ·) × ri × (r1r2 · · ·)−1

18
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where r1r2 · · · has k terms and

ri =
{
r1 if k is even and
r2 if k is odd.

Similarly ψ(r2) = (r1r2 · · ·)′rj(r1r2 · · ·)′−1 where (r1r2 · · ·)′ has k − 1 terms and

rj =
{
r2 if k is even and
r1 if k is odd.

Thus, if k is even,

ψ(r1) = (r1r2)k/2r1(r1r2)−k/2

ψ(r2) = (r1r2 · · ·)′r2(r1r2 · · ·)′−1

= (r1r2 · · ·)′r2r2r2(r1r2 · · ·)′−1

= (r1r2)k/2r2(r1r2)−k/2

and ψ is conjugation by (r1r2)k/2. If k is odd a similar calculation shows that ψ is the graph
automorphism that interchanges r1 and r2 followed by conjugation by (r1r2)k/2. Since r1
and r2 are not conjugate (since m is even by Lemma 3.19) this automorphism is outer.

Thus ψ is an outer automorphism in the cases B2k, D2k, E8, F4, H4 and I2
(
2(2l+1)

)
.

2.2 Lemma The automorphism ψ centralizes the inner automorphisms.

Proof Recall that l(w0) is even. Let α be the inner automorphism that conjugates by w,
and look at ψαψ.

ψαψ(ri) = ψα(w0ri)
= ψ

(
ww0riw

−1
)

= w
2l(w)+1+l(w0)
0 w0wriw

−1

= wriw
−1 = αri.

Hence ψαψ = α.

Except for D4 the group of graph automorphisms has order 1 or 2. When it has order 2
we denote the non-identity graph automorphism by γ.
2.3 Proposition Let w ∈ W be an involution, then there is an I ⊆ Π such that w
is conjugate to the longest element, wI in the parabolic subgroup WI . Furthermore wI is
central in WI .

Proof Let L = { a ∈ Π |wa = −a }. First observe that Φ+
L ⊂ N(w) is finite and so, by

Lemma 1.11, WL is finite. Let wL be the longest element in WL. Note also that if a ∈ L,
then

wraw = rwa = r−a = ra

and hence WL centralizes w.
If w = wL, then we are finished. So suppose wLw �= 1 and let a ∈ N(wLw) ∩ Π. If

wa ∈ Φ+, then, as wLwa ∈ Φ− we have wa ∈ N(wL) = Φ+
L , but then

a = w(wa) ∈ wΦ+
L = Φ−

L

which is a contradiction. Hence wa ∈ Φ−. Thus l(wra) = l(w) − 1, by Lemmas 1.7 and 1.10.
If wa = −a, then a ∈ L and so

wLwa = wL(−a) ∈ wLΦ−
L = Φ+

L

a contradiction, implying that wa �= −a. Hence wa = −b for some b ∈ Φ+\ { a }, and

(wra)−1a = rawa = ra(−b) = −rab ∈ Φ−.

Thus l
(
ra(wra)

)
= l(wra) − 1 and hence

l(rawra) = l(w) − 2

and we may proceed by induction on l(w).
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There is, therefore, a one to one correspondence between the conjugacy classes of
involutions in W and the classes of I ⊂ Π such that wI is central in WI .

We now look at the various types of finite irreducible Coxeter groups individually.

§2.1 Type A

If W is a Coxeter group of type An it is well known that W ∼= Symn+1 the symmetric group
on n+ 1 letters. Looking at W in this way, if w is an involution, then w = wk is a product
of k disjoint 2-cycles for some 1 ≤ k ≤ ⌊

n+1
2

⌋
. All such products are conjugate, and so

| cl(wk)| = #products of k disjoint 2-cycles

=
(
n+ 1

2

)(
n− 1

2

)
· · ·

(
n− 2k + 3

2

)
1
k!

=
(
n+ 1
2k

)
1 × 3 × 5 × · · · × (2k − 1)

where cl(wk) is the conjugacy class of wk. Under the isomorphism mentioned the simple
reflections are (12), (23) and so on, up to (n− 1, n). These are all conjugate and so cl(w1) is
the only class of reflections and

| cl(w1)| =
(
n+ 1

2

)
=
n(n+ 1)

2
.

If 2 < 2k < n− 1, then
(
n+1
2k

)
>
(
n+1

2

)
and hence | cl(wk)| > | cl(w1)|.

If 2k = n − 1, then
(
n+1
2k

)
=

(
n+1
n−1

)
=

(
n+1

2

)
, but for k > 1 we have 1.3.5 . . . > 1 and

again | cl(wk)| > | cl(w1)|.
If 2k = n, n even, then

| cl(wk)| =
(
n+ 1
n

)
1 × 3 × · · · × (n− 1).

Thus | cl(wk)| = | cl(w1)| only if n
2

= 1 × 3 × · · · × (n − 1). Ignoring the case n = 2, where
there is only one class of involutions, it is easily shown that n/2 < 1 × 3 × · · · × (n− 1).

If 2k = n+ 1, n odd, then | cl(wk)| = | cl(w1)| only if

n+ 1
2

= 1 × 3 × · · · × (n− 2).

For n > 5 it is easily shown that the right hand side is bigger, while for n = 3 it is smaller.
If n = 5, then we have equality.

Hence, except possibly for n = 5, k = 3, no other class of involutions has the same
size as the class of reflections. Hence, as the graph of An is a tree with no unusual labels
all automorphisms preserve reflections and so are inner by graph, by Proposition 1.44. As
we have seen earlier this graph automorphism is induced by conjugation by w0 the longest
element. Thus

Aut(An) ∼= W/Z(W ) = W,

except possibly for n = 5.
Suppose that W ∼= Sym6 is of type A5. Define ξ : W →W by

ξ : (12) 
→ (13)(24)(56) = σ1

(23) 
→ (16)(25)(34) = σ2

(34) 
→ (14)(23)(56) = σ3

(45) 
→ (16)(24)(35) = σ4

(56) 
→ (12)(34)(56) = σ5.
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Looking at the possible products:

σ1σ2 = (145)(236) σ2σ3 = (153)(264) σ3σ4 = (125)(346)
σ1σ3 = (12)(34) σ2σ4 = (23)(45) σ3σ5 = (13)(24)
σ1σ4 = (15)(36) σ2σ5 = (15)(26) σ3σ6 = (154)(236)
σ1σ5 = (14)(23).

Hence ξ is a homomorphism. Looking now at ξ2.

ξ2(12) = ξ
(
(13)(24)(56)

)
= ξ

(
(23)(12)(23) (34)(23)(34) (56)

)
= (64)(53)(21) (45)(36)(21) (12)(34)(56)
= (12).

Similar calculations for the other simple reflections show that ξ2 = 1 and hence ξ is an outer
automorphism ofW . If α is any automorphism of W , then either the reflections are preserved,
in which case α is inner, or ξα preserves reflections and hence is inner. Hence |Out(W )| = 2.
2.4 Proposition If W is a Coxeter group of type An, then

Aut(W ) ∼= W

if n �= 5, while

Aut(Sym6) ∼= Sym6 �〈ξ〉.
So, for n �= 5, any automorphism of a group of type An maps reflections to reflections,
furthermore any automorphism of A5 that does preserve reflections is inner.

§2.2 Types B and D

In, for example, §2.10 of [Hum90] it is shown that groups of type Bn are isomorphic to
En � Symn where En is an elementary abelian 2-group, say

En = 〈x1〉 × 〈x2〉 × · · · × 〈xn〉

where Symn acts to permute the xi’s. Similarly, groups of type Dn are isomorphic to
E ′

n � Symn where E ′
n is the subgroup of En generated by elements of the form xixj . Fol-

lowing the treatment in [Hum90] the following diagrams show the association of the elements
of the above groups to the simple reflections.

Bn : 4

x1 (12) (23)

(n−2,n−1)

(n−1,n)
. . .

Dn :
(12)x1x2

(12)

(23) (34) (n−1,n)
. . .

Thus elements of a group W of type Bn or Dn have the form σx for some σ ∈ Symn

and x ∈ E?
n where E?

n is En or E ′
n as appropriate. In much of the following Bn and Dn

are treated simultaneously. We assume that n > 2, it being easy to check that for B2 all
automorphisms are inner by graph.
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2.5 Lemma Suppose W is a Coxeter group of type Bn or D2k and let

θ(σx) = σx(w0)m(σ),

where m(σ) is 0 if σ is even and 1 if σ is odd. Then θ is an outer automorphism of W .

Proof In all cases w0, the longest element in W is a central involution and so θ is easily
seen to be a homomorphism. Also θ2 = 1 and hence θ is an automorphism. Finally, θ does
not map reflections to reflections and so is not an inner automorphism.

It is worth noting ψ = θ if W is a group of type Dn (since elements of E ′
n have even

length).
2.6 Lemma Suppose that α is an automorphism of a group of type Bn for n ≥ 3 or Dn

for n > 4. Then α(E?
n) = E?

n.

Proof Suppose that α ∈ Aut(W ) where W is a group of type Bn or Dn; then E?
n � W and

hence α(E?
n) � W . Now if x ∈ E?

n, then x2 = 1 and so, if α(x) = σy, then

1 = α(x2) = (σy)2 = σ2yσy.

Thus σ2 = 1 and yσ = y. As σ2 = 1, σ is either 1 or a product of disjoint 2-cycles.

1. If σ = (ab), then as α(E?
n) � W , for all (cd) ∈ Symn there is a y′ ∈ E?

n such that
(cd)y′ ∈ α(E?

n). In particular, α(E?
n) contains an element of the form (bc)y′, with y′ ∈ E?

n and
c �= a, and we find that

(ab)y(bc)y′ = (ab)(bc)y(bc)y′ = (acb)y′′ ∈ α(E?
n).

But (acb)y′′ has order a multiple of 3, which is a contradiction.

2. If σ = (ab)(cd)(ef)σ′ we can use the same argument with (ac)(be)(df)σ′, where σ′ is 1
or a further product of disjoint 2-cycles.

3. If σ = (ab)(cd) and n > 4 we can again use the same argument, with (ae)(cd).

4. Finally, if W has type B4, we may assume σ = (12)(34). Now y(12)(34) = y and so we
have

y = 1, x1x2, x3x4 or x1x2x3x4.

Given the normality of α(E4), and noting that

(12)(34) = x1

(
(12)(34)x1x2

)
x1

= x3

(
(12)(34)x3x4

)
x3

= x1x3

(
(12)(34)x1x2x3x4

)
x1x3.

we deduce that (12)(34) and (12)(34)x1x2 are both in α(E4). Hence x1x2 ∈ α(En). By
normality again we deduce that α(E4) contains all elements of the form (ab)(cd)xixj . But
since there are 18 such elements this contradicts the fact that |E4| = 16.
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For all σ ∈ Symn write
α(σ) = β(σ)δ(σ)

where β(σ) ∈ Symn and δ(σ) ∈ E?
n. It is easy to see that β is an automorphism of Symn.

Hence, up to inner automorphisms, except possibly when n = 6, we may assume that β = 1.
So α(σx) = σδ(σ)α(x). Now

α(xσ) = α(σxσ)
α(x)α(σ) = σδ(σ)α(xσ)
α(x)σδ(σ) = σδ(σ)α(xσ)

α(x)σ = α(xσ)

for all σ ∈ Symn and x ∈ E?
n.

Considering type Bn, if α(x1) = x1, then

α(xi) = α(x(1i)
1 ) = α(x1)(1i) = xi.

So suppose that for some j �= 1:

α(x1) = xε1
1 x

ε2
2 . . . x1

j . . . x
εn
n .

Then, for i �= 1, j
α(x1) = α(x(ij)

1 ) = xε1
1 . . . xεi

j . . .

and so εi = 1. Hence α(x1) = xε1
1 x2x3 . . . xn.

If α(x1) = x1x2 . . . xn, then α(x2) = α(x1)(12) = α(x1) which is a contradiction. Thus,
if α �= 1, then α(x1) = x̂1x2 . . . xn and hence

α(xi) = x1x2 . . . x̂i . . . xn,

where the x̂i indicates that particular term is absent.
If n is odd and α|En

= 1, then

α(x1x2 . . . xn) = (x̂1x2 . . . xn) . . . (x1x2 . . . x̂n)
= (x1x2 . . . xn)n−1 = 1

contradicting the injectivity of α. Thus if n is odd, α(x) = x.
Now suppose that n is even. Then ψ : w 
→ w(w0)l(w) is an involutory automorphism

of W . Now
xi = (i− 1, i) . . . (23)(12)x1(12)(23) . . . (i− 1, i)

and from our previous discussion of the longest element w0 we see that in fact

w0 = x1x2 · · · xn.

Now l(xi) is odd (since xi is a reflection) and so

ψ(xi) = xi(x1 · · · xn) = α(xi).

It follows that (ψα)(xi) = xi. Furthermore,

ψ(σ) = ψ
(
σδ(σ)

)
= σδ(σ)wl

0

for some l. Thus, after replacing α by ψα we still have β = 1, and we now also have α|En
= 1.
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Thus, given α ∈ Aut(W ) where W is of type Bn, we may assume, up to inner and ψ
that β = 1 and α = 1.

Now look at the type Dn case. Using similar arguments either α(xixj) = xixj or
x1 . . . x̂i . . . x̂j . . . xn. If α �= 1, then

α(x1x2) = x3x4 . . . xn

α(x2x3) = x1x4 . . . xn

α(x1x3) = x2x4 . . . xn.

But then α(x1x3) �= α(x1x2)α(x2x3) which is a contradiction. Hence α = 1 in all cases for
groups of type Dn.

Therefore, up to ψ in the B2k case, we may assume that

α(σx) = σδ(σ)x.

2.7 Lemma Suppose that α ∈ Aut(W ), where W is of type Bn or Dn, such that
α(σx) = σδ(σ)x as above. Then α = θ or the action of δ on the simple reflections in Symn

is either
δ(12) = x1x2 and δ(23) = δ(34) = · · · = 1

or
δ(12) = x1x2w0 and δ(23) = δ(34) = · · · = w0.

Proof Suppose y ∈ E?
n, let αy = iyα, where iy is the inner automorphism of W induced by

y, and write αy(σx) = β′(σ)δ′(σ)α′(x). Then

β′(σ)δ′(σ)α′(x) = yα(σx)y
= σδ(σ)yσyx.

Thus β′ = 1, α′ = 1 and δ′ = δyσy. Following automorphisms with conjugation by elements
of E?

n only affects δ. Also note that as α(1) = 1 we have δ(1) = 1. Now

α(στ) = α(σ)α(τ)
στδ(στ) = σδ(σ)τδ(τ)
δ(στ) = δ(σ)τ δ(τ).

In particular if σ is an involution.

1 = δ(σ2) = δ(σ)σδ(σ)
δ(σ)σ = δ(σ).

Similarly for any 3-cycle (abc), 1 = δ
(
(abc)3

)
= δ(abc)(abc)2 δ(abc)(abc)δ(abc). Thus if

δ(abc) =
∏

xεi
i ,

then
1 = (xaxbxc)εa+εb+εc

∏
i/∈{ a,b,c }

x3εi

i

and so εa + εb + εc ≡ 0 (mod 2) and εi = 0 otherwise. Hence

δ(abc) = 1, xaxb, xaxc or xbxc.
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Suppose that δ �= 1. We first look at the case where δ(abc) �= 1 for some 3-cycle (abc),
without loss we may assume that δ(123) �= 1, and conjugating by x2 or x3 as necessary (x2x4

or x3x4 in Dn) we may assume that

δ(123) = x1x2.

If there is an i > 3 such that δ(i23) �= 1, then conjugating by xi (or xix4, or xix5 for
Dn, n ≥ 5) we may assume

δ(123) = x1x2

δ(i23) = x2x3

(23)(12) = (123)Now
δ(23)(12)δ(12) = x1x2

δ(23)δ(12) = x1x2.Conjugating by (12)
δ(23)δ(i2) = x3xiSimilarly
δ(12)δ(i2) = x1x2x3ximultiplying the last two

δ(12)(i2)δ(i2) = x1x2x3xiconjugating by (i2)
δ(1i2) = x1x2x3xi.

This is a contradiction as δ(1i2) = 1, x1x2, x1xi or x2xi. Thus δ(i23) = 1 for all i > 3.
Now (23)(i2) = (i23) and so

δ(23)(i2)δ(i2) = δ(i23) = 1.

Conjugating by (i2) we find that δ(23) = δ(2i) for all i > 3. For i ≥ 3 we have

δ(23) = δ(2i) = δ(2i)(2i) = δ(23)(2i)

and hence δ(23) = 1, x1, x2 . . . xn or x1x2 . . . xn. From earlier δ(12)δ(23) = x1x2 and so

δ(12) = x1x2, x2, x1x̂2 . . . xn or x3x4 . . . xn.

We know that δ(12)(12) = δ(12) and so we can only have the first or last alternatives. If
δ(12) = x1x2 then δ(23) = 1, while if δ(12) = x3 · · · xn then δ(23) = x1x2 · · · xn. Hence

δ(12) = x1x2 and δ(23) = δ(24) = · · · = 1, or
δ(12) = x3 · · · xn and δ(23) = δ(24) = · · · = x1x2 · · · xn

(Note that the second case cannot occur in type D2k+1.)
If i, j ≥ 3, then δ(ij) = δ

(
(2i)(2j)(2i)

)
= δ(2i)(2j)(2i)δ(2j)(2i)δ(2i) and so

δ(ij) = 1 or x1 . . . xn

respectively. Similarly δ(1i) = δ
(
(2i)(21)(2i)

)
and so

δ(1i) = x1xi or x̂1x2 . . . x̂i . . . xn.

Thus there are two possibilities for δ.

δ(12) = x1x2 and δ(23) = δ(34) = · · · = 1
or

δ(12) = x1x2w0 and δ(23) = δ(34) = · · · = w0
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Now suppose that δ �= 1 but δ(abc) = 1 for all 3-cycles (abc). Then without loss we
may assume that δ(12) �= 1. Suppose δ(12) = (12)y for some 1 �= y ∈ E?

n. If δ(2i) = (2i)y′,
then

α
(
(12)(2i)

)
= α(12i) = (12i) = (12)(2i).

But then

(12)(2i) = α
(
(12)(2i)

)
= α(12)α(2i)
= (12)y(2i)y′

= (12i)y(2i)y′

whence y(2i)y′ = 1. From earlier we know that δ(2i)(2i) = δ(2i) and hence y′(2i) = y′.
Therefore (yy′)(2i) = 1 and we deduce y = y′. Repeating this we may show that δ(ij) = y for
all i and j. But this implies that y(ij) = y for all i and j, together with the fact that y �= 1
we have shown that y = w0. Noting that this is not possible in the D2k+1 case. In the other
cases is it easily shown that

α(σx) = σxw
m(σ)
0 = θ(σx).

In view of this lemma if α, or α followed by θ, is not inner we may assume that
δ(12) = x1x2 while δ(i, i+ 1) = 1 for i ≥ 2. It can be seen that the automorphism we are left
with is conjugation by the element x1. In type Bn this is clearly an inner automorphism.

In type D2k we find

α(12) = (12)x1x2

α
(
(12)x1x2

)
= (12)x1x2x1x2 = (12)

α(i, i + 1) = (i, i+ 1)

and so α is the graph automorphism.
If this is an inner automorphism, then n is even and we can find σy such that

(i, i + 1)σy = (i, i + 1)

for all i. Hence σ = 1. Now (i, i + 1)y = (i, i + 1) tells us that

y = xε1
1 (x2 . . . xn)ε2 .

But y(12)y = x1x2 implies that ε1 + ε2 = 1 and hence

y = x1 or x2 . . . xn

neither of which lie in D2k. Thus θ is not an inner automorphism.
Hence, up to inner automorphisms we have:

If W has type B2k+1, then α ∈ 〈θ〉.
If W has type B2k, then α ∈ 〈ψ〉 × 〈θ〉.
If W has type D2k+1, then α = 1.
If W has type D2k, then α ∈ 〈ψ〉 × 〈δ〉.

(It is easily established that ψ commutes with θ and the graph automorphisms as appropriate.)
It only remains to deal with the cases of n = 6 and β �= 1 and D4.
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Suppose that n = 6 and β is an outer automorphism of Sym6. Without loss we may
assume that

β : (12) 
→ (13)(24)(56)
(23) 
→ (16)(25)(34)
(34) 
→ (14)(23)(56)
(45) 
→ (16)(24)(35)
(56) 
→ (12)(34)(56).

Now x5x6 is not central in either B6 or D6 and so α(x5x6) cannot be central. Suppose
α(x5x6) =

∏
xεi

i ; then

α(x5x6(12)) = α((12)x5x6)
β(12)δ(12)α(x5x6)β(12) = β(12)δ(12)α(x5x6)(∏

xεi

i

)(13)(24)(56)

=
∏

xεi

i .

Thus ε1 = ε3, ε2 = ε4 and ε5 = ε6. A similar argument with (23)x5x6 shows that ε1 = ε6,
ε2 = ε5 and ε3 = ε4. Hence

ε1 = ε6 = ε5 = ε2 = ε4 = ε3

and α(x5x6) = wε1
0 is central, a contradiction. Thus we have no new automorphisms.

Finally suppose that W is of type D4. Looking for parabolic subgroups with longest
element central, to find the classes of involutions, we discover 6 possibilities:

〈r1〉 longest element: r1
〈r1, r2〉 longest element: r1r2
〈r1, r4〉 longest element: r1r4
〈r2, r4〉 longest element: r2r4

〈r1, r2, r4〉 longest element: r1r2r4
W longest element: w0.

To see that r1r2, r1r4 and r2r4 are not conjugate observe that in the notation used above

r1r2 = x1x2

r1r4 = (12)(34)

are clearly not conjugate and, by the symmetry of the diagram, r2r4 must also belong to a
separate class. There are many places to find the sizes of these conjugacy classes, for example
[Car72]. We find:

| cl(r1)| = 12
| cl(r1r2)| = 6
| cl(r1r4)| = 6
| cl(r2r4)| = 6

| cl(r1r2r3)| = 12
| cl(w0)| = 1

The automorphism ψ does not preserve reflections and so cl(r1w0) �= cl(r1). This implies
cl(r1w0) = cl(r1r2r3). If α is any automorphism of W , then we may assume, up to ψ, that
α preserves reflections. Thus, by Proposition 1.44, α is inner by graph. We have seen above
that the graph automorphisms of order 2 are outer. Suppose that α : r1 
→ r2, r2 
→ r4,
r3 
→ r3 and r4 
→ r1 is inner. Then (12)σy = (34) and

(
(12)x1x2

)σy = (12), and therefore

(12) = (12)σ = (34)

is a contradiction and all the graph automorphisms are outer automorphisms. Hence

Aut(W ) ∼= (Inn(W ) � Sym3) × 〈ψ〉 = (W/〈w0〉 � Sym3) × 〈ψ〉.
The following proposition summarizes what we have shown.
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2.8 Proposition
(a) If W is a group of type Bn for n odd, then

Aut(W ) ∼= (W/〈w0〉) � 〈θ〉.

(b) If W is a group of type Bn for n even, then

Aut(W ) =
(
(W/〈w0〉) � 〈θ〉)× 〈ψ〉.

(c) If W is a group of type Dn for n odd, then

Aut(W ) ∼= W.

(d) If W is a group of type Dn for n even n > 4, then

Aut(W ) ∼= (
(W/〈w0〉) � 〈γ〉)× 〈ψ〉,

where γ is the graph automorphism.

(e) If W is a group of type D4, then

Aut(W ) ∼= (W/〈w0〉 � Sym3) × 〈ψ〉.

In particular all automorphisms of D2k+1 map reflections to reflections. All automorphisms
of B2k+1 map r1 to a reflection while any automorphism of Bn that does preserve reflections
must be inner.

§2.3 Type E

Suppose that W is of type E6 with diagram

1 2 3

4

5 6

The following table lists representatives of the conjugacy classes of parabolic subgroups with
longest element central, and the sizes of the corresponding classes of involutions (see [Car72]).

WI Type | cl(wI)|
〈r1〉 A1 36

〈r1, r3〉 A1 ×A1 270
〈r1, r3, r6〉 A1 ×A1 ×A1 540

〈r2, r3, r4, r5〉 D4 45.

Thus any automorphism must preserve reflections and so is inner by graph. We have seen
that the graph automorphism is inner, being conjugation by w0, and so

Aut(W ) ∼= W.

Suppose that W is of type E7 with diagram

1 2 3

4

5 6 7
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The following table lists representatives of the conjugacy classes of parabolic subgroups with
longest element central, and the sizes of the corresponding classes of involutions.

WI Type | cl(wI)|
〈r1〉 A1 63

〈r1, r3〉 A1 ×A1 945
〈r2, r5, r7〉 A1 ×A1 ×A1 3780
〈r4, r5, r7〉 A1 ×A1 ×A1 315

〈r2, r4, r5, r7〉 A1 ×A1 ×A1 ×A1 3780
〈r2, r3, r4, r5〉 D4 315

〈r2, r3, r4, r5, r7〉 A1 ×D4 945
〈r2, r3, r4, r5, r6, r7〉 D6 63

W E7 1

If r is a reflection, then rw0 is an involution and so the other class of size 63 must be
w0 cl(r1) = cl(r1w0). Now l(w0) = 63 and so l(r1w0) = 62 is even. Therefore 〈cl(r1w0)〉 �= W
as all the elements on the left have even length. Thus all automorphisms of W preserve
reflections and hence are inner. W has no graph automorphisms.

Aut(W ) ∼= W/〈w0〉.
Finally suppose that W is of type E8 with diagram

1 2 3

4

5 6 7 8

The classes of involutions are as follows:

WI Type | cl(wI)|
〈r1〉 A1 120

〈r1, r3〉 A1 ×A1 3780
〈r1, r3, r6〉 A1 ×A1 ×A1 37800

〈r1, r3, r6, r8〉 A1 ×A1 ×A1 ×A1 113400
〈r2, r3, r4, r5〉 D4 3150

〈r2, r3, r4, r5, r7〉 D4 ×A1 37800
〈r2, r3, r4, r5, r6, r7〉 D6 3780

〈r1, r2, r3, r4, r5, r6, r7〉 E7 120
W E8 1

In this case ψ is an automorphism that must interchange the classes of size 120. Thus, up to
ψ, automorphisms preserve reflections and hence are inner, by Proposition 1.44.

Aut(W ) ∼= (W/〈w0〉) � 〈ψ〉.
The following proposition summarizes what we have shown.
2.9 Proposition

(a) If W is a group of type E6, then

Aut(W ) ∼= W.

(b) If W is a group of type E7, then

Aut(W ) ∼= W/〈w0〉.
(c) If W is a group of type E8, then

Aut(W ) ∼= (W/〈w0〉) � 〈ψ〉.
Note that all automorphisms of groups of type E6 or E7 are inner.
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§2.4 Type F

There is of course only one finite group of this type. Suppose that W is of type F4 with
diagram

4

1 2 3 4

By Lemmas 3.18 and 3.19 it can be seen that there are two classes of reflections with repre-
sentatives r1 and r4. In particular this proves that the graph automorphism is outer. The
classes of involutions are as follows:

WI Type | cl(wI)|
I1 = 〈r1〉 A1 12
I2 = 〈r4〉 A1 12

I3 = 〈r2, r3〉 I2(4) 18
I4 = 〈r1, r4〉 A1 ×A1 72

I5 = 〈r1, r2, r3〉 B3 12
I6 = 〈r2, r3, r4〉 B3 12

I7 = W F4 1

Define by ψl : r1 
→ r1w0, r2 
→ r2w0, r3 
→ r3 and r4 
→ r4. Similarly define ψr by r1 
→ r1,
r2 
→ r2, r3 
→ r3w0 and r4 
→ r4w0. It is clear that ψl and ψr are automorphisms of W that
are outer as they do not map reflections to reflections. It can be seen that:

(i) γ interchanges I1 and I2 and interchanges I5 and I6.
(ii) ψl fixes I2 and I5 while interchanging I1 and I6.
(iii) ψr fixes I1 and I6 while interchanging I2 and I5.

Let Cj be the conjugacy class containing the central element of WIj
. Then C1 ∪ C2 generates

W , but it can be checked that C1 ∪ C6 does not. Indeed both C1 and C6 are contained in the
kernel of the homomorphism W → {±1 } given by r1, r2 
→ 1 and r3, r4 
→ −1.

So no automorphism maps { C1, C2 } 
→ {C1, C6 }. Similarly, there is no automorphism
that maps this set to { C2, C5 }. So the possible targets for (C1, C2) are:

(C1, C2) 
→(C1, C2) i

(C1, C5) ψr = γψlγ

(C2, C1) γ

(C2, C6) ψlγ

(C5, C1) γψl

(C5, C6) ψlψrγ = ψlγψl

(C6, C2) ψl

(C6, C5) ψlψr = ψ = ψlγψlγ.

If automorphisms α1 and α2 have the property that α1

({C1, C2}
)

= α2

({C1, C2}
)

then α−1
2 α1

preserves reflections, and so is inner by graph (by Proposition 1.44). So, modulo inner auto-
morphisms the above 8 possibilities are the only ones. Thus Out(W ) = 〈γ, ψl〉 is dihedral of
order 8. The following proposition summarizes what we have shown.
2.10 Proposition

Aut(W ) ∼= W/〈w0〉 � 〈γ, ψl〉
where 〈γ, ψl〉 is a dihedral group of order 8.
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§2.5 Type H

Suppose W is of type H3 with diagram

5

1 2 3

The classes of involutions are as follows:

WI Type | cl(wI)|
〈r1〉 A1 15

〈r1, r3〉 A1 ×A1 15
W H3 1

Now the elements in cl(r1r3) all have even length and so all automorphisms map reflections
to reflections. Unfortunately the graph of W contains an edge labelled with a 5 and so, up
to inner automorphisms, there are two possibilities:

5

1 2 3

→ 5

1 2 3
or


→ 5′

1 2 3

where in the second case a′1 · a′2 = − c(2π5) = −m/2 where m = (
√

5 − 1)/2, recalling that
a1 · a2 = −l/2 where l = (

√
5 + 1)/2.

Define ξ : W →W by

ξ : r1 
→ ra′
1

= r2r1r3r2r3r1r2r1r3r2r3r1r2

r2 
→ r2

r3 
→ r3

where a′1 = r2r1r3r2r3r1a2 = −(l + 1)a1 − 2la2 − la3. Then a′1 · a2 = −m/2 = − c(2π5)
and so ra′

1
r2 has order 5. Furthermore, a′1 · a3 = 0, and so ra′

1
r3 has order 2. Thus ξ is a

homomorphism. It is easily checked that ξ2 = 1 and therefore ξ is an outer automorphism
of W .

Now suppose that α is an outer automorphism of W . Then up to inner automorphisms
we may assume

α : r1 
→ rβ

r2 
→ rγ

r3 
→ rδ

where β · γ = −m/2, β · δ = 0 and γ · δ = −1/2. Then

αξ : r1 
→ rrγrβrδrγrδrβγ = rβ′

r2 
→ rγ

r3 
→ rδ

where β′ = (m− 1)β − 2mγ −mδ. Now β′ · γ = −l/2, β′ · δ = 0 and γ · δ = −1/2 and hence
αξ is inner. Hence

Aut(W ) ∼= W/〈w0〉 � 〈ξ〉.



32 Type H

Now suppose that W is of type H4 with diagram

5

1 2 3 4

The classes of involutions are as follows:

WI Type | cl(wI)|
〈r1〉 A1 60

〈r1, r3〉 A1 ×A1 450
〈r1, r2, r3〉 H3 60

W H4 1

In this case ψ : x 
→ x(w0)l(x) is an automorphism that interchanges the two classes of size
60 and so, up to ψ, we may assume that an automorphism α maps reflections to reflections.
Thus, up to inner automorphisms we have

5

1 2 3 4

→ 5

1 2 3 4
or


→ 5′

1 2 3 4

As in the type H3 case there is an automorphism ξ such that

ξ : r1 
→ ra′
1

r2 
→ r2

r3 
→ r3

r4 
→ r4

where

a′1 = r1r2r3r4r1r2r3r1r2r3r4r1r2r3r4r1r2r3r1a2

= −(3l + 2)a1 − (3l + 3)a2 − 2(l + 1)a3 − (l + 1)a4.

A similar, but much longer, calculation shows that αξ is inner and hence

Aut(W ) ∼= W/〈w0〉 � 〈ξ, ψ〉 =
(
W/〈w0〉 � 〈ξ〉) × 〈ψ〉.

The following proposition summarizes what we have shown.
2.11 Proposition

(a) If W is a group of type H3, then

Aut(W ) ∼= W/〈w0〉 � 〈ξ〉.

(b) If W is a group of type H4, then

Aut(W ) ∼= (
W/〈w0〉 � 〈ξ〉) × 〈ψ〉.

Any automorphism of a group of type H3 maps reflections to reflections.
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§2.6 The Dihedral Groups

Suppose that W is of type I2(m) with diagram

m

1 2

It is easily checked that the roots in Φ have the form 1.12, namely:

vh =
s
(
(h− 1)πm

)
s(πm)

a1 +
s(hπm)
s(πm)

a2

where πm = π/m and 0 ≤ h < 2m. Observe that v0 = −a1, v1 = a2 and vh+m = −vh for
all h. It is readily checked that vh · v0 = c(hπm), and the permutation of the root system
defined by vh 
→ vh+1 corresponds to a rotation through πm.

Since the reflections are precisely the non-central involutions in W it is trivial that
all automorphisms map reflections to reflections. Of course, an automorphism is completely
determined by its effect on r1 and r2. Clearly there is an automorphism that takes rvh

to
rvh+1 for all h; we denote this automorphism by α. Since vh and vh+m correspond to the
same reflection, α has order m. Note also that the group generated by α acts transitively on
the set of reflections in W .
2.12 Notation Let ab n. . . denote the product of the first n terms of the alternating sequence
a, b, a, b, . . ..

Every reflection in W can be expressed in the form r2r1
n. . . for some odd integer n:

indeed, n = 2h − 1 gives the reflection along vh. It follows that r1rvh
= (r1r2)h, which

has order m if and only if gcd(h,m) = 1. It follows that there is an automorphism αh

such that r1 
→ r1 and r2 
→ rvh
whenever gcd(h,m) = 1, and these are the only automor-

phisms that fix r1. So if we define Aut1(W ) = {αh | gcd(h,m) = 1 }, then it follows that
Aut(W ) = Aut1(W )〈α〉.

Observe that if gcd(h,m) = 1 and gcd(k,m) = 1 then

(αhαk)(r2) = αh(r2r1 2k−1. . . . . ) = αh(r2)r1 2k−1. . . . . = r2r1
2hk−1. . . . . . = αhk(r2).

Obviously also (αhαk)(r1) = r1, and so it follows that αhαk = αhk. So Aut1(W ) is isomorphic
to the group of units of the ring of integers modulo m. Furthermore, it is easily verified that
αhα = αhαh, this being the automorphism that takes the reflection along vk to the reflection
along vhk+h for each k. So conjugation by αh acts on the cyclic group of order m generated
by α by raising elements to the power h. Thus Aut(W ) is the holomorph of the cyclic group
of order m.

Note that αm−1 fixes r1 and takes r2 to r2r1 2m−3. . . . . . = r1r2r1; hence αm−1 is conjugation
by r1. If γ is the nontrivial graph automorphism then γαm−1 takes rv0 = r1 to r2 = rv1 and
r2 to r2r1r2 = rv3 . Thus γαm−1 = α. It follows that 〈α,αm−1〉 = 〈γ, αm−1〉 is the group of
all automorphisms that are inner by graph.

If m is even then the graph automorphism γ is outer, since it interchanges the two
classes of reflections. If m is odd then γ is inner, being conjugation by w0. The following
proposition summarizes what we have shown.
2.13 Proposition Suppose that W is a group of type I2(m) and use the notation from
above. Then all automorphisms of W preserve reflections, Aut(W ) = Aut1(W )〈α〉 is the
holomorph of the cyclic group of order m and Aut1(W ) is isomorphic to the group of units
of the ring of integers modulo m.
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§2.7 Automorphisms of Infinite Coxeter Groups

In the finite case the subgroups of inner automorphisms and graph automorphisms are not
always disjoint. We have seen that in the cases An, D2k+1, I2(2k+ 1) and E6 the non-trivial
graph automorphism is the same as conjugation by the longest element of W . This cannot
happen if W is an infinite irreducible Coxeter group; in fact we can say slightly more.
2.14 Lemma If W is any infinite Coxeter group with no finite irreducible components,
then the only graph automorphism that is inner is the identity.

Proof Suppose that conjugation by w ∈W is a graph automorphism. If W is not irreducible
then

W = WL1 × · · · ×WLm

where Π = L1∪̇L2∪̇ · · · ∪̇LM . As the automorphism is inner it is clear that each component
is fixed and, by looking at the restriction to WLi

, we may assume that Π is connected. That
is, we now assume that W is irreducible. Now let

J = { a ∈ Π |wa ∈ Φ− }.

If J = ∅ then N(w) = ∅, whence l(w) = 0 by Corollary 1.10, giving w = 1. If J = Π then
wΦ+ = Φ− and l(w) = |Φ+|. But this is impossible since Φ is infinite, by Lemma 1.11. Thus
∅ � J � Π and hence both J and Π\J are non-empty.

As conjugation by w is a graph automorphism, for each a ∈ Π there is an a′ ∈ Π such
that wraw−1 = ra′ . This gives wa = ±a′. It follows that wJ = −K for some K ⊂ Π and
w(Π\J) = Π\K. Now let a ∈ J and b ∈ Π\J . Then −wa = a′ ∈ K and wb = b′ ∈ Π\K,
and by the definition of the bilinear form it follows that a · b ≤ 0 and a′ · b′ ≤ 0. But
a · b = wa · wb = −a′ · b′, and so we conclude that a · b = 0. This result holds for all a ∈ J
and b ∈ Π\J , and the two sets are non-empty, contradicting the irreducibility of W .

Combined with Corollary 1.44 the following result has been proved.
2.15 Corollary If W is an infinite Coxeter group, as above, whose diagram is a forest
with no unusual labels and R(W ) is the group of automorphisms of W that preserve Ref(W )
then

R(W ) = Inn(W ) � Gr(W ).

The fact that Inn(W ) ∼= W/Z(W ), where Z(W ) is the centre of W , is well-known.
When W is irreducible, apart from the finite groups, the centre is trivial and so Inn(W ) ∼= W .
2.16 Lemma If W is an infinite irreducible Coxeter group then Z(W ) = { 1 }.
Proof Let w ∈ Z(W ). Then for all a ∈ Φ we have rwa = wraw

−1 = ra and so wa = ±a.
Hence Π = L∪̇K where

L = { a ∈ Π |wa = −a }
K = { a ∈ Π |wa = a } .

Now for all a ∈ L and b ∈ K we find that a · b = wa · wb = −a · b and hence a · b = 0. This
contradicts the irreducibility of W unless one of L or K is empty. If K = ∅ then wa = −a for
all a ∈ Φ+, and so N(w) = Φ+, which is infinite by Lemma 1.11. However this contradicts
Corollary 1.8. So L = φ, and hence w = 1. So we conclude that Z(W ) = { 1 } as required.

2.17 Corollary If W is an infinite irreducible Coxeter group whose diagram is a tree with
no unusual labels and R(W ) is the set of automorphisms of W that preserve Ref(W ) then

R(W ) ∼= Inn(W ) � Gr(W ) ∼= W � Gr(W ).
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Nearly Finite Coxeter Groups

3.1 Definition Given the Coxeter group W with set of simple reflections Π indexed by
positive integers, if ai ∈ Π, then we let Wi denote the standard parabolic subgroup WΠ\{ai}.
If Wi is finite for some ai, then we denote by wi the longest element in Wi.
3.2 Definition We shall call the infinite Coxeter group W nearly finite if there is a simple
root ai such that Wi is finite.

§3.1 Automorphisms That Preserve Reflections

Before considering the nearly finite groups we need some linear algebra.
3.3 Definition The n × n matrix M is reducible if there are non-empty sets I and J
such that I∪̇J = { 1, . . . n } and mij = 0 for all i ∈ I and j ∈ J . Otherwise M is said to be
irreducible.
3.4 Lemma Let M be the Gram matrix of the finite rank Coxeter group, W , then M is
irreducible if and only if W is irreducible.

Proof This is clear since mij = ai ·aj is zero if and only if vertices i and j are not connected
in the Coxeter diagram.

3.5 Lemma Suppose that M is a positive definite matrix such that mii = 1 for all i and
mij ≤ 0 for all i �= j. Let C = M−1, then cij ≥ 0 for all i and j. Further, if M is irreducible,
then cij > 0 for all i and j.

Proof Let ei be the ith standard basis vector, written as a column vector. The iith entry
of C is equal to the iith cofactor of M divided by det(M). As M is positive definite the
principal minors are all positive and hence the iith entry of C is non-zero. Also vtMv ≥ 0
for all vectors v with equality if and only if v = 0.

Let Ci =
∑n

j=1 λjej be the ith column of Ct, J = { j |λj ≥ 0 } and K = { k |λk < 0 }.
Setting C ′ =

∑
J λjej and C ′′ =

∑
K λkek we have Ci = C ′ + C ′′. Now Ct

iM = et
i and so

Ct
iMej = et

iej ≥ 0

for all i and j. Since λk < 0 for k ∈ K,

0 ≥
∑
k∈K

λk(Ct
iMek)

= Ct
iMC ′′

= C ′tMC ′′ + C ′′tMC ′′

=
∑
j∈J
k∈K

λjλke
t
jMek + C ′′tMC ′′

=
∑
j∈J
k∈K

λjλkmjk + C ′′tMC ′′.

Since λj ≥ 0, λk < and mjk ≤ 0 each term λjλkmjk is non-negative. Hence

0 ≥
∑
J,K

λjλkmjk + C ′′tMC ′′ ≥ C ′′tMC ′′ ≥ 0.

35
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Thus C ′′ = 0 and Ci = C ′ only has non-negative entries. Hence C has non-negative entries.
Suppose that C has at least one entry equal to 0, say crk = 0. Let I = { j | crj > 0 }

and J = { j | crj = 0 }; then I∪̇J = { 1, . . . , n }, remembering that cij ≥ 0 for all i and j.
Now crr �= 0 and so r ∈ I, while k ∈ J . Hence both I and J are nonempty. If j ∈ J , then
j �= r; thus

0 = et
rej = Ct

rMej

=
∑
i∈I

crie
t
iMej

=
∑
i∈I

crimij .

We have cri > 0 for i ∈ I, while mij ≤ 0 as i �= j. Therefore mij = 0 for all i ∈ I. Thus
mij = 0 for all i ∈ I and j ∈ J and hence M is reducible.

3.6 Proposition Suppose that W is a finite Coxeter group with simple roots {a1, . . . , an},
and let d1, . . . , dn be a set of non-negative real numbers. Let x =

∑
δiai be the solution of

the system of equations x · ai = di for all i. Then δi ≥ 0 for all i, and if some dj is nonzero
then δi ≥ 0 for all i and δk > 0 for all ak in the same connected component as aj .

In particular if W is irreducible and dj is non-zero for some j then δi > 0 for all i.

Proof If M is the Gram matrix of the finite Coxeter group W , then M is positive definite,
by Lemma 1.1. For all i we have mii = ai · ai = 1, whereas if i �= j, then

mij = ai · aj = − c(πmij
) ≤ 0.

By Lemma 3.4 M is irreducible if and only if W is irreducible. Thus we may use Lemma 3.5.
Observe that the values of δi are given by

(δi) = M−1(di).

The entries of M−1 are all non-negative, by Lemma 3.5, and hence the δi are non-negative
given that the di are non-negative.

If W is reducible, then the vector space spanned by the ai is the orthogonal sum of
subspaces associated with the irreducible components and the Gram matrix M is the diagonal
sum of the Gram matrices for the components. Thus we may consider each component
separately and so suppose that W is irreducible. In that case the entries of M−1 are all
positive. Given (δi) = M−1(di) if any one di is positive while the rest are non-negative, then
each δi is the sum of non-negative terms including at least one positive term. Hence each δi
is positive.

3.7 Lemma Suppose W is a Coxeter group, ri and rj are simple reflections and α is an
automorphism of W such that α(ri) = rk and α(rj) = rl are also simple reflections. Then
ai · aj = ak · al.

Proof Let ai · aj = − c(πs) and ak · al = − c(πt). The order of rirj is s which equals t the
order of rkrl and hence ai · aj = ak · al.

3.8 Definition We say that a Coxeter diagram is of finite type if the corresponding
Coxeter group is finite.

A set of simple reflections in a Coxeter group is of finite type if the parabolic subgroup
they generate is finite.
3.9 Theorem Suppose that W is irreducible, non-degenerate and nearly finite. Suppose
that the diagram of W has no infinite bonds. Let ∆ be the set of simple reflections and
suppose that there exist r1, ry ∈ ∆ (possibly equal) and an automorphism α : W → W such
that the following properties hold:

(1) ∆1 = ∆\ { r1 } and ∆y = ∆\ { ry } are both of finite type, and α(∆1) = ∆y.

(2) α ∈ R(W ).
Then α is inner by graph.
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Proof Let V1 and Vy be the subspaces of V spanned by Π\ { a1 } and Π\ { ay } respec-
tively, and let xi be the projection of −ai onto Vi for i = 1 and y. We shall show that
xy · xy ≤ x1 · x1. Since the same argument with r1 and ry interchanged, α replaced by α−1

and using Lemma 1.33 will show that x1 · x1 ≤ xy · xy, it follows that x1 · x1 = xy · xy.
Write { 2, 3, . . . , n } = J (1)∪J (2)∪· · ·∪J (k) where the J (j) correspond to the irreducible

components of Π\ { a1 }. For each i ∈ { 2, 3, . . . , n } let

ai · a1 = − c(πmi1) = −ci
so that by the definition of x1,

ai · x1 = ci

for all i ∈ { 2, 3, . . . , n }. Write
u1 = x1 + a1

so that u1 spans the orthogonal complement of V1 in V . (As W is non-degenerate V1 has
dimension n− 1, V ⊥

1 is one dimensional and a1 /∈ V1.)
Let x1 =

∑n
i=2 µiai. Note that

x1 = x
(1)
1 + x

(2)
1 + · · · + x

(k)
1

where x(j)
1 is the projection of −a1 onto the subspace spanned by

{
ai | i ∈ J (j)

}
. Now for

all j ∈ { 1, 2, . . . , k } and i ∈ J (j),

x
(j)
1 · ai = −a1 · ai = ci ≥ 0;

moreover, since W is irreducible there is at least one i ∈ J(j) such that ci > 0. Since

x
(j)
1 =

∑
i∈J(j)

µiai

it follows from Proposition 3.6 that µi > 0 for all i.
Let x ∈ Φ+ be such that α(r1) = rx, and let σ be the permutation of { 1, 2, . . . , n }

such that α(ri) = rσi for i ∈ { 2, 3, . . . , n }. (Thus σ1 = y.) As rσirx has the same order as
rir1, namely mi1, we have

x · aσi = c(jiπmi1) = di

for some ji coprime to mi1. Note that ci ≥ |di| for all i ∈ { 2, 3, . . . , n }, and di = 0 if and
only if ci = 0. Let x0 =

∑n
i=2 λσiaσi be the projection of x onto Vy, so that x0 · aσi = di for

each i, and
x = x0 + ωuy

for some scalar ω, where uy = xy+ay spans the orthogonal complement of Vy in V . Examining
the coefficient of ay in the above equation for x, and using Lemma 1.15, we see that ω ≥ 1.
Note also that

x0 = x
(1)
0 + x

(2)
0 + · · · + x

(k)
0

where x(j)
0 is the projection of x onto the space spanned by

{
aσi | i ∈ J (j)

}
.

Since ci ≥ |di| for all i ∈ J (j) (where j ∈ { 1, 2, . . . , k } is arbitrary), we have for all
i ∈ J (j),

0 ≤ ci − di = x1 · ai − x0 · aσi

=


 ∑

l∈J(j)

µlal · ai


−


 ∑

l∈J(j)

λσlaσl · aσi




=


 ∑

l∈J(j)

µlal · ai


−


 ∑

l∈J(j)

λσlal · ai


 by Lemma 3.7

=
∑

l∈J(j)

(µl − λσl) al · ai.
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By Proposition 3.6 it follows that µl ≥ λσl for all l ∈ J (j); moreover, if µl − λσl = 0 for some
l ∈ J (j) then we must have ci − di = 0 for all i ∈ J (j). Similarly,

0 ≤ ci + di =
∑

l∈J(j)

(µl + λσl) al · ai

for all i ∈ J (j); so µl +λσl ≥ 0 for all l ∈ J (j), equality occurring for some l only if ci +di = 0
for all i ∈ J (j). Note in particular that µl ≥ |λσl| for all l ∈ { 1, 2, . . . , n− 1 }, and if µl = |λσl|
then cl = |dl|.

Each z ∈ V can be written in the form z = z0 + νu1 with z0 ∈ V1 and ν ∈ R, and if
u1 · u1 ≥ 0 this gives

z · z = z0 · z0 + ν2u1 · u1 ≥ 0,

contrary to the fact that W is not of positive type. So u1 ·u1 < 0, and, by the same reasoning
uy · uy < 0.

Since x ∈ Φ

1 = x · x = (x0 + ωuy) · (x0 + ωuy) = x0 · x0 + ω2uy · uy

and we also have that

x0 · x0 =
n∑

i=2

λσiaσi · x0 =
n∑

i=2

λσidi.

Similarly,
1 = a1 · a1 = (−x1 + u1) · (−x1 + u1) = x1 · x1 + u1 · u1

and also

x1 · x1 =
n∑

i=2

µiai · x1 =
n∑

i=2

µici.

Thus

u1 · u1 +
n∑

i=2

µici = ω2uy · uy +
n∑

i=2

λσidi,

and so
n∑

i=2

(µici − λσidi) = ω2uy · uy − u1 · u1.

Since µi ≥ |λσi| and ci ≥ |di| for all i we see that
∑n

i=2(µici − λσidi) ≥ 0, and so
ω2uy · uy ≥ u1 · u1. But ω2 ≥ 1, and since uy · uy < 0 it follows that uy · uy ≥ ω2uy · uy, and
hence uy · uy ≥ u1 · u1. Since 1 = x1 · x1 + u1 · u1 (shown above) and 1 = xy · xy + uy · uy

similarly it follows that xy · xy ≤ x1 · x1, as desired.
In view of our earlier remarks, we must have uy · uy = u1 · u1, and

0 ≤
n∑

i=2

(µici − λσidi) = (ω2 − 1)u1 · u1 ≤ 0

since ω ≥ 1 and u1 ·u1 < 0. Thus (ω2−1)u1 ·u1 = 0, giving ω = 1, and
∑n

i=2(µici−λσidi) = 0,
giving µici = λσidi = |λσidi| for all i ∈ { 2, 3, . . . , n }.

Since 0 ≤ (µl − |λσl|)cl ≤ µlcl − |λσl| |dl| = 0 it follows that, for all l ∈ { 2, 3, . . . , n },
either cl = 0 or |λσl| = µl. For each j ∈ { 1, 2, . . . , k } we may choose l ∈ J(j) with cl > 0;
then either λσl = µl and di = ci for all i ∈ J (j), or else λσl = −µl, and di = −ci for all
i ∈ J (j). In the former case we have

x
(j)
0 · aσi = di = ci = x

(j)
1 · ai
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for all i ∈ J (j), and it follows that x(j)
0 = σ̃(x(j)

1 ), where σ̃ is the isomorphism V1 → Vy given
by ai 
→ aσi. In the latter case,

x
(j)
0 · aσi = di = −ci = −x(j)

1 · ai

for all i ∈ J (j), giving x(j)
0 = −σ̃(x(j)

1 ).

Let w be the product of the longest elements of the parabolic subgroups corresponding
to those sets σ(J (j)) for which x

(j)
0 = σ̃(x(j)

1 ), let β be the inner automorphism of W given
by conjugation by w, and let α′ = βα. Since β induces a graph automorphism on ∆\ { ry },
we see that α′ satisfies the same hypotheses as α. Now α′(r1) = wrxw

−1 = rwx, and

wx = wx0 + uy

= wx
(1)
0 + wx

(2)
0 + · · · + wx

(k)
0 + uy.

where wx(j)
0 is the projection of wx onto the span of

{
aσi | i ∈ J (j)

}
. Applying to α′ the

arguments used for α enables us to deduce that for each j

wx
(j)
0 = ±σ̃(x(j)

1 ) = ±
∑

i∈J(j)

µiaσi.

But w was chosen so that wx(j)
0 is a negative linear combination of

{
aσi | i ∈ J (j)

}
for each

j, and so we conclude that wx(j)
0 = −σ̃(x(j)

1 ). Thus

wx = −σ̃(x(1)
1 ) − σ̃(x(2)

1 ) − · · · − σ̃(x(k)
1 ) + uy

= −σ̃(x1) + uy

showing that wx · aσi = −ci = a1 · ai for all i ∈ { 2, 3, . . . , n }. Lemma 3.7 together with
Theorem 1.44 shows that α′ is inner by graph. (Indeed we have shown that the positive roots
wx, aσ2, aσ3, . . ., aσn form a base for the root system that is isomorphic to Π. From this we
can conclude that wx = ay and that α′ is in fact a graph automorphism.)

§3.2 Reflections and Components

3.10 Definitions If W is a Coxeter group and r ∈W , then we denote the conjugacy class
of r in W by C(r).

(1) If r and r′ are reflections in W then we say that C(r) and C(r′) are linked if we
can find r1 ∈ C(r) and r2 ∈ C(r′) such that r1 and r2 do not commute.

(2) If r and r′ are reflections in W then we say that there is a chain joining C(r)
and C(r′) if we can find reflections r0, . . ., rn such that r0 = r, rn = r′ and
C(ri) and C(ri+1) are linked for i = 0, . . ., n− 1.

Recall from Lemma 1.17 that if r is any reflection in W then r lies in an irreducible
component of W . Clearly, conjugate reflections lie in the same irreducible component.

3.11 Lemma Suppose that W is a Coxeter group with r and r′ any two reflections, then
r and r′ are in the same irreducible component of W if and only if there is a chain joining
C(r) and C(r′).
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Proof By Lemma 1.1 each conjugacy class of reflections contains at least one simple reflec-
tion. If r and r′ are in the same irreducible component then there are simple roots a0 and
a′0 such that r0 ∈ C(r) and r′0 ∈ C(r′). Furthermore there is a path in the Coxeter diagram
joining a0 and a′0. If a0, a1, . . ., an = a′0 is such a path then the C(ri) form a chain joining
C(r) and C(r′).

Conversely, suppose that r and r′ are in different components of W . If C(r0), C(r1), . . .
is a chain joining r and r′, then we can find a j such that C(rj) and C(rj+1) are in different
components. But this implies that each reflection in C(rj) commutes with every reflection
in C(ri+1). This contradicts the fact that C(rj) is linked to C(rj+1). Thus if r and r′ are in
different components then there is no chain joining them.

Note that a simple corollary of this is that there is a chain joining C(r) and C(r′) if
and only if there is a chain joining r and r′.
3.12 Lemma Suppose that W and W ′ are finite rank Coxeter groups. If α is an isomor-
phism such that α

(
Ref(W )

)
= Ref(W ′), then α maps each irreducible component of W onto

an irreducible component of W ′.
Proof Suppose the irreducible components of W are WJ(i) . If r and r′ are any two reflections
in Ref(WJ(i)) then by Lemma 3.11 there is a chain joining C(r) and C(r′). As α preserves
reflections and conjugacy classes there is a chain joining C(α(r)

)
and C(α(r′)

)
. Hence α(r)

and α(r′) are in the same irreducible component of W ′. Thus α(WJ(i)) is contained in an
irreducible component of W ′. Applying this to α−1 finishes the proof.

3.13 Proposition Suppose that α : W → W ′ is an isomorphism of finite Coxeter groups
that maps reflections to reflections. Then W and W ′ have the same type.

Proof By Lemma 3.12 we may concentrate upon irreducible Coxeter groups. If two finite
irreducible groups are isomorphic then they have the same order.

All finite Coxeter groups have even order and so if W is a finite irreducible Coxeter
group then we can find a group W ′ of type I2(m) such that |W | = |W ′|. However exactly half
the elements of a group of type I2(m) are reflections, and this is a property not possessed by
any of the other types. So there is no reflection preserving isomorphism between a group of
type I2(m) and an irreducible group of any other type. The only other coincidences of order
for finite irreducible Coxeter groups occurs for types A4 and H3, which both have order 120.
They are not isomorphic since, for example, A4 has trivial centre while H3 does not.

Suppose that W is a nearly finite Coxeter group of rank n ≥ 4 such that Wi is a finite
irreducible Coxeter group and let α be an automorphism of W . From Corollary 1.30 we know
that α(Wi) is a maximal finite parabolic subgroup. Up to inner automorphisms we may
assume that α(Wi) is a standard parabolic subgroup and therefore has rank at most n − 1.
If α(Wi) is reducible then it follows that Wi is isomorphic to a product of smaller Coxeter
groups, for which the sum of the ranks does not exceed the rank of Wi. We proceed to show
that this cannot occur by examining all cases.

In the paper [Max98], Maxwell finds all the normal subgroups of the finite irreducible
Coxeter groups. In all cases W+ will denote the subgroup of elements of even length; other
normal subgroups will be given as the kernels of surjective homomorphisms to other Coxeter
groups. Maxwell’s list is as follows.
An: If W is a group of type An then the normal subgroups of W are:

{1}, W and W+.

Clearly no group of type An is reducible as W does not have two normal subgroups H and
K such that |H| × |K| = |W |.
Bn: If W is a group of type Bn with diagram

4

1 2 3 n−1 n

. . .
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then the normal subgroups of W are:

N0 = {1}
N1 = 〈w0〉 = Z(W )
N2 = W+

N3 = W

N4 = ker(φ4) where φ4 : W → 〈s1〉 type A1

φ4(r1) = s1, φ4(ri) = 1
N5 = ker(φ5) where φ5 : W → 〈s1〉 type A1

φ5(r1) = 1, φ5(ri) = s1

N6 = ker(φ6) where φ6 : W → 〈s1〉 × 〈σ1〉 type A1 ×A1

φ6(r1) = s1, φ6(ri) = σ1

N7 = ker(φ7) where φ7 : W → 〈si〉 type An−1

φ7(r1) = 1, φ7(ri) = si

N8 = ker(φ8) where φ8 : W → 〈si〉 × 〈σ1〉 type An−1 ×A1

φ8(r1) = σ1, φ8(ri) = si

N9 = ker(φ9) where φ9 : W → 〈si〉 type A2

φ9(r1) = 1, φ9(r2) = s1, φ9(r3) = s2, φ9(r4) = s1

N10 = ker(φ10) where φ10 : W → 〈s1〉 × 〈σ1〉 type A2 ×A1

φ9(r1) = σ1, φ9(r2) = s1, φ9(r3) = s2, φ9(r4) = s1

where the last two cases only occur when n = 4. A consideration of orders shows that the
only possible decompositions of W are as N1×N2, N1×N4 or N1×N5. Now w0 is a product
of elements conjugate to r1; thus φ5(w0) = 1 and hence w0 ∈ N5. Thus N1 ∩N5 �= {1}. If
n is even then φ4(w0) = rn

1 = 1, whence w0 ∈ N4, and l(w0) = n2 is even, whence w0 ∈ N2.
Hence W has no direct product decomposition if n is even. If n is odd then

W = N1 ×N2 = N1 ×N4.

In fact N4 is a Coxeter group of type D2k+1 and therefore a group of type B2k+1 is isomorphic
to a group of type A1×D2k+1. The Coxeter group of type D2k+1 is not abstractly isomorphic
to any other indecomposable Coxeter groups, since the only one with the correct order is
I2(22k−1(2k + 1)!), and this has non-trivial centre whereas D2k+1 has trivial centre. Thus
A1 ×Dn is the only decomposition as a product of groups abstractly isomorphic to Coxeter
groups. However, A1 × Dn has greater rank than Bn, and so cannot occur as a parabolic
subgroup of any Coxeter group that has a maximal parabolic subgroup of type Bn.
Dn: If W is a group of type Dn with diagram

1

2

3 4 n−1 n

. . .

then the normal subgroups of W are:

N0 = {1}
N1 = 〈w0〉 (only for n even)
N2 = W+

N3 = W

N4 = ker(φ4) where φ4 : W → 〈si〉 type An−1
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φ4(r1) = s1, φ4(r2) = s1, φ4(ri) = si−1

N5 = ker(φ5) where φ5 : W → 〈s1, s2〉 type A2

φ5(r1) = φ5(r2) = φ5(r4) = s1, φ5(r3) = s2

N6 = ker(φ6) where φ6 : W → 〈s1, s2〉 type A2

φ6(r1) = φ6(r2) = φ6(r3) = s1, φ6(r4) = s2

N7 = ker(φ7) where φ7 : W → 〈s1, s2〉 type A2

φ7(r2) = φ7(r3) = φ7(r4) = s1, φ7(r1) = s2

where the last three cases only occur if n = 4. Looking at orders the only possible decompo-
sition is W = N1 ×N2. But l(w0) is even and so N1 ⊂ N2, whence W is indecomposable.
E6: If W is a group of type E6 with diagram

1 2 3

4

5 6

then the normal subgroups of W are {1}, W+ and W . Hence W is indecomposable.
E7: If W is a group of type E7 with diagram

1 2 3

4

5 6 7

then the normal subgroups of W are {1}, 〈w0〉, W+ and W . Since l(w0) is odd we see that
W = 〈w0〉 ×W+. The only finite Coxeter group of order |W |/2 is of type I2(|W |/4), but a
group of type A1 × I2(|W |/4) has further normal subgroups and so cannot be isomorphic to
a group of type E7. Thus W does not decompose as a product of Coxeter groups.
E8: If W is a group of type E8 with diagram

1 2 3

4

5 6 7 8

then the normal subgroups of W are {1}, W+ and W . Hence W is indecomposable.
F4: If W is a group of type F4 with diagram

4

1 2 3 4

then the normal subgroups are:

N0 = {1}
N1 = 〈w0〉
N2 = W+

N3 = W

N4 = ker(φ4) where φ4 : W → 〈s1〉 type A1

φ4(r1) = 1, φ4(r2) = 1, φ4(r3) = s1, φ4(r4) = s1

N5 = ker(φ5) where φ5 : W → 〈s1〉 type A1

φ5(r1) = s1, φ5(r2) = s1, φ5(r3) = 1, φ5(r4) = 1
N6 = ker(φ6) where φ6 : W → 〈s1〉 × 〈σ1〉 type A1 ×A1

φ6(r1) = s1, φ6(r2) = s1, φ6(r3) = σ1, φ6(r4) = σ1
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N7 = ker(φ7) where φ7 : W → 〈s1, s2〉 type A2

φ7(r1) = 1, φ7(r2) = 1, φ7(r3) = s1, φ7(r4) = s2

N8 = ker(φ8) where φ8 : W → 〈s1, s2〉 type A2

φ8(r1) = s1, φ8(r2) = s2, φ8(r3) = 1, φ8(r4) = 1
N9 = ker(φ9) where φ9 : W → 〈s1, s2〉 × 〈σ1〉 type A2 ×A1

φ9(r1) = s1, φ9(r2) = s2, φ9(r3) = σ1, φ9(r4) = σ1

N10 = ker(φ10) where φ10 : W → 〈s1, s2〉 × 〈σ1〉 type A1 ×A1

φ10(r1) = σ1, φ10(r2) = σ1, φ10(r3) = s1, φ10(r4) = s2

N11 = ker(φ11) where φ11 : W → 〈s1, s2〉 × 〈σ1, σ2〉 type A2 ×A2

φ11(r1) = s1, φ11(r2) = s2, φ11(r3) = σ1, φ11(r4) = σ2

As before a consideration of orders suggests that the only possible decompositions areN1×N2,
N1 × N4 or N1 × N5. However, w0 is an element of each of N2, N4 and N5 and so W is
indecomposable.
H3: If W is a group of type H3 with diagram

5

1 2 3

then the normal subgroups of W are {1}, 〈w0〉, W+ and W . As with type E7, W = 〈w0〉×W+

but W+ is not a Coxeter group.
H4: If W is a group of type H4 with diagram

5

1 2 3 4

then the normal subgroups of W are {1}, W+ and W . Hence W is indecomposable.
Note that Wi cannot have type I2(m) since we have assumed that W has rank at

least 4, and hence Wi has rank at least 3. Automorphisms of Coxeter groups of rank 3 are
dealt with in a separate chapter.

Therefore in all cases if Wi is a finite irreducible Coxeter group, then α(Wi) is a
parabolic subgroup of the same type. Hence we have proved the following theorem.
3.14 Theorem If W is a nearly finite Coxeter group of rank n ≥ 4 such that Wi is a finite
irreducible Coxeter group, then any automorphism of W will map Wi to a conjugate of a
maximal standard parabolic subgroup Wj of the same type as Wi.

§3.3 Graph Automorphisms and Unusual Labels

Suppose that W is an irreducible nearly finite Coxeter group. Renumbering if necessary we
may assume that W1 is finite. We shall consider the situation in which W1 has a component
of type H3, H4 or I2(m) for m > 3 and there is an ai �= a1 such that Wi has the same type as
W1. Renumbering again if necessary suppose that W1 and W2 have the same type. We shall
classify all such Coxeter groups. In particular, it turns out that in almost all cases there is a
graph automorphism that interchanges a1 and a2.

For convenience in the following identify ai with the vertex it corresponds to in the
Coxeter diagram, Γ, of W . Let Γk denote the graph obtained by deleting vertex ak from Γ,
and write degk for deg(ak). Since W1 and W2 have the same type,

∑
k �=1 degk =

∑
k �=2 degk,

and so it follows that deg1 = deg2.
First suppose that W1 and W2 are irreducible. If we have a graph where a1a2 is not

an edge, then we can obtain a new graph by including this edge. This new graph will still
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have the property that W1 and W2 have the same type. Therefore we will look for graphs
where a1a2 is an edge and obtain the remaining possibilities by deleting this edge. We will
deal with type H3 in detail and then state the possibilities for H4 and I2(m).

Suppose that W1 and W2 have type H3. Then deg2 in Γ1 is either 1 or 2. Thus
2 ≤ deg2 = deg1 ≤ 3 in Γ.
Case (a): deg1 = deg2 = 2. As a1a2 is an edge in Γ we can see that a2 has degree 1 in Γ1.
There are four possibilities:

q

5

?1

2
q

5

?1

2
q

5

? 1

2
q

5

? 1

2

As W2 also has type H3 the remaining label can be determined, and we have the following
possibilities.

5

5
q

2

1

q

5

5

2

1

5 q

2

1

5

q
21

Deleting the edge a1a2 gives four further possibilities.

5

5
2

1

5 5
1 2

5

2

1

5
1 2

Case (b): deg1 = deg2 = 3. This time a2 has degree 2 in Γ1 and there is only one possibility.
As deg1 = 3 there is an edge from a1 to each vertex in Γ1.

5

? ?
q

1

2

Again W2 has type H3 and the labels can be determined. There are two possibilities.

5

5

q

2

1

5

5

q

1

2

Deleting the edge a1a2 gives the following possibilities.

5

5 2

1

5

51

2

2

2

Thus there are the following 12 possibilities for Γ.

5

5

q

2

1

5

5 2

1

5

5

q

1

2 5

51

2

2

2

5

5
q

2

1
5

5
2

1
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q

5

5

2

1

5 5
1 2

5 q

2

1

5

2

1

5

q
21

5
1 2

Note that in each case there is a graph automorphism that interchanges a1 and a2.
Similar arguments to the above, lead to the following 14 possibilities if W1 and W2

have type H4.

5

5

q

2

1

5

5

2

1

5

5

q

2

1

5

5

2

1

5 q

2

1

5

2

1

5 q

2

1

5

2

1

q

5

5
2

1
5

5
2

1

q

5

5

2

1

5 5
1 2

5 q

2

1

5

2

1

There are only 2 possibilities if W1 and W2 have type I2(m) for m > 3.

m
q

m

2

1

m m
1 2

In every case there is a graph automorphism that interchanges a1 and a2.
Secondly, suppose that W1 is reducible. Then Γ1 contains at least two components.

Thus deg1 ≥ 2 as a1 is joined to each component of Γ.
Case (a): a2 is not contained in the given component of Γ1 of type H3, H4 or I2(m). Then Γ2

contains a component of type H3, H4 or I2(m) with at least one edge added (the edge joining
a1 to this component). This does not give a diagram of finite type if the original component
had type H4 or I2(m) for m > 5. So the original component is H3, I2(4) or I2(5).
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If Γ1 has a component of type H3 and a2 is not in this component, then deg1 ≤ 3 in
Γ, for otherwise Γ2 would contain a component with an edge labelled with 5 and a vertex
of degree at least 3, contradicting the fact that Γ2 is of finite type. If deg1 = 3 or if a2 and
a1 are not adjacent, then Γ2 contains a component with at least two edges added to a graph
of type H3 and again such a component is not of finite type. Thus deg1 = 2, Γ1 has two
components and a2 is adjacent to a1. Thus Γ2 has a component of type H4 and so W1 and
W2 are of type H3 ×H4. Thus Γ is the following.

1 2
5 5q

Again there is a graph automorphism that interchanges a1 and a2.
If Γ1 has a component of type I2(5) and a2 is not in this component, then again

deg1 ≤ 3. In the case deg1 = 2, Γ1 has 2 components and hence Γ2 has two components. The
component containing a1 is of type H3 or H4, and so W1 and W2 are of type I2(5) ×H3 or
I2(5) ×H4. There are two possibilities.

1 2
5 q 5

1 2
5 5

In each case there is a graph automorphism that interchanges a1 and a2.
If deg1 = deg2 = 3 then we have the following partial diagram:

5 ?

?
1

?

?

Thus in Γ2 two edges have been added to I2(5) and so W2 contains a component of type H4

and we have the following.

5 q
1

3

2
?

?

5 q
1

3

2
?

In Γ2 the vertex a3 has degree 1 and so deg3 = 1 or 2 in Γ. If deg3 = 1 then Γ1 has
components A1, I2(5) and H4 and Γ is the following.

5
q

5

1 2

There is a graph automorphism swapping a1 and a2. If deg3 = 2 in Γ, then a2a3 is an edge
in Γ1 and W2 has two components. Thus W1 and W2 have type I2(5) × H4 and Γ is the
following.

5
q

5

1 2

Again there is a graph automorphism swapping a1 and a2.
If Γ1 has a component of type I2(4) and a2 is not in this component, then yet again

deg1 ≤ 3. If deg1 = 2 then Γ1 has two components, of types I2(4) and Bk for some k. Thus
Γ is the following

...4 4
1 2
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and there is a graph automorphism swapping a1 and a2. If deg1 = 3, then a1 and a2 must
be adjacent as in the I2(5) case. Then Γ2 contains a component of type Bl, as well as one of
type I2(4). Thus we have

4

4

q

1

2

Y

X

where there may or may not be edges between the parts of the graph labelled X and Y .
IfX and Y are joined then Γ1 and Γ2 have 2 components and must have type I2(4)×Bl.

As Bl does not have a vertex of degree more than 2, any vertex other than a1 and a2 having
degree 3 in Γ must be adjacent to both a1 and a2. There is at most one such vertex, and so
there are two possibilities.

4

4

...q

1

2

4

4

q
...

...
2

1

There is a graph automorphism swapping a1 and a2 in each case.
Finally suppose that X and Y are not joined. Then Γ1 has 3 components, and since

the component of Γ1 corresponding to Y is of type Ak for some k, we see that Γ1 and Γ2

have type I2(4) ×Ak ×Bl. Hence Γ is the following,

4

4

q

1

2

Ak

Ak

and there is a graph automorphism swapping a1 and a2. This completes the case where a2

is not in the given component of type H3, H4 or I2(m).
Case (b): a2 is in the given component of type H3, H4 or I2(m) for m > 3.

Suppose that Γ1 contains a component of type H3 and a2 is in this component. Thus
deg2 ≤ 2 in Γ1 and so 2 ≤ deg1 = deg2 ≤ 3 in Γ.

Suppose deg1 = deg2 = 3. The vertices a1 and a2 are joined, and there may or may
not be edges joining a1 to the other vertices of the H3 component of Γ1. Since a1 has degree 3
the possibilities for Γ are as follows.

5

q
X Y

1

2

?

5

q
Y

1

2

?

5

q
X

1

2

In the first case Γ2 has 3 components, two of which are of type A1, while in the second
and third cases Γ2 has two components, one of which is of type A1. In all three cases the
remaining component of Γ2 must be of type H3.

In the first case the only possibility is as follows,

5

5

q

1

2

and there is a graph automorphism swapping a1 and a2. In the second case we have two
possibilities, as follows.

5

5
q

1

2
5

5

q

1

2
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In the first of these cases there is a graph automorphism swapping a1 and a2, while the other
is the first of our exceptions.

In the third case we also have two possibilities, as follows.

5

q

5

2

1

5

q

5

2

1

Again there is a graph automorphism swapping a1 and a2 in the first case. The other case is
isomorphic to the exceptional case above.

Now suppose that deg1 = deg2 = 2, still in the case where Γ1 has a component of type
H3 that contains a2. Only one of the two edges from a1 connects to the given H3 component
of Γ1, otherwise Γ1 is irreducible, a case that has already been dealt with. There are four
possibilities.

q

?

5

1

2

?
?

?

5

1

2

?
?

?

5

1

2

?
q

?

5

1

2

?

If Γ is

q

?

5

1

2

?

then Γ2 has a component of type A2, and so Γ1 and Γ2 have type A2 ×H3. So we have the
following diagram,

q

5

5

1

2

and there is a graph automorphism swapping a1 and a2.
If Γ is

?

?

5

1

2

?

then Γ1 has a component of type A1, and so Γ1 and Γ2 have type A1 ×H3. So we have the
following possible diagrams.

5

5

2

1

5

5

2

1

3

In the first case there is a graph automorphism swapping a1 and a2, while the other is the
final exceptional case. In fact it is the same as the previous exceptional case but with q = 2.
Furthermore, in this case Γ3 is also of finite type and is the unique subgraph of type A2×I2(5).
If Γ is

?

?

5

1

2

?

then again we find that Γ1 and Γ2 are of type A1 × H3. We have the following possible
diagrams.

5

52

1
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5

52

1

3

In the first case there is a graph automorphism swapping a1 and a2, while the other is
isomorphic to the exception just considered.
If Γ is

q

?

5

1

2

?

then Γ1 and Γ2 are of type I2(5) ×H3. We have the following diagram.

q

5

5
1

2

There is a graph automorphism swapping a1 and a2. This completes the case where Γ has a
component of type H3.

Now suppose that Γ1 contains a component of type H4 and a2 is a vertex in this
component. As in the equivalent H3 case this means that 2 ≤ deg1 = deg2 ≤ 3.

If deg1 = deg2 = 3, again a1 and a2 must be adjacent. So we have the following eight
possibilities.

5

q

1

2

X Y

5

q
?

1

2

Y

5

q
?

1

2

X

5

q
?

1

2

X

5

q

1

2

X Y

5

q
?

1

2

X

5

q
?

1

2

Y

5

q
?

1

2

Y

(i) In the first diagram of the above cases it is clear that Γ1 and Γ2 must be of type
A1 ×A2 ×H4. We obtain the diagram.

5

5

q

1

2

and there is a graph automorphism swapping a1 and a2.
(ii) In the second diagram it is clear that Γ1 and Γ2 must be of type A2 ×H4. We obtain

the diagram.

5

5

q

2

1

and there is a graph automorphism swapping a1 and a2.
(iii) In the third diagram it is clear that Γ1 and Γ2 must be of type A1 ×H4. We obtain

the diagram.

5

5

q

2

1

and there is a graph automorphism swapping a1 and a2.
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(iv) In the fourth diagram it is clear that Γ1 and Γ2 must be of type A1 × A2 ×H4. We
obtain the diagram.

5

5

q

1

2

and there is a graph automorphism swapping a1 and a2.
(v) In the fifth diagram it is clear that Γ1 and Γ2 must be of type A1 × I2(5) ×H4. We

obtain the diagram.

5

5

q

1

2

and there is a graph automorphism swapping a1 and a2.
(vi) In the sixth diagram it is clear that Γ1 and Γ2 must be of type I2(5)×H4. We obtain

the diagram.

5

5

q

2

1

and there is a graph automorphism swapping a1 and a2.
(vii) In the seventh diagram it is clear that Γ1 and Γ2 must be of type A1 ×H4. We obtain

the diagram.

5 q

1

2

and there is a graph automorphism swapping a1 and a2.
(viii) In the final diagram it is clear that Γ1 and Γ2 must be of type A1 ×H4. We obtain

the diagram.

5 q

2

1

and there is a graph automorphism swapping a1 and a2.
Suppose finally that deg1 = deg2 = 2. As we are assuming that Γ1 is reducible, a1 is

joined to the given H4 component by exactly one edge. We have the following possibilities.

q

5

?

2

1

5

?

2

1

5

?

2

1

5

1

2

?

5

1

2

?

q

5

?

2

1

5

?

2

1

5

?

2

1

In the first diagram Γ1 and Γ2 are of type A3 ×H4 and we have

q

5

52

1
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and there is a graph automorphism swapping a1 and a2. This can be repeated for each
diagram; the results are summarized below.

Γ1 and Γ2 have type A2 ×H4

5

5

2

1

Γ1 and Γ2 have type A1 ×H4
5

2

1

Γ1 and Γ2 have type A1 ×H4

5

2

1

Γ1 and Γ2 have type A1 ×H4
5

52

1

Γ1 and Γ2 have type H3 ×H4

5 q 5
2 1

Γ1 and Γ2 have type I2(5) ×H4

5 5
2 1

Γ1 and Γ2 have type A1 ×H4

5 5
2 1

In each case there is a graph automorphism swapping a1 and a2.

It remains to consider the case that Γ1 contains a component of type I2(m) for m > 3
and a2 is a vertex in this component. Since a2 has degree 1 in Γ1 it has degree 2 in Γ. Thus
deg1 = deg2 = 2, and since Γ1 is reducible if follows that one of the edges from a1 connects
to the given I2(m) and the other does not. Therefore Γ1 and Γ2 both have type A1 × I2(m).
The only possibility is as follows

m q m

1 2

and there is a graph automorphism swapping a1 and a2. This completes the proof of the
following result.

3.15 Proposition Suppose that W is a Coxeter group and there are two simple roots
ai �= aj such that Wi and Wj are finite Coxeter groups of the same type. If Wi and Wj

contain at least one component of type H3, H4 or I2(m) for m > 3, then there is a graph
automorphism of W that interchanges Wi and Wj , or else W corresponds to one of the
following diagrams.

5
q

5

j

i

5

5

j

i

k

In the second of these cases there is simple root ak such that Wk is the unique maximal
standard parabolic subgroup of type A2 × I2(5).
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§3.4 Nearly Finite Coxeter Groups

3.16 Theorem If W is an irreducible non-degenerate nearly finite Coxeter group with
finite labels, then any automorphism of W that preserves reflections is inner by graph.

Proof Renumbering if necessary we may suppose that W1 is finite. Let α ∈ R(W ) be any
automorphism that preserves reflections. Up to inner automorphisms we may assume that
α(W1) is a standard parabolic subgroup. By Proposition 3.13 and the fact that α|W1 preserves
reflections W1 and α(W1) have the same type and hence the same rank. Thus α(W1) = Wi

for some i possibly equal to 1.
Suppose that W1 does not contain any component of type H3, H4 or I2(m) for m > 3.

Then Γ1 is a forest with no unusual labels. As W1 and Wi have the same type there is
a permutation σ of the simple roots such that σ̃ : Wi → W1 given by σ̃(ri) = rσi is an
isomorphism. Then ασ̃ is a reflection preserving automorphism of a Coxeter group whose
diagram is a forest with no unusual labels. By Proposition 1.44 ασ̃ is inner by graph. Thus,
up to inner automorphisms of Wi, we may assume that ασ̃ is a graph automorphism of Wi

and hence that α maps rj to a simple root for each j ∈ { 2, 3, . . . , n }. The result follows from
Theorem 3.9.

So suppose that W1 contains at least one component of type H3, H4 or I2(m) with
m > 3. By Proposition 3.15 there are two possibilities: either W has a graph automorphism
interchanging W1 and W2, so that up to automorphisms that are inner by graph we may
assume that α(W1) = W1, or else W has one or other of the following two diagrams.

5
q

5

j

i

5

5

j

i

k

The first of these requires special treatment, which we defer. The second may be dealt with
by relabelling ak to be a1, since then W1 becomes the unique maximal standard parabolic
subgroup of type A2 × I2(5). Modifying α by an inner automorphism then permits us to
assume that α(W1) = W1.

Proceeding under the assumption that α(W1) = W1, by Lemma 1.34 we may define φα

so that
φα(ai) · φα(aj) ≤ 0

for all i, j ≥ 2 with i �= j. As in Corollary 1.35 it follows that

φα(ai) · φα(aj) = ai · aj (3.17)

unless mij = 5 or mij ≥ 7. Furthermore, these values for mij can only occur if ai and aj lie
in an irreducible component of W1 of type H3, H4 or I2(m), and then only for one pair of
simple roots in the component.

If Eq. 3.17 does hold for all i, j ≥ 2 then by Theorem 1.39 there exists w ∈ W1 such
that ±φα(wai) ∈ Π \ {a1} for all i ≥ 2, and hence conjugation by w followed by α permutes
the simple reflections of W1. Theorem 3.9 then applies, and it follows that α is inner by graph.
It remains to deal with those cases in which W1 has at least one irreducible component of
type H3, H4 or I2(m) (where m = 5 or m ≥ 7) for which Eq. 3.17 does not hold. We do this
by adapting the argument used in the proof of Theorem 3.9 to the present situation.

Suppose that ai and aj are simple roots of W1 for which Eq. 3.17 fails, and let m = mij .
Thus ai · aj = − c(πm), and φα(ai) · φα(aj) = − c(jπm) for some j coprime to m. Since
φα(ai) · φα(aj) ≤ 0 we have that 1 < j < m/2. Note that for types H3 and H4 we have
m = 5, and j = 2 is the only possibility.

We assume now that Eq. 3.17 fails for some i and j. We shall show that this leads to
a contradiction.
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Let V1 be the subspace of V spanned by Π \ {a1}, and let M be the Gram matrix of
the restriction of our bilinear form to V1 computed relative to the above basis. Let M ′ be
the Gram matrix for the same form computed relative to the basis φα(Π \ {a1}). We assume
that the simple roots are ordered so that M is a diagonal sum of matrices corresponding to
the various irreducible components of W1. Since φα(ai) · φα(aj) = 0 whenever ai · aj = 0, we
see that M ′ is also a diagonal sum, with blocks of the same sizes as those of M .

The blocks ofM corresponding to components of typesH3, H4 and I2(m) are as follows
(assuming the ordering is chosen appropriately).

M3 =

[
1 − c(π5) 0

− c(π5) 1 −1/2

0 −1/2 1

]

M4 =




1 − c(π5) 0 0

− c(π5) 1 −1/2 0

0 −1/2 1 −1/2

0 0 −1/2 1




MI =
[

1 − c(πm)

− c(πm) 1

]

Letting T∗ = M−1∗ be the corresponding inverses we find:

T3 =




9+3
√

5
2 4+2

√
5 2+

√
5

4+2
√

5 6+2
√

5 3+
√

5

2+
√

5 3+
√

5 5+
√

5
2




T4 =




28+12
√

5 33+15
√

5 22+10
√

5 11+5
√

5

33+15
√

5 42+18
√

5 28+12
√

5 14+6
√

5

22+10
√

5 28+12
√

5 20+8
√

5 10+4
√

5

11+5
√

5 14+6
√

5 10+4
√

5 6+2
√

5




TI =
[

1/ s2(πm) c(πm)/ s2(πm)

c(πm)/ s2(πm) 1/ s2(πm)

]

If φα does not preserve the form on such a component then the corresponding blocks of M ′

are as follows.

M ′
3 =

[
1 − c(2π5) 0

− c(2π5) 1 −1/2

0 −1/2 1

]

M ′
4 =




1 − c(2π5) 0 0

− c(2π5) 1 −1/2 0

0 −1/2 1 −1/2

0 0 −1/2 1




M ′
I =

[
1 − c(jπm)

− c(jπm) 1

]

Letting T ′∗ = M ′−1
∗ be the corresponding inverses we find:

T ′
3 =




9−3
√

5
2 −4+2

√
5 −2+

√
5

−4+2
√

5 6−2
√

5 3−√
5

−2+
√

5 3−√
5 5−√

5
2




T ′
4 =




28−12
√

5 −33+15
√

5 −22+10
√

5 −11+5
√

5

−33+15
√

5 42−18
√

5 28−12
√

5 14−6
√

5

−22+10
√

5 28−12
√

5 20−8
√

5 10−4
√

5

−11+5
√

5 14−6
√

5 10−4
√

5 6−2
√

5




T ′
I =

[
1/ s2(jπm) c(jπm)/ s2(jπm)

c(jπm)/ s2(jπm) 1/ s2(jπm)

]
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Note that each entry t′ij of T ′
∗ is positive but strictly less that the corresponding entry tij

of T∗. (Recall that m
2
> j > 1 so that, π/2 > jπm > πm and hence s(jπm) > s(πm) and

c(jπm) < c(πm).)
Hence if T = (tij) = M−1 and T ′ = (t′ij) = M ′−1, then we have tij ≥ t′ij for all

i, j ∈ { 2, 3, . . . , n }. Since there is a component for which the form is not preserved, there is
a block on which tij > t′ij for all i and j corresponding to roots in that block.

As in the proof of Theorem 3.9 we suppose that α(r1) = rx where x ∈ Φ+, and let x0

be the projection of x onto V1. Let x1 be the projection of −a1 onto V1. Then u1 = x1 + a1

spans the orthogonal complement of V1 in V , and u1 · u1 < 0 since W is non-degenerate and
infinite. Finally x = x0 + ωu1 for some scalar ω, and by Lemma 1.15 we have ω ≥ 1.

For each i ∈ { 2, 3, . . . , n } let

ai · a1 = − c(πmi1) = −ci.
Write x1 =

∑n
i=2 µiai. Now x1 · ai = −a1 · ai = ci, for i ≥ 2 and so

µi =
n∑

j=2

tijcj .

For each i ≥ 2 there is an integer ji such that

x0 · φα(ai) = x · φα(ai) = c(jiπmi1) = di,

where |di| ≤ ci and di = 0 if and only if ci = 0. Writing x0 =
∑n

i=2 λiφα(ai), we have

λi =
n∑

j=2

t′ijdj

for i ∈ { 2, 3, . . . , n }. Now observe the following.

x0 · x0 =
n∑

i=2

λix0 · φα(ai) =
n∑

i=2

λidi =
n∑

i=2

n∑
j=2

t′ijdidj

and

x1 · a1 =
n∑

i=2

µiai · a1 = −
n∑

i=2

µici = −
n∑

i=2

n∑
j=2

tijcicj .

Since cicj ≥ |didj | ≥ didj and tij ≥ t′ij ≥ 0 for all i, j ∈ { 2, 3, . . . , n }∑
i

∑
j

tijcicj ≥
∑

i

∑
j

t′ijdidj .

But there is an irreducible component of W1 for which tij > t′ij . As W is irreducible there is
an edge joining a1 to this component, and hence there is an ak in this component for which
ck > 0. Then tkkc

2
k ≥ tkkd

2
k > t′kkd

2
k,and so

−x1 · a1 =
∑

i

∑
j

tijcicj >
∑

i

∑
j

t′ijdidj = x0 · x0.

Therefore 1 + x1 · a1 < 1 − x0 · x0. Now

u1 · u1 = (x1 + a1) · u1

= a1 · u1

= a1 · a1 + a1 · x1

= 1 + a1 · x1.
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Thus u1 · u1 < 1 − x0 · x0 and since u1 · u1 < 0,

1 >
1 − x0 · x0

u1 · u1
.

Since x ∈ Φ

1 = x · x
= (x0 + ωu1) · (x0 + ωu1)
= x0 · x0 + ω2u1 · u1.

Hence

ω2 =
1 − x0 · x0

u1 · u1
< 1.

But ω ≥ 1 and we have obtained the desired contradiction.

It only remains to deal with groups that have Coxeter diagram

5
q

5

j

i

k

(for which we cannot assume that α(W1) = W1). These are considered in detail in the next
section.

§3.5 Some Examples

To complete the proof of Theorem 3.16 and to foreshadow the arguments used in the next
chapter we look at two examples. We find Aut(W ) for the nearly finite Coxeter group with
diagram

5

5

q3

1 5

2 4

where q > 2. After this example we consider nearly finite groups with W1 irreducible of type
An−1 for n �= 6, D2k+1, E6 or E7. First some preliminary results.

3.18 Lemma Let W be a Coxeter group with ai, aj two simple roots. If the edge joining
the nodes corresponding to ai and aj is labelled with an odd number, then ri and rj are
conjugate.

Proof Suppose the edge joining the nodes is labelled 2k + 1. Then (rirj)2k+1 = 1 and so

ri = (rjri)krj(rirj)k = (rjri)krj(rirj)−k

whence ri and rj are conjugate.

3.19 Lemma Let W be a Coxeter group with Π the set of simple roots. If we can find
subsets I and J of Π such that Π = I∪̇J and any edge joining a vertex in I to a vertex in J
has an even label (or is ∞), then no reflection in WI is conjugate to a reflection in WJ .
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Proof For each simple reflection ri define f(ri) ∈ { 1,−1 } as follows: if ai ∈ I, then f(ri) = 1
while if aj ∈ J , then f(rj) = −1. If ai ∈ I and aj ∈ J then mij = 2k for some k, and hence

(
f(ri)f(rj)

)mij = (−1)2k = 1.

(If mij = ∞ there is no relation.) For other values of i and j the equation holds trivially.
Thus f defines a homomorphism from W to an abelian group. If ri ∈WI and rj ∈WJ , then
f(ri) �= f(rj) and therefore ri and rj cannot be conjugate.

Using these last two results it is possible to write down representatives of the conjugacy
classes of reflections. Choosing a simple reflection ri, any other simple reflection connected
to ri by a path whose labels are all odd is in the conjugacy class of ri. No other simple
reflection is in this conjugacy class. Consider, for example, the following diagram:

4 4

1 2 3 4 5 6

There are three conjugacy classes of reflections with representatives r1, r3 and r6.
Suppose now that W is a Coxeter group with diagram

5

5

q3

1 5

2 4

Then every simple reflection is connected to r1 by a path on which every edge has an odd
label. By Lemma 3.18 this implies that all simple reflections are conjugate to r1, and hence
that W has a single conjugacy class of reflections.

As we know, W1 and W2 are maximal finite standard parabolic subgroups of type
A1×H3. If q > 5, thenW{ a1,a2 } is also a maximal finite subgroup. Thus 〈r2〉 = W1∩W{a1,a2 }
and by Lemma 1.32 every automorphism of W maps r2 to a reflection. There is only one
class of reflections and hence all automorphisms preserve reflections. Similarly, if q ≤ 5 then
W{a1,a2,a4 } is a maximal finite subgroup, and since

〈r4〉 = W1 ∩W2 ∩W{ a1,a2,a4 }

we see that again automorphisms of W preserve reflections. Thus Aut(W ) = R(W ).
Let α ∈ Aut(W ). Since α must map the maximal finite subgroup W1 to another

maximal finite subgroup, up to inner automorphisms we may assume that α(W1) isW1 or W2.
If α(W1) = W1 then the argument used in Theorem 3.16 shows that α is inner by graph. So
suppose that α(W1) = W2.

The simple reflection r5 is central in W1; therefore

α(r5) ∈ Z(W2) = 〈r4, w2〉,

where w2 is the longest element in W2. As α(r5) is a reflection and r4 is the only reflection
in Z(W2) we can see that α(r5) = r4. By Lemma 1.17 Ref(W1) = Ref(W{ a2,a3,a4 })∪̇ { r5 }
while Ref(W2) = Ref(W{ a1,a3,a5 })∪̇ { r4 }. As α(r5) = r4 we can see that the reflections in
W{a2,a3,a4 } are mapped to reflections in W{a1,a3,a5 } by α, and thus

α(W{ a2,a3,a4 }) = W{ a1,a3,a5 }.

Let σ be the permutation (12)(345). Then σ̃ : W{a1,a3,a5 } → W{a2,a4,a3 } given by σ̃(ri) = rσi

is an isomorphism. Thus ασ̃ is an automorphism of W{ a1,a3,a5 }, a Coxeter group of type
H3. Using Proposition 2.11 ασ̃ is either inner or we may follow ασ̃ by an inner automor-
phism and obtain the automorphism ξ. Hence, following α by conjugation by an element of
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W{a1,a3,a5 } we may assume that α(W1) = W2, α(r5) = r4 and either α|W{ a1,a3,a5 } = ξ or else
α
( { r2, r3, r4, r5 } ) = { r1, r3, r4, r5 }. In the second case α is inner by graph by Theorem 3.9.

Suppose, for a contradiction, that α|W{ a1,a3,a5 } = ξ. Then we have

α(r1) = rx

α(r2) = r1

α(r3) = ra′
5

α(r4) = r3

α(r5) = r4

where a′5 = −2la1− la3 − (l+1)a5, l = (1+
√

5)/2. Note that a′5 ·a1 = (1−√
5)/4, a′5 ·a3 = 0

and a′5 · a4 = 0. As rxra′
5

and r1r3 both have order 3, we can see that x · a′5 = ±1/2. Given
that rx = r−x we may replace x with −x, if necessary to ensure that x · a′5 = −1/2. Similar
arguments show that x · a1 = c(jπq) for some j coprime to q, x · a3 = 0 and x · a4 = − c(kπ5)
for some k coprime to 5. As usual note that c(πq) ≥ | c(jπq)| and c(π5) ≥ | c(kπ5)|.

Let x0 =
(

1+
√

5
2

)
a1 +

(
1+

√
5

4

)
a3 − c(kπ5)a4 +

(
3+2(1−√

5) c(jπq)
2

)
a5.

x0 · a1 =
1 +

√
5

2
− 1

2

(
1 +

√
5

4

)

+ 0 − 1 +
√

5
4

(
3 + 2(1 −√

5) c(jπq)
2

)

=
1
8
(
4 + 4

√
5 − 1 −

√
5 − 3 − 3

√
5

− 2(1 +
√

5)(1 −
√

5) c(jπ1)
)

= c(jπq) = x · a1

x0 · a3 = −1
2

(
1 +

√
5

2

)
+

1 +
√

5
4

+ 0 + 0

= 0 = x · a3

x0 · a4 = 0 + 0 − c(kπ5) + 0
= x · a4

x0 · a′5 =

(
1 +

√
5

2

)
a1 · a′5 +

(
1 +

√
5

4

)
a3 · a′5

− c(kπ5)a4 · a′5 +

(
3 + 2(1 −√

5) c(jπq)
2

)
a5 · a′5

=

(
1 +

√
5

2

)(
1 −√

5
4

)
+ 0 + 0

+

(
3 + 2(1 −√

5) c(jπq)
2

)(
(1 +

√
5)

1 +
√

5
4

+ 0 − 3 +
√

5
2

)

= −1
2

+

(
3 + 2(1 −√

5) c(jπq)
2

)(
3 +

√
5

2
− 3 +

√
5

2

)

= −1
2

= x · a′5.

Thus x0 is the projection of x onto V2, the space spanned by { a1, a3, a4, a5 }.
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Let

x2 =
(
2 +

√
5 + 2(3 +

√
5) c(πq)

)
a1 +

1
4
(
5 + 3

√
5 + 4(3 +

√
5) c(πq)

)
a3

+
1
2
a4 +

1
4
(
7 + 3

√
5 + 8(2 +

√
5) c(πq)

)
a5.

Then

x2 · a1 = 2 +
√

5 + 2(3 +
√

5) c(πq) − 1
8
(
5 + 3

√
5 + 4(3 +

√
5) c(πq)

)
+ 0 − 1 +

√
5

16
(
7 + 3

√
5 + 8(2 +

√
5) c(πq)

)
= c(πq) = −a2 · a1

x2 · a3 = −1
2
(
2 +

√
5 + 2(3 +

√
5) c(πq)

)
+

1
4
(
5 + 3

√
5 + 4(3 +

√
5) c(πq)

)
+ 0 + 0

=
1 +

√
5

4
= − c(π5) = −a2 · a3

x2 · a4 =
1
2

= −a2 · a4

x2 · a5 = −1 +
√

5
4

(
2 +

√
5 + 2(3 +

√
5) c(πq)

)
+ 0 + 0

+
1
4
(
7 + 3

√
5 + 8(2 +

√
5) c(πq)

)
= 0 = −a2 · a5.

Thus x2 is the projection of −a2 onto V2. As before this tells us that u2 = x2 + a2 is
orthogonal to V2.

u2 · u2 = (x2 + a2) · u2 = a2 · u2 = a2 · x2 + 1

= −1 +
√

5
4

(
2 +

√
5 + 2(3 +

√
5) c(πq)

)
−
(

1 +
√

5
16

)(
5 + 3

√
5 + 4(3 +

√
5) c(πq)

)− 1
4

+ 0 + 1

= −1 +
√

5
2

− 2(2 +
√

5) c(πq) − 2(3 +
√

5) c2(πq) < 0,

as c(πq) > 0. Together with that fact that W2 is positive definite, this implies that W is
non-degenerate.

We find that

x0 · a5 = −
(

1 +
√

5
4

)(
1 +

√
5

2

)
+ 0 + 0 +

3 + 2(1 −√
5) c(jπq)

2

=
1
4
(
3 −

√
5 + 4(1 −

√
5) c(jπq)

)
and hence it follows that

x0 · x0 =
1 +

√
5

2
a1 · x0 +

(
1 +

√
5

4

)
a3 · x0 − c(kπ5)a4 · x0

+

(
3 + 2(1 −√

5) c(jπq)
2

)
a5 · x0

= c2(kπ5) +
9 − 3

√
5

8
+ 2(2 −

√
5) c(jπq) + 2(3 −

√
5) c2(jπq).
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Note that c2(π5) = (3 +
√

5)/8. Now

1 − x0 · x0 − u2 · u2 = 1 − c2(kπ5) − 9 − 3
√

5
8

− 2(2 −
√

5) c(jπq) − 2(3 −
√

5) c2(jπq)

+
1 +

√
5

2
+ 2(2 +

√
5) c(πq) + 2(3 +

√
5) c2(πq)

+ c2(π5) − 3 +
√

5
8

=
(
c2(π5) − c2(kπ5)

)
+
(
2(2 +

√
5) c(πq) − 2(2 −

√
5) c(jπq)

)
+
(
2(3 +

√
5) c2(πq) − 2(3 −

√
5) c2(jπq)

)
.

We claim that this last expression is strictly positive. First observe that c2(π5)−c2(kπ5) ≥ 0.
Next we have

2(3 +
√

5) c2(πq) > 2(3 −
√

5) c2(πq) ≥ 2(3 −
√

5) c2(jπq).

Finally, since c(jπq) ≥ − c(πq) and 2 −√
5 < 0,

2(2 −
√

5) c(jπq) ≤ 2(
√

5 − 2) c(πq) < 2(2 +
√

5) c(πq).

Thus

2(2 +
√

5) c(πq) − 2(2 −
√

5) c(jπq) > 0 and
(
2(3 +

√
5) c2(πq) − 2(3 −

√
5) c2(jπq)

)
> 0

establishing our claim. Therefore 1−x0·x0
u2·u2

< 1, as u2 · u2 < 0.
Following the proof of Theorem 3.16, if we write x = x0 + ωu2 then either ω ≥ 1 (if

x ∈ Φ+) or ω ≤ −1 (if x ∈ Φ−), and hence ω2 ≥ 1. We know that x is a root, thus

1 = x · x = (x0 + ωu2) · (x0 + ωu2)
= x0 · x0 + ω2u2 · u2

and hence

ω2 =
1 − x0 · x0

u2 · u2
< 1

which is a contradiction. So this case cannot arise and we conclude that all automorphisms
are inner by graph. This completes the proof of Theorem 3.16.

If there are many maximal finite standard parabolic subgroups then, as the above
example illustrates, there is a chance that all automorphisms preserve reflections. At the
other extreme the following result looks at some nearly finite Coxeter groups where it is only
assumed that one standard parabolic subgroup is finite.
3.20 Corollary Suppose W is a non-degenerate nearly finite Coxeter group such that Wi

is of type An−1 for n �= 6, D2k+1, E6 or E7. If there is an l �= i such that mil is odd, then all
automorphisms of W are inner by graph.

Proof If mil is odd then in the Coxeter diagram of W there is an edge with an odd label
incident with the vertex corresponding to ri. By assumption, all the edges in the diagram of
Wi have odd labels. Thus, by Lemma 3.18, W has only one conjugacy class of reflections.

Let α ∈ Aut(W ) be any automorphism of W . Up to inner automorphisms we may
assume that α(Wi) = Wj where Wj has the same type as Wi, by Theorem 3.14. Thus there
is a permutation σ ∈ Symn such that σ̃ : Wj → Wi given by σ̃(rt) = rσt is an isomorphism.
Then ασ̃ is an automorphism of a group of type An−1 for n �= 6, D2k+1, E6 or E7. By
Propositions 2.4, 2.8 and 2.9 this automorphism is inner. In particular this implies that α
maps the reflections in Wi to reflections in Wj . But W only has one class of reflections and
hence α preserves reflections and the result follows by Theorem 3.16.



Chapter 4

Affine Weyl Groups, Hyperbolic Groups and

Other Infinite Coxeter Groups

In the last chapter we showed that if W is a nearly finite Coxeter group, then any reflection-
preserving automorphism is inner by graph. The question remains whether the reflection
preserving hypothesis is necessary. In this chapter it will be shown that all automorphisms
of hyperbolic Coxeter groups and affine Weyl groups are inner by graph. The proofs in
this chapter will follow the same plan. First it will be shown that any automorphism must
preserve Ref(W ), the set of reflections. In cases where the diagram of the group is a forest
with no unusual labels this will finish the proof, by Corollary 1.44. In all but four of the
remaining cases the group is a non-degenerate nearly finite group, and the result follows by
Theorem 3.16. The last four cases are dealt with by separate arguments.

§4.1 Preliminaries

4.1 Proposition Suppose that W is a Coxeter group, with Π = { a1, . . . , an } the set of
simple roots. Suppose that α is an automorphism of W and

α(ri) = rbi

for all ri ∈ Π. Let M and N be the n × n matrices whose (i, j) entries are (respectively)
ai · aj and bi · bj , then M and N have the same signature.

Proof Identify elements of V with their coordinate vectors (written as column vectors)
relative to the basis Π, and let X = (b1| · · · |bn) be the matrix with the bi as columns. We
have N = XtMX. If X is nonsingular we see that N and M have the same signature.

If X is singular then { b1, . . . , bn } span a proper subspace U of V . However, if
g = rv1rv2 . . . rvl

for some rvi
∈ Φ, and if v ∈ V is arbitrary, then

gv − v =
l∑

i=2

(rvi
)
(
rvi+1 . . . rvl

(v)
)

is in the space spanned by v1, v2, . . . , vl. Since rb1 , rb2 , . . . , rbn
generate W it follows that U

contains gv− v for all g ∈W and v ∈ V . In particular, U contains ri(ai)− ai = 2ai for all i,
contradicting the fact that U is a proper subspace of V .

4.2 Corollary Let α : W → W be a homomorphism, with α(ri) = rbi
for all i. If the

matrices (ai · aj) and (bi · bj) have different signatures, then α is not an automorphism.

4.3 Lemma If a reflection is conjugate to a simple reflection ri with the property that
〈ri〉 can be written as an intersection of maximal finite subgroups, then all automorphisms
of W map that reflection to a reflection.

Proof Using Lemma 1.32 we know that ri is mapped to a reflection by all automorphisms
and the rest is clear.

4.4 Lemma IfW is a Coxeter group such thatWi is finite for all i, then any automorphism
of W maps reflections to reflections.

60
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Proof If ri is any simple root, then 〈ri〉 =
⋂

j �=iWi is the intersection of a collection of
maximal finite standard parabolic subgroups. By Corollary 1.31, if α is any automorphism
of W , then α〈ri〉 is a parabolic subgroup of order 2. Thus 〈ri〉 is conjugate to a parabolic
subgroup of the form 〈rk〉 for some simple reflection rk. Hence α(ri) is conjugate to rk and
so is a reflection.

This lemma applies exactly to the compact hyperbolic Coxeter groups and the affine
Weyl groups.

§4.2 Affine Weyl Groups

In the Chapter 2 the automorphisms of the finite irreducible Coxeter groups were classified.
It was mentioned, in Lemma 1.1, that a Coxeter group is finite if and only if it is positive
definite. The obvious next class to consider is the class of positive semi-definite Coxeter
groups; it is well-known that these are isomorphic to the affine Weyl groups.

The following is a list of the positive semi-definite Coxeter groups.

Ã1
∞

Ãn . . .

B̃2 = C̃2
4 4

B̃n
4. . .

C̃n
4 4. . .

D̃n . . .

Ẽ6

Ẽ7

Ẽ8

F̃4
4

G̃2
6

By convention the Ãn, B̃n, C̃n and D̃n diagrams have n + 1 vertices. Note that if W is a
Coxeter group of one of the above types then Wi is finite for all i. Thus, by Lemma 4.4, if
α is any automorphism of a group W of one of the above types, then α preserves Ref(W ).
Therefore except possibly for Ã1 and Ãn, α is inner by graph, by Corollary 1.44.
Ãn: Let W be a Coxeter group of type Ãn, where n > 1, with diagram

. . .

First observe that a1 + a2 + · · · + an+1 is orthogonal to ai for all i and so B is degenerate.
Letting α(ri) = rbi

where bi ∈ Φ we may define φα : V → V by φα(ai) = bi. Noting that there
are two choices for bi and replacing bi+1 with −bi+1 at need we may ensure bi ·bi+1 = ai ·ai+1
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for i = 1 to n − 1. If bn · b1 = an · a1 then φα is orthogonal and α is inner by graph by
Theorem 1.44. If φα(an) · φα(a1) = −an · a1 = 1/2 instead of −1/2 then

det(bi · bj) = det




1 −1/2 0 · · · 0 1/2
−1/2 1 −1/2 · · · 0 0

0 −1/2 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1/2

1/2 0 0 · · · −1/2 1




=
1

2n−2
�= 0.

This means that the matrices (ai · aj) and (bi · bj) have different signatures and hence, by
Proposition 4.1, this case cannot arise. Hence Aut(W ) ∼= Inn(W ) � Gr(W ) ∼= W � I2(n),
using Lemma 2.16.
Ã1: Let W be a Coxeter group of type Ã1 with diagram

∞

Modulo inner by graph automorphisms we may assume that α(r1) = r1. Now r1r2 generates
an infinite cyclic subgroup that is characteristic (being the unique cyclic subgroup of index 2).
So α(r1r2) is r1r2 or r2r1, whence α(r2) is r2 or r1r2r1, and so α is the identity or conjugation
by r1. Thus we have proved the following.
4.5 Proposition If W is a Coxeter group with B positive semi-definite, then all auto-
morphisms of W are inner by graph, and hence

Aut(W ) ∼= W � Gr(W ).

§4.3 Hyperbolic Coxeter Groups

In this section we follow the terminology of Humphrey’s book [Hum90]. The following defi-
nitions are taken almost directly from §6.8 of [Hum90].
4.6 Definition Denote by ωs, s ∈ Π, the basis dual to the basis as, s ∈ Π, relative to B.
The cone C is defined as follows.

C = {λ ∈ V | B(λ, as) > 0 for all s ∈ Π } =
{∑

csωs | cs > 0
}
.

In particular, all ωs lie in the closure D of C, which is a fundamental domain for the
action of W on

⋃
w∈W w(C), a subset of the dual space.

4.7 Definition Define the irreducible Coxeter group W , with simple roots Π, to be
hyperbolic if B has signature (n− 1, 1) and B(λ, λ) < 0 for all λ ∈ C.

Humphreys’ definition, while being common, is not universally used. In §6.9 of [Hum90]
Humphreys provides a list of the hyperbolic Coxeter groups. The only infinite classes of
hyperbolic Coxeter groups are the rank three cases. If we exclude infinite bonds it is clear
that if W is an infinite rank three non-degenerate Coxeter group then Wi is finite for all i
and so W is nearly finite. Thus by Lemma 4.4 and Theorem 3.16 all automorphisms of W are
inner by graph. The degenerate cases are dealt with by Proposition 4.5, while rank 3 Coxeter
groups with infinite bonds are dealt with in Chapter 5.

We now concentrate on the rank ≥ 4 case. See Table I on page 70 for a complete list
of the groups mentioned in Humphreys. Immediately following Table I on page 74 is a full
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explanation of how to read this table. For later reference we have numbered the hyperbolic
Coxeter groups listed in [Hum90]. Table I gives this numbering, which roughly follows the
ordering of the diagrams by size in [Hum90] but is otherwise arbitrary.

It should be noted at this stage that not all hyperbolic groups are nearly finite. For
example, a group W of type H17 is hyperbolic but no parabolic subgroup of the form Wi

is finite. Note that all non-degenerate nearly finite groups have signature (n − 1, 1) and so
satisfy part of the definition of hyperbolic Coxeter groups.

In view of Corollary 1.44 and Theorem 3.16 there are several ways of showing that all
automorphisms of W are inner by graph. First we show that all automorphisms preserve
reflections. If the Coxeter diagram of W is a forest with no unusual labels, then we are
finished. Similarly if W is nearly finite. In other cases a different argument is used.

In some cases all reflections are conjugate to a simple reflection with the property
mentioned in Lemma 4.3 and so all automorphisms preserve Ref(W ). For example, if W is a
Coxeter group of type H32 on Humphreys’ list with diagram

6

1 2 3 4

the maximal finite standard parabolic subgroups of W are W2, W3 and W{a2,a3}. Now
〈r2〉 = W{a2,a3} ∩W3 and 〈r3〉 = W{a2,a3} ∩W2. Furthermore r1 = r2r1r2r1r2 is conjugate to
r2 and similarly r4 is conjugate to r3. Any reflection in W is conjugate to a simple reflection
and so by Lemma 4.3 all automorphisms of W map reflections to reflections.
4.8 Notation If W is a Coxeter group with Π the set of simple roots, then the parabolic
subgroup WΠ\{ai1 ,ai2 ,...} will be denoted by Wi1i2....

H01: Let W be a Coxeter group of type H01 with diagram

4 5

1 2 3 4

It is easily checked that the maximal finite standard parabolic subgroups are: W1 of type
H3, W2 of type A1 × I2(5), W3 of type I2(4) ×A1 and W4 of type B3. It is easy to see that

〈r1〉 = W2 ∩W3 ∩W4

and so, by Lemma 1.32, r1 is mapped to a reflection by all automorphisms. A similar argument
can be used for the remaining reflections. A similar argument can be used for the groups:
H01–H14 (the compact hyperbolic groups), H17, H21, H36, H37 and H55. Except for the
compact groups the arguments are summarized in Table II on page 74. The first 14 groups
listed there are the compact hyperbolic groups and we may use Lemma 4.4 to show that
Ref(W ) is preserved.
H18: Let W be a Coxeter group of type H18 with diagram

6

1 2

34

The maximal finite standard parabolic subgroups are: W3
∼= W4 of type A3 and W12 of type

I2(6). Now
〈r3〉 = W12 ∩W4

and all simple reflections are conjugate to r3. So, by Lemma 4.3, all simple reflections are
mapped to reflections by any automorphism. Hence the set of reflections is preserved by all
automorphisms.

A similar argument can be used for the groups: H18 – H20, H22, H23, H25, H26, H32,
H34, H42, H44, H45, H48, H50, H52 – H54, H56 – H58, H60, H61, H63 – H66, H68 – H70 and
H72. These arguments are summarized in Table III on page 75.
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H15: Let W be a Coxeter group of type H15 with diagram

4

4
1 2

34

The maximal finite standard parabolic subgroups are: W1
∼= W3 of type B3 and W4 of type

A3. Now
〈r2〉 = W1 ∩W3 ∩W4

and so r2 is always mapped to a reflection. Using the argument from H18 we can see that
r1 and r3 are conjugate to r2 and so are also always mapped to reflections. Now look at
W1 of type B3. Suppose that α is an automorphism of W . Then α(W1) is a maximal finite
subgroup of W of order 48. Thus α(W1) is a conjugate of either W1 or W3, and so, up to inner
automorphisms, we may assume that α(W1) = W1 orW3. Now there is a graph automorphism
which interchanges W1 and W3 and hence, up to inner by graph automorphisms, we can
assume that α fixes W1. Thus α|W1 is an automorphism of a group of type B3, and so r4 is
mapped to a reflection, by Proposition 2.8. As inner by graph automorphisms preserve the set
of reflections the original automorphism must also map reflections to reflections. (Note that
it is conceivable that the image of a parabolic subgroup of type B2k+1 could be a parabolic
subgroup of type A1 ×D2k+1, but for this diagram there are no parabolics of type A1 ×D3.)

A similar argument can be used for the groups: H15, H35, H51, H62 and H71. The
Table IV on page 76 summarizes the arguments.
H30: Let W be a Coxeter group of type H30 with diagram

5 6

1 2 3 4

The maximal finite standard parabolic subgroups are: W2 of type A1 × I2(6), W3 of type
I2(5) × A1 and W4 of type H3. The simple reflections r1, r2 and r3 can be dealt with by
noting that they are all conjugate and

〈r1〉 = W2 ∩W3 ∩W4.

Suppose that α is an automorphism and look at α(W3) which must be conjugate to a maximal
finite standard parabolic subgroup. A consideration of the orders shows that, up to inner
automorphisms, we may assume that α fixes W3 setwise. Now the centre of W3 is 〈r4〉 and
so α(r4) is the non-identity element in

Z
(
α(W3)

)
= Z(W3) = 〈r4〉

and so α(r4) = r4. Thus all automorphisms preserve the set of reflections.
In some cases this argument must be applied to a parabolic subgroup which is the

intersection of several maximal finite standard parabolic subgroups. For example consider
the argument for a group W of type H39 with diagram

4

1 2 3

4

5

There are two classes of reflections with r1 and r4 as representatives. The maximal finite
standard parabolics are W2, W3, W4 and W5 and it is easy to deal with r1 as

〈r1〉 = W2 ∩W3 ∩W4 ∩W5.

Now observe that 〈r4〉 is the centre of the parabolic subgroup W3 ∩ W5 which is of type
A1 × A2. If α is any automorphism, then by Corollary 1.31 α(W3 ∩ W5) is a parabolic
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subgroup of order 12. Hence, up to inner automorphisms, we may assume that α(W3 ∩W5)
is a standard parabolic subgroup. There are only two types of Coxeter group with order 12,
namely A1 ×A2 and I2(6), but W does not have a standard parabolic subgroup of type I2(6)
and so α(W3 ∩W5) is a standard parabolic subgroup of type A1 ×A2. In any case the centre
of such a subgroup has the form 〈ri〉 for some simple reflection ri and hence r4 is mapped to
a reflection.

Similar arguments can be used for the groups: H30, H31, H38 – H41, H43, H46, H47,
H49, H59 and H67. Table V on page 76, summarizes the arguments.
H28: Let W be a Coxeter group of type H28 with diagram

4 4 4

1 2 3 4

The maximal finite standard parabolic subgroups are: W2
∼= W3 of type A1×I2(4) and finally

W14 of type I2(4). The simple reflections r2 and r3 are easily dealt with as 〈r2〉 = W3 ∩W14

and similarly for r3. Suppose that α(r4) is not a reflection. Modifying α by inner by graph
automorphisms if necessary, we may assume that α(W2) = W2. Now

〈r1〉 = Z(W2) ∩W3

and so

〈α(r1)〉 = α
(
Z(W2)

) ∩ α(W3)
= Z(W2) ∩ α(W3)

Now W2 ∩ α(W3) = α(W2 ∩W3) is a parabolic subgroup of W2 of type A1 × A1, and hence
equals w〈r1, ri〉w−1 for some w ∈W2 and i = 3 or 4. So

Z(W2) ∩ α(W3) = w〈r1, ri〉w−1 ∩ Z(W2)
= w

(〈r1, ri〉 ∩ Z(W2)
)
w−1

= 〈wr1w−1〉.

Hence α(r1) = wr1w
−1, a reflection. A symmetrical argument shows that α(r4) is also a

reflection.
A similar argument can be used for the groups: H28, H29 and H33.

The remaining arguments apply to only one group on the list.
H16: Let W be a Coxeter group of type H16 with diagram

4

4

4
1 2

34

The maximal finite standard parabolic subgroups are: W3
∼= W4 of type B3 and W12 of type

I2(4). It is easily shown that r3 and r4 map to reflections. Now

〈r1, r2〉 = W3 ∩W4

is of type A2 and so α〈r1, r2〉 is, up to inner automorphisms, a standard parabolic subgroup
of order 6. Hence we may assume

α〈r1, r2〉 = 〈r1, r2〉.

But all the automorphisms of A2 fix the set of reflections, and so r1 and r2 are mapped to
reflections.
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H24: Let W be a Coxeter group of type H24 with diagram

4

1 2

3

4

The maximal finite standard parabolic subgroups are: W3
∼= W4 of type B3 and W2 of type

A1 × A2. For r1 note that 〈r1〉 = W2 ∩W3 ∩W4. Up to inner automorphisms, α(W3 ∩W4)
is a standard parabolic subgroup of order 8 and so we may assume

α(W2 ∩W3) = W2 ∩W3.

As r2 is a non-central involution in W2 ∩W3, α(r2) must also be a non-central involution in
this subgroup. Hence α(r2) is a reflection, and the remaining simple reflections are conjugate
to r2.
H27: Let W be a Coxeter group of type H27 with diagram

4 4

1 2 3 4

The maximal finite standard parabolic subgroups are: W1 of type B3, W2 of type A1 × A2

and W3 of type I2(4) ×A1. The reflections r3 and r4 are conjugate and

〈r4〉 = W1 ∩W2 ∩W3.

Up to inner automorphisms W1, of type B3, is fixed since it is the unique standard parabolic
subgroup of type A1×A2. Therefore, by Proposition 2.8, r2 is mapped to a reflection. Finally

〈r1〉 = Z(W2)

and up to inner automorphisms we may assume W2 is fixed and therefore r1 is also fixed; in
particular, it is mapped to a reflection.

§4.4 Automorphisms

We have just seen that if W is a hyperbolic Coxeter group, then any automorphism of W
preserves reflections. Thus if the Coxeter diagram of W is a forest with no unusual labels
or if W is nearly finite, then all automorphisms of W are inner by graph. These arguments
cover all but 4 of the types listed in Table I. The exceptions are H17, H21, H57 and H37. In
the first three cases a simple argument involving the signature of the form can be used; the
final case is a little more complicated.
H17: Let W be a Coxeter group of type H17 with diagram

4

4

4

4
1 2

34

Suppose we have an automorphism α. As shown in the previous section α maps reflections
to reflections. Choose bi ∈ Φ with α(ri) = rbi

, noting that there are two choices for each bi,
one positive the other negative. Replacing bi with −bi, if necessary, we may choose b1 such
that b1 · b4 = a1 · a4. Now choose the sign of b2 so that b1 · b2 = a1 · a2, and finally choose the
sign of b3 so that b2 · b3 = a2 · a3. We are now left with 2 possible values for b3 · b4, namely
b3 · b4 = ±√

2/2. In the following discussion these choices will be denoted as follows

4

4

4

4
1 2

34 b3 · b4 = a3 · a4

4

4

−4

4
1 2

34 b3 · b4 =
√

2/2 = −a3 · a4
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In the first of these two cases φα preserves the bilinear form, and so by Corollary 1.44 it
follows that α is inner by graph. The second case is impossible since the matrix (bi · bj) turns
out to be singular, contradicting Lemma 4.1. Virtually identical arguments to this apply for
the groups H21 and H57: in both cases φα must preserve the form since the alternative Gram
matrix turns out to be singular.

Finally the exceptional case: let W be a Coxeter group of type H37 with diagram

1

2

3

4

To save time label an edge with a minus sign if bi · bj = −ai · aj . If a vertex has two incident
edges labelled with a minus sign then changing the choice of bi corresponding to that vertex
removes two minus signs and adds one. If all three edges are labelled with minuses then
this removes them all. Thus we may reduce the number of minus signs until each vertex
is incident with at most one minus. Hence we can have at most two minus signs and they
cannot be incident. The case where there are two minus signs contradicts Lemma 4.1, since
(bi · bj) turns out to be singular.

We are left with the possibility that there is exactly one minus. The standard parabolic
subgroup W{a1,a2} is a maximal finite subgroup and so, up to inner by graph automorphisms,
we may assume that it is fixed elementwise. Now suppose that α(r3) = x and α(r4) = y. We
may assume that

a1 · x = a2 · x = a1 · y = a2 · y = −1
2

(4.9)

while x · y = 1/2. It is worthwhile noting at this point that as riaj = ai + aj for all i, j the
roots are all integral linear combinations of the simple roots, and hence x and y must also be
integer combinations of the ai. In view of the equations 4.9 it follows that x and y both lie
in the set { vr,s | r, s ∈ Z } where

vr,s = (−1 + r + s)a1 + (−1 + r + s)a2 + ra3 + sa4

Now
vr,s · vr,s = 1 − 3rs

and so if vr,s is a root we must have 1 − 3rs = 1 where r = 0 or s = 0. Thus

x = (−1 + r)a1 + (−1 + r)a2 + ra3

y = (−1 + s)a1 + (−1 + s)a2 + sa4,

for some integers r, s. This gives x · y = 1 − 3rs/2. But x · y = 1/2, and so

rs =
1
3

which implies that r and s are not both integers. Hence there is no such automorphism.
Thus we have proved the following theorem.

4.10 Theorem If W is a hyperbolic Coxeter group (in the sense of [Hum90]), then all
automorphisms of W are inner by graph and hence

Aut(W ) = Inn(W ) � Gr(W ).
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§4.5 Other Simple Diagrams

The results developed so far can clearly be used on a wide variety of Coxeter groups. For
example, consider the following obvious generalizations of types, E, F , G and H.

En :
1 2 3

4

5 6 n−1 n
. . . n ≥ 10

Fr,s : 4
1 2 s−1 s s+1 s+2 s+t

. . . . . . 2 ≤ s ≤ t, s+ t ≥ 6

Gr,s : 6
1 2 s−1 s s+1 s+2 s+t

. . . . . . 1 ≤ s ≤ t, s+ t ≥ 4

Hr,s : 5
1 2 s−1 s s+1 s+2 s+t

. . . . . . 2 ≤ s ≤ t or s = 1 and t ≥ 4.

Some of these types have already been covered: Types E10 = H70, F3,3 = H48, F4,2 = H47,
H1,4 = H11, H2,2 = H02, G1,3 = H31 and G2,2 = H32 correspond to hyperbolic groups.
4.11 Lemma Suppose that the Coxeter group W is the direct product of two nontrivial
irreducible parabolic subgroups WI and WJ of types An and Am respectively. If N is a
normal subgroup of W then one or other of the following two alternatives must hold:

(1) N = (WI ∩N)(WJ ∩N),
(2) N = {w ∈W | l(w) is even } = W+.

Proof Suppose that alternative (1) does not hold, and let w ∈ N with w /∈ (WI∩N)(WJ∩N).
Write w = xy with x ∈WI and y ∈WJ , and observe that neither x nor y is in N . Since N is
normal, conjugating by elements of WI shows that x′y ∈ N whenever x and x′ are conjugate
in WI , and hence x−1x′ = (xy)−1(x′y) ∈ N . So modulo WI ∩N the element x of WI is equal
to all its conjugates; that is, it is central in WI/(WI ∩N). Similarly, y(WJ ∩N) is central in
in WJ/(WJ ∩ N). But all symmetric groups have the property that the only quotient with
nontrivial centre is the abelianized group, which has order 2. So WI ∩ N and WJ ∩ N are,
respectively, the derived groups W ′

I and W ′
J of WI and WJ . Now N must be one of the three

subgroups of W containing W ′
IW

′
J . But N cannot be WIW

′
J or W ′

IWJ , since in both these
cases we would obtain N = (WI ∩N)(WJ ∩N). So N = {w ∈W | l(w) is even }.
4.12 Corollary Suppose that the Coxeter group W is the direct product of two nontrivial
standard parabolic subgroups WI and WJ of type An and Am respectively. Then the only
direct product decompositions of W are as follows.

(1) W ∼= WI ×WJ .

(2) W ∼= WI ×W+ if |I| = 1.
(3) W ∼= WJ ×W+ if |J | = 1.

Proof Suppose W = GH with G,H � W and G∩H = {1}. Suppose that neither G nor H
is W+. By Lemma 4.11 G = AB and H = CD where A,C � WI and B,D � WJ , and it fol-
lows that WI = AC and WJ = BD; moreover, these are direct product decomposition of WI

and WJ . But no symmetric group has a nontrivial direct product decomposition; so we de-
duce that either A = D = {1} or B = C = {1}, and hence that {G,H } = {WI ,WJ }.
Then H �= W+, and so we may write H = CD as above. Every proper normal sub-
group of a symmetric group is contained in the alternating group; so if C �= WI then
C = W+ ∩ C ≤ W+ ∩ CD = {1}. If D �= WJ then D ≤ W+ ∩ D = {1}. If C = WI

and D = WJ then W+ ≤ W = CD and contradiction. So either C = WI and D = {1} or
D = WJ and C = {1}. As W+ has index 2 in W the result follows.

Now consider the type En (n ≥ 10). The hypotheses of Corollary 3.20 are satisfied:
W4 is of type An−1, where n − 1 �= 5, and m43 is odd. So it follows immediately that all
automorphisms are inner (as there are no graph automorphisms).

For H1,n−1 (n ≥ 5) we see that W2 is finite and is the unique maximal standard
parabolic subgroup of type A1 × An−2, and r1 is the unique nonidentity central element
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of W2. It follows that any automorphism must map r1 to a conjugate of itself, and since all
reflections are conjugate we deduce that all automorphisms are reflection preserving. Hence
by Theorem 3.16 it follows that all automorphisms are inner (since again there are no graph
automorphisms).

For G1,n−1 (n ≥ 4) there are two classes of reflections, representatives of which are r1
and r2. The argument used for H1,n−1 applies to show that each automorphism maps r1 to
a conjugate of itself. Now W1 is finite and is the unique standard parabolic subgroup of type
An−1. Note that all the reflections inW1 are conjugate to r2. If n �= 6 then all automorphisms
of An−1 preserve reflections, and it follows that in this case all automorphisms preserve the
class of reflections conjugate to r2. If n = 6 we consider instead W3, which is the unique
maximal standard parabolic subgroup of type G2 × A3. Without loss of generality we may
assume that α is an automorphism of W satisfying α(W3) = W3. Thus α(r1r2)3 = (r1r2)3,
since (r1r2)3 is the unique nonidentity element of Z(W3). The only conjugates of r1 in W3

are r1, r2r1r2 and r1r2r1r2r1 and so α must permute these. It follows that

α(r2) = α(r1r2r1r2r1)α(r1r2)3 = s(r1r2)3

where s is r1, r2r1r2 or r1r2r1r2r1. In all these cases we find that α(r2) is conjugate to r2,
and so in this case also the class of reflections conjugate to r2 is preserved. It follows from
Theorem 3.16 that all automorphisms are inner (there being no graph automorphisms).

Now consider the cases Fs,t, Gs,t and Hs,t (2 ≤ s ≤ t). Observe that Ws and Ws+1

are the only standard parabolic subgroups of types As−1 × At and As × At−1. If α is an
automorphism of W then, modulo graph automorphisms if s = t, we conclude that α(Ws) is
conjugate to Ws and α(Ws+1) is conjugate to Ws+1. If s = 2 then r1 is the unique nonidentity
central element of Ws, and so α(r1) is conjugate to r1. If s > 2 then, by Corollary 4.12, each
automorphism of a group of type As−1 × At preserves the factors (since s − 1 < t). If
s− 1 �= 5 then all automorphisms of As−1 preserve reflections, and so it follows that α(r1) is
a reflection. If s− 1 = 5 we use Ws+1 instead of Ws. By Corollary 4.12 any automorphism of
a group of type As ×At−1 preserves or interchanges the factors, and since all automorphisms
of a group of type As preserves reflections we again conclude that α(r1) is a reflection.

If t = 2 then s = 2 and by symmetry we deduce that α(rs+t) is a reflection. If t > 2
then Ws+1 has type As × At−1, and if t − 1 �= 5 then any automorphism of such a group
maps the reflections of the At−1 factor to reflections. In particular, α(rs+t) is a reflection.

If t− 1 = 5 and s > 2 then by considering Ws (of type As−1 ×At) the same argument
again proves that α(rs+t) is a reflection.

Finally suppose that s = 2 and t = 6. Without loss of generality we may suppose that
α(W3) = W3 (of type A2 × A5). If α(r8) is not a reflection then α must induce a nontrivial
outer automorphism on the A5 factor; but we can still conclude that α(r8) has odd length.
So α(r8) /∈ W+. Now consider W2 = 〈r1〉 ×WJ , where J = { aj | 3 ≤ j ≤ 8 }. Since α(W2)
is conjugate to W2 we deduce that wα(WJ )w−1 is a direct factor of W2 for some w ∈ W .
Since wα(WJ )w−1 �⊆W+ we deduce from Corollary 4.12 that wα(WJ )w−1 = WJ , and since
automorphisms of groups of type A6 preserve reflections, we deduce that in fact α(r8) must
be a reflection. Thus in any case all automorphisms preserve reflections. Theorem 3.16 then
completes the proof that all automorphisms are inner by graph.

Note that this argument applies for Coxeter groups with the following diagram.

q

1 2 s−1 s s+1 s+2 s+t
. . . . . .
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Table I: Automorphisms of Hyperbolic Coxeter Groups

The Compact Hyperbolic Coxeter Groups

H01
4 5

1 2 3 4
W1 is finite of type H3

H02
5

1 2 3 4
W1 is finite of type H3

H03
5 5

1 2 3 4
W1 is finite of type H3

H04
5

1 2

3

4

W1 is finite of type A3

H05
4

1 2

34 W1 is finite of type B3

H06

4

4

1 2

34 W1 is finite of type B3

H07

5

4

1 2

34 W1 is finite of type B3

H08
5

1 2

34 W1 is finite of type H3

H09

5

5

1 2

34 W1 is finite of type H3

H10
4 5

1 2 3 4 5
W1 is finite of type H4

H11
5

1 2 3 4 5
W1 is finite of type H4

H12
5 5

1 2 3 4 5
W1 is finite of type H4

H13
5

1 2 3

4

5

W1 is finite of type D4

H14

4

1 2 3

45

W1 is finite of type B4
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The Non-Compact Hyperbolic Coxeter Groups

H15
4

4
1 2

34 H15 W1 is finite of type B3

H16
4

4

4
1 2

34 p. 65 W4 is finite of type B3

H17

4

4

4

4
1 2

34 H01 p. 66

H18
6

1 2

34 H18 W4 is finite of type A3

H19

6

4

1 2

34 H18 W1 is finite of type B3

H20

6

5

1 2

34 H18 W1 is finite of type H3

H21

6

6

1 2

34 H01 p. 67

H22

1 2

34 H18 W4 is finite of type A3

H23
1 2

3

4

H18 W4 is finite of type A3

H24
4

1 2

3

4

p. 66 W4 is finite of type B3

H25
5

1 2

3

4

H18 W4 is finite of type H3

H26
6

1 2

3

4

H18 W2 is finite of type A1 ×A2

H27
4 4

1 2 3 4
p. 66 Γ is a forest

H28
4 4 4

1 2 3 4
H28 Γ is a forest

H29
4 6

1 2 3 4
H28 Γ is a forest

H30
5 6

1 2 3 4
H30 W4 is finite of type H3

H31
6

1 2 3 4
H30 Γ is a forest

H32
6

1 2 3 4
H18 Γ is a forest

H33
6 6

1 2 3 4
H28 Γ is a forest

H34
6

1 2

3

4

H18 Γ is a forest

H35
4

41 2

3

4

H15 Γ is a forest

H36
4

4

41 2

3

4

H01 Γ is a forest
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The Non-Compact Hyperbolic Coxeter Groups

H37

1

2

3

4 H01 p. 67

H38
4 4

1 2 3 4 5
H30 Γ is a forest

H39
4

1 2 3

4

5

H30 Γ is a forest

H40
4

1 2 3

4

5

H30 Γ is a forest

H41
4

4

1 2 3

4

5

H30 Γ is a forest

H42
1 2

3

4

5

H18 W3 is finite of type A4

H43
4

1 2

3

4

5

H30 W3 is finite of type B4

H44
4

1 2

3

4

5

H18 Γ is a forest

H45

1 2

34

5
H18 W4 is finite of type D4

H46 44

1 2 3

45

H30 W1 is finite of type F4

H47
4

1 2 3 4 5 6
H30 Γ is a forest

H48
4

1 2 3 4 5 6
H18 Γ is a forest

H49
4 4

1 2 3 4 5 6
H30 Γ is a forest

H50
4

1 2 3 4

5

6

H18 Γ is a forest

H51
4

1 2 3

4

5 6
H15 Γ is a forest

H52
4 4

1 2 3

4

5 6
H18 Γ is a forest

H53
1 2 3

4

5

6

H18 Γ is a forest

H54
4

1 2 3

4

5

6

H18 Γ is a forest

H55
1

2

3

4

56

H01 Γ is a forest



Chapter 4 Further Infinite Coxeter Groups 73

The Non-Compact Hyperbolic Coxeter Groups

H56

4

1

2 3

4

56

H18 W1 is finite of type B5

H57

4

4

1

2 3

4

56

H18 p. 67

H58
1 2

3 4

56

H18 W6 is finite of type A5

H59
4

1 2 3

4

5 6 7
H30 Γ is a forest

H60
1 2

3

4

5

6 7
H18 Γ is a forest

H61
1 2

3 4

5

67

H18 W3 is finite of type A6

H62
4

1 2 3

4

5 6 7 8
H15 Γ is a forest

H63
1 2

3

4 5

6

7 8
H18 Γ is a forest

H64
1 2 3 4

5 6

7 8

H18 Γ is a forest

H65
1 2

3 4 5

678

H18 W3 is finite of type A7

H66
1 2 3 4

5

6 7 8 9
H18 Γ is a forest

H67
4

1 2 3

4

5 6 7 8 9
H30 Γ is a forest

H68
1 2

3

4 5 6

7

8 9
H18 Γ is a forest

H69
1 2

3 4 5

6

789

H18 W3 is finite of type A8

H70
1 2 3

4

5 6 7 8 9 10
H18 Γ is a forest

H71
4

1 2 3

4

5 6 7 8 9 10
H15 Γ is a forest

H72
1 2

3

4 5 6 7

8

9 10
H18 Γ is a forest
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Reading Table I The first column lists the name we will use, the second column gives the
Coxeter Diagram. In the compact hyperbolic case all maximal parabolic subgroups are finite
and all automorphisms preserve reflections. The final column gives the type of the parabolic
subgroup W1.

With the non-compact hyperbolic Coxeter groups some work must be done to show
that all automorphism preserve reflections. In those cases the third column lists the argument
used. For example, the group H26 has an H18 in the third column; this indicates that the
style of argument used for H18 in the text applies to this group. Other arguments are referred
to by a page number. For example, the p. 66 listed against H27 indicates that the proof that
all automorphisms of a Coxeter group of type H27 preserve reflections is on p. 66. For ease
of reference the standard arguments and the pages on which they appear are as follows.

H01 p. 63
H18 p. 63
H15 p. 64
H30 p. 64
H28 p. 65

The final column either specifies a finite maximal standard parabolic subgroup, in the
cases where W is nearly finite, or indicates that the diagram is a forest (with no unusual
labels), or again lists the page on which the proof is given.

Table II

The first column names the group being dealt with. The second column lists the
simple reflections in the order in which they are dealt with in subsequent columns. The third
column lists the maximal finite standard parabolics. The final column shows the intersections
of maximal finite subgroups which give subgroups of the form 〈ri〉 for ri from the list of class
representatives, in the order in which they are listed.

Group Reflections Maximal finite subgroups 〈ri〉 =

H17 r1, r2, r3, r4 W12,W13,W14,W23,W24,W34 W23 ∩W34,W13 ∩W34,W12 ∩W14,
W12 ∩W23

H21 r1, r2, r3, r4 W12,W13,W14,W23,W24,W34 W23 ∩W34,W13 ∩W34,W12 ∩W14,
W12 ∩W23

H36 r1, r2, r3, r4 W2,W13,W14,W34 W2 ∩W34,W13 ∩W14,W2 ∩W14,
W2 ∩W13

H37 r1, r2, r3, r4 W12,W13,W14,W23,W24,W34 W23 ∩W34,W13 ∩W34,W12 ∩W14,
W12 ∩W23

H55 r1, r2, r3, r4, W2,Wij , i �= j, i, j �= 2 W2 ∩W34 ∩W56,W13 ∩W45 ∩W46,

r5, r6 W2 ∩W14 ∩W56,W2 ∩W13 ∩W56,
W2 ∩W13 ∩W46,W2 ∩W13 ∩W45
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Table III

The columns are the same as those in the previous table except that the second column
only lists representatives of the classes of reflections.

Group Classes Maximal finite subgroups 〈ri〉 =

H18 r3 W3,W4,W12 W12 ∩W4

H19 r1, r2 W1,W2,W34 W2 ∩W34,W1 ∩W34

H20 r1 W1,W2,W34 W2 ∩W34

H22 r2 W2,W4,W13 W13 ∩W4

H23 r1 W2,W3,W4 W2 ∩W3 ∩W4

H25 r1 W2,W3,W4 W2 ∩W3 ∩W4

H26 r1, r2 W2,W13,W14,W34 W2 ∩W34,W13 ∩W14

H32 r2, r3 W2,W3,W14 W3 ∩W14,W2 ∩W14

H34 r1, r2 W1,W2,W34 W2 ∩W34,W1 ∩W34

H42 r1 W2,W3,W4,W5 W2 ∩W3 ∩W4 ∩W5

H44 r1, r2 W1,W2,W34,W35,W45 W2 ∩W34 ∩W35,W1 ∩W34 ∩W35

H45 r1 W2,W4,W13,W15,W35 W2 ∩W4 ∩W35

H48 r3, r4 W2,W3,W4,W5,W16 W2 ∩W4 ∩W5 ∩W16,W2 ∩W3 ∩W5 ∩W16

H50 r2, r3 W2,W3,W4,W15, W3 ∩W4 ∩W15 ∩W16,
W16,W56 W2 ∩W4 ∩W15 ∩W16

H52 r1, r4, r6 W2,W3,W5,W14, W2 ∩W3 ∩W5 ∩W46,W2 ∩W3 ∩W5 ∩W16

W16,W46 W2 ∩W3 ∩W5 ∩W14

H53 r1 W2,W3,W4,W5,W6 W2 ∩W3 ∩W4 ∩W5 ∩W6

H54 r1, r2 W2,W3,W14,W15,W16, W2 ∩W3 ∩W45 ∩W56,
W45,W46,W56 W3 ∩W14 ∩W56

H56 r1 W1,W4,W5,W6,W23 W4 ∩W5 ∩W6 ∩W23

H57 r1 Wij , i �= j W23 ∩W45 ∩W56

H58 r1 W2,W3,W4,W5,W6 W2 ∩W3 ∩W4 ∩W5 ∩W6

H60 r7 W1,W2,W3,W4,W5,W6 W1 ∩W2 ∩ · · · ∩W6

H61 r1 W2,W3,W4,W5,W6,W7 W2 ∩W3 ∩ · · · ∩W7

H63 r8 W1,W2,W3,W4,W5,W6,W7 W1 ∩W2 ∩ · · · ∩W7

H64 r1 W2,W3,W4,W5,W6,W7,W8 W2 ∩W3 ∩ · · · ∩W8

H65 r1 W2,W3,W4,W5,W6,W7,W8 W2 ∩W3 ∩ · · · ∩W8

H66 r1 W2,W3,W4,W5, W2 ∩W3 ∩ · · · ∩W9

W6,W7,W8,W9

H68 r9 W1,W2,W3,W4, W1 ∩W2 ∩ · · · ∩W8

W5,W6,W7,W8

H69 r1 W2,W3,W4,W5, W2 ∩W3 ∩ · · · ∩W9

W6,W7,W8,W9

H70 r10 W1,W2,W3,W4,W5, W1 ∩W2 ∩ · · · ∩W9

W6,W7,W8,W9

H72 r1 W2,W4,W5,W6,W7,W8, W2 ∩W4 ∩ · · · ∩W9 ∩W3,10

W9,W13,W1,10,W3,10
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Table IV

As well as the columns used in the previous tables the fifth column lists the simple
reflection which corresponds to ‘r1’ in a parabolic subgroup of type B2k+1. The final column
lists that standard parabolic subgroup of type B2k+1.

Group Classes Maximal fin. sbgps. 〈ri〉 = ‘r1’ B2k+1

H15 r2, r4 W1,W3,W4 W1 ∩W3 ∩W4 r4 W1

H35 r1, r3, r4 W2,W3,W4 W2 ∩W3 ∩W4 r3, r4 W4,W3 (resp.)

H51 r1, r6 W2,W3,W4,W5,W6 W2 ∩ · · · ∩W6 r6 W4

H62 r1, r8 W2, . . . ,W8 W2 ∩W8 r8 W4

H71 r2, r10 W2, . . . ,W9,W1,10 W3 ∩ · · · ∩W9 ∩W1,10 r10 W4

Table V

In addition to the usual first four columns there is a column which shows the centre
of a parabolic subgroup written as the intersection of maximal finite standard parabolic
subgroups.

Group Classes Maximal fin. sbgps. 〈ri〉 = Centre

H30 r1, r4 W2,W3,W4 W2 ∩W3 ∩W4 〈r4〉 = Z(W3)

H31 r1, r4 W2,W3,W4 W2 ∩W3 ∩W4 〈r4〉 = Z(W3)

H38 r1, r4, r5 W2,W3,W4,W5 W2 ∩W3 ∩W4 ∩W5 〈r4〉 = Z(W3 ∩W5),
〈r5〉 = Z(W3 ∩W4)

H39 r1, r4 W2,W3,W4,W5 W2 ∩W3 ∩W4 ∩W5 〈r4〉 = Z(W3 ∩W5)

H40 r1, r4 W2,W3,W4,W5 W2 ∩W3 ∩W4 ∩W5 〈r4〉 = Z(W3 ∩W5)

H41 r2, r4, r1 W2,W3,W4,W15 W3 ∩W4 ∩W15, 〈r1〉 = Z(W2 ∩W4)
W2 ∩W3 ∩W15

H43 r2, r1 W2,W3,W5,W14 W3 ∩W5 ∩W14 〈r1〉 = Z(W2 ∩W3)

H46 r2, r4 W1,W3,W4,W5 W1 ∩W3 ∩W4 ∩W5 〈r4〉 = Z(W3 ∩W5)

H47 r6, r1 W1,W2,W3,W4,W5 W1 ∩ · · · ∩W5 〈r1〉 = Z(W2 ∩W3 ∩W4)

H49 r2, r3, r6 W2,W3,W4,W5,W16 W3 ∩W4 ∩W5 ∩W16, 〈r6〉 = Z(W3 ∩W4 ∩W6)
W2 ∩W4 ∩W5 ∩W16

H59 r1, r7 W2,W3,W4,W5, W2 ∩ · · · ∩W7 〈r7〉 = Z(W3 ∩ · · · ∩W6)
W6,W7

H67 r1, r9 W2,W3,W4,W5, W2 ∩ · · · ∩W9 〈r9〉 = Z(W3 ∩ · · · ∩W8)
W6,W7,W8,W9



Chapter 5

Rank 3 Coxeter Groups

§5.1 Groups with Finite Bonds

As mentioned in the last chapter if W is an infinite rank 3 Coxeter group with finite labels
then all automorphisms of W are inner by graph. It is clear that W is nearly finite and that
all automorphisms preserve reflections (by Lemma 4.4) and the result follows by Theorem 3.16

if W is non-degenerate. If W is degenerate then the result is part of Proposition 4.5. The
rank 3 finite Coxeter groups are dealt with in Chapter 2.

§5.2 Groups With Infinite Bonds

The bulk of this chapter we deal with the rank three Coxeter groups with one or more edges
labelled with an infinity. If W is a Coxeter group with ri and rj reflections corresponding
to vertices in the diagram joined by an edge labelled with an infinity, then rirj has infinite
order and we set ai · aj = −1. Looking at rank three irreducible Coxeter groups with at least
one infinite bond there are five cases to consider:

∞ ∞
∞1

2

3 ,
m ∞

∞1

2

3 ,
m n

∞1

2

3 , ∞ ∞
1 2 3

and m ∞
1 2 3

where m,n ≥ 3. We will call these I1, I2, I3, I4 and I5 respectively.
The automorphism group of a Coxeter group where o(rirj) ∈ { 2,∞} for all i and

j has been found by Mühlherr in [Mü98], where he completes the work started by James,
[Jam88], and Tits, [Tit88]. These papers could be used to find the automorphisms of groups
of type I1 or I4; instead we present an alternative approach. We will use the relations given
in [Mü98] to describe the structure of Aut(W ) when W is of type I1.
5.1 Definition Let W be a Coxeter group with Π the set of simple roots. If ai ∈ Π and
K ⊆ Π, then denote by σi,K the function { ri|ai ∈ Π } →W defined by

σi,K(rj) =
{
rirjri if aj ∈ K and
rj otherwise.

In circumstances where σi,K extends to an endomorphism of W we also use σi,K to denote
that endomorphism. If K = { aj } or { aj , ak } then we write σi,j or σi,jk, respectively, for
σi,K .

I1: Let W be a Coxeter group of type I1 with diagram

∞ ∞
∞1

2

3

Observe that W = gp〈 r1, r2, r3 | r21 = r22 = r23 = 1 〉 is the free product of three groups of
order 2. Every element of W has a unique reduced expression and an expression is reduced if
and only if no two consecutive terms are equal. Taking any reduced expression and replacing
each ri, for some fixed i, by a reduced expression starting and ending with ri results in a
longer reduced expression.

77
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5.2 Lemma If i �= j, then σi,j is an automorphism of W .

Proof As we have seen the group W has the presentation

W = gp〈 r1, r2, r3 | r21 = r22 = r23 = 1 〉.

For all k it is clear that σi,j(rk) is an involution and so σi,j is an endomorphism of W . The
observation that σ2

i,K = 1 for all i and K completes the proof.

The maximal finite standard parabolic subgroups are 〈ri〉 for i = 1, 2 and 3, therefore
all automorphisms of W preserve reflections. Let α be an automorphism of W . Then α(r1)
is a conjugate of ri for some i and up to graph automorphisms we may assume that i = 1.
Similarly we can ensure that for all j, α(rj) is a conjugate of rj . The following lemma helps
classify those elements that are conjugates of the ri and together generate W .
5.3 Lemma Let W be a Coxeter group of type I1.

(1) Suppose that x3 = r3w3r3w
−1
3 r3 is a reduced expression in W . Then

r3 /∈ 〈 r1, r2, x3 〉.

(2) Suppose that x2 = rjw2r2w
−1
2 rj and x3 = rkw3r3w

−1
3 rk are reduced expressions

in W where { j, k } = { 2, 3 }. Then

r3 /∈ 〈 r1, x2, x3 〉.

(3) Suppose that x1 = riw1r1w
−1
1 ri, x2 = rjw2r2w

−1
2 rj and x3 = rkw3r3w

−1
3 rk are

reduced expressions in W where { i, j, k } = { 1, 2, 3 }. Then

r3 /∈ 〈x1, x2, x3 〉.

Proof For part (1) observe that since x3 has order 2 there is an epimorphism

f : W → H = 〈r1, r2, x3〉 ≤W

given by r1 
→ r1, r2 
→ r2 and r3 
→ x3. For each w ∈ W the element f(w) is computed
by replacing each r3 in the reduced expression for w by x3. Since the reduced expression for
x3 begins and ends with r3, the resulting expression for f(w) must also be reduced: no two
consecutive factors can be equal. So f is an isomorphism.

If the expression for w involves at least one r3 then l
(
f(w)

) ≥ l(x3) ≥ 3, and so
f(w) �= r3. If w does not involve r3 then f(w) = w �= r3. So r3 /∈ H.

The proofs for (2) and (3) are essentially the same as for (1).

5.4 Proposition Let W be a Coxeter group of type I1 with diagram

∞ ∞
∞1

2

3

then

Aut(W ) = 〈σ1,2,Gr(W )〉
=

(
Inn(W ) � 〈σ1,2, σ2,3, σ3,1〉

)
� Gr(W ).
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Proof If ρ ∈ Sym3 let γρ be the corresponding graph automorphism. If i �= j then
σi,j = ρ(1i)(2j)σ1,2ρ

−1
(1i)(2j). Furthermore if { i, j, k } = { 1, 2, 3 } then σi,jσi,k = σi,jk is conju-

gation by ri and hence is inner. Let

A = 〈σ1,2,Gr(W )〉 = 〈Inn(W ), σ1,3, σ2,3, σ3,1,Gr(W )〉

and suppose that α is an automorphism of W with α /∈ A. Replacing α by a suitable element
of αGr(W ) ⊂ αA, we may assume

α(r1) = xr1x
−1

α(r2) = yr2y
−1

α(r3) = zr3z
−1

where each of these expressions is reduced. Assume that α is chosen such that l(x)+l(y)+l(z)
is minimal. Since α �= 1 at least one of x, y, z is nontrivial and without loss of generality we
may assume that z �= 1. Let z = rkz

′ where l(z′) < l(z). If l(rky) < l(y) then following α by
conjugation by rk yields the automorphism α′ where

α′(r1) = (rkx)r1(rkx)−1

α′(r2) = (rky)r2(rky)−1

α′(r3) = z′r3z′
−1
.

Now l(rkx) + l(rky) + l(z′) ≤ l(x) + 1 + l(y)− 1 + l(z)− 1 < l(x) + l(y) + l(z) and so α′ ∈ A
contradicting the assumption that α /∈ A. Thus l(rky) > l(y) and similarly l(rkx) > l(x).

Suppose that x = y = 1. If k = 1 then we find that

ασ1,3 : r1 
→ r1

r2 
→ r2

r3 
→ α(r1r3r1)
= r1(zr3z−1)r1
= z′r3z′

−1
.

The total length has again been reduced and we are led to a contradiction as before, since
σ1,3 ∈ A. A similar argument applies for k = 2 and hence k = 3. But then we have
W = 〈r1, r2, r3z′r3z′−1

r3〉 contradicting Lemma 5.3, and this case cannot occur.
Now suppose that x = 1 but that y �= 1; say y = rjy

′, where l(y′) < l(y). Observe
that j �= k as l(rky) > l(y). If j = 1 or k = 1 then considering either ασ1,j or ασi,k leads to a
contradiction. Thus { j, k } = { 2, 3 }, and W = 〈r1, rjy′r2y′−1

rj , rkz
′r3z′

−1
rk〉 contradicting

Lemma 5.3. Similarly x �= 1 and y = 1 is impossible.
Finally suppose that x �= 1 and y �= 1. Let x = rix

′ and y = rjy
′ where l(x′) < l(x)

and l(y′) < l(y). If any two of ri, rj , rk are equal then following α by conjugation by this
element yields a contradiction while the case { i, j, k } = { 1, 2, 3 } contradicts Lemma 5.3.
Hence there is no such α and we have Aut(W ) = A.

Following [Mü98] let Spe(W ) = 〈Inn(W ), σ1,2, σ2,3, σ3,1〉. Then Spe(W ) is the group
of automorphisms of W that preserve the conjugacy classes of reflections. Thus

Aut(W ) = Spe(W ) � Gr(W ).

The proof to this point has shown that Spe(W ) is generated by the automorphisms of the
form σi,j and σi,jk. The theorem in [Mü98] shows that a presentation of Spe(W ) on these
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generators is given by the relations

σ2
1,2 = 1

σ2
1,23 = 1

σ1,2σ2,3 = σ1,23

σ1,2σ2,13 = σ1,23σ2,13σ1,23σ1,2

σ1,2σ3,12 = σ3,12σ1,2

σ1,2σ1,23 = σ1,23σ1,2

together with the relations found by applying any permutation in Sym3 to the above.
Modifying our notation, let us write i1 = σ1,23, i2 = σ2,13 and i3 = σ3,12; these in fact

correspond to the inner automorphisms of W given by r1, r2, r3. Written in terms of the
generators σ1,2, σ2,3, σ3,1, i1, i2, i3 the defining relations become

σ2
1,2 = σ2

2,3 = σ2
3,1 = 1,

i21 = i22 = i23 = 1,
σ1,2i2σ1,2 = i1i2i1, σ2,3i3σ2,3 = i2i3i2, σ3,1i1σ3,1 = i3i1i3,

σ1,2i3σ1,2 = i3, σ2,3i1σ2,3 = i1, σ3,1i2σ3,1 = i2,

σ1,2i1σ1,2 = i1, σ2,3i2σ2,3 = i2, σ3,1i3σ3,1 = i3.

Thus i1, i2, i3 generate a normal subgroupW isomorphic toW , and the action of the subgroup
S generated by σ1,2, σ2,3, and σ3,1 on W corresponds to the action of σ1,2, σ2,3, and σ3,1 on
W . Since the only further relations between σ1,2, σ2,3, and σ3,1 are σ2

1,2 = σ2
2,3 = σ2

3,1 = 1
we see that S is the free product of three groups of order 2, and Spe(W ) is isomorphic to the
semidirect product W � S. Thus

Aut(W ) =
(
Inn(W ) � 〈σ1,2, σ2,3, σ3,1〉

)
� Gr(W )

= (W � S) � Gr(W )
∼= (W �W ) � Sym3 .

I2: Let W be a Coxeter group of type I2 with diagram

m ∞
∞1

2

3

where m ≥ 3. Observe that W is the free product of a group of order 2 with a group of
type I2(m). The maximal finite subgroups are W3 and 〈r3〉 and so any automorphism of W
maps r3 to a conjugate of itself. Up to inner automorphisms we may assume that if α is any
automorphism, then α(W3) = W3. Thus α|W3 is an automorphism of a group of type I2(m)
with m ≥ 3, and hence preserves reflections. So α preserves Ref(W ), by Proposition 2.13.
5.5 Definition Let ζ : W3 → W3 be any automorphism of W3 and define αζ from
{ ri|ai ∈ Π } to W by

αζ(r1) = ζ(r1)
αζ(r2) = ζ(r2)
αζ(r3) = r3.

The next lemma shows that αζ extends to an automorphism of W . We also use αζ to denote
that automorphism.
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5.6 Lemma For all ζ the function αζ is an automorphism of W . If ζ �= 1 then αζ is not
an inner automorphism of W .

Proof It is clear that αζ is an endomorphism of W and that αζαζ−1 = 1. If αζ were
conjugation by w ∈W then w would centralize r3. If we recall that W is the free product of
〈r3〉 and a dihedral group it is clear that CW (r3) = { 1, r3 }. As ζ �= 1 we must have w = r3.
But conjugation by r3 does not fix W3 setwise; hence αζ is not inner.

Let µ be the automorphism of W3 which is conjugation by r1, and let α be the auto-
morphism of W which is conjugation by r1. Then

ααµ(r1) = r1

ααµ(r2) = α(r1r2r1) = r2

ααµ(r3) = α(r3) = r1r3r1.

Thus ααµ = σ1,3. Similarly if ν is the automorphism of W3 which is conjugation by r2 and
β is the automorphism of W which is conjugation by r2 then βαν = σ2,3.
5.7 Lemma Suppose that W is a Coxeter group of type I2 or I4 with diagram

m ∞
∞1

2

3 or ∞ ∞
1 3 2

If x3 = wr3w
−1 is a reduced expression, where w ∈W , then

〈 r1, r2, x3 〉 = W

if and only if w ∈ 〈 r1, r2 〉.
Proof Let ρi = (r3r2)ir3. Then as w ∈W we can find a unique expression for w of the form

w = p0ρi0p1ρi1 · · · pnρin
pn+1

where p0, pn+1 ∈ 〈r1, r2〉 and p1, . . . pn ∈ 〈r1, r2〉\〈r2〉. Note that the case n = −1 corresponds
to w ∈ 〈r1, r2〉. Since we have assumed that wr3w−1 is reduced, it follows that pn+1 �= 1
(unless w = 1). If n ≥ 0 then

〈r1, r2, wr3w−1〉 = 〈r1, r2, r3w′r3w′−1
r3〉

(for some w′ such that r3w′r3w′−1
r3 is reduced) and no term including an r3 can have

length 1. Thus if 〈r1, r2, x3〉 = W then n = −1, and so w ∈ 〈r1, r2〉.
5.8 Proposition Let W be a Coxeter group of type I2 with diagram

m ∞
∞1

2

3

then Aut(W ) = Inn(W ) � 〈αζ | ζ ∈ Aut(W3) 〉.
Proof Let α be an automorphism of W , a Coxeter group of type I2, and suppose, for a
contradiction, that α /∈ Inn(W )〈αζ | ζ ∈ Aut(W3) 〉. Replacing α by a suitable element of(
Inn(W )

)
α we may assume that α(W3) = W3. If ζ−1 = α|W3 then ααζ is an automorphism

of W fixing r1 and r2. Thus we may assume that α fixes r1 and r2 and (since α preserves
the conjugacy class of r3) that α(r3) = wr3w

−1. By Lemma 5.7, as α is an automorphism,
we must have w ∈W3. If

w = ri1ri2 . . . rin

where ij ∈ { 1, 2 } then

α = σin,3σin−1,3 · · · σi1,3 ∈ 〈 Inn(W ), αζ | ζ ∈ Aut(W3) 〉,
a contradiction. Since Lemma 5.6 gives Inn(W )∩〈αζ | ζ ∈ Aut(W3) 〉 = {1} the result follows.
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I3: Let W be a Coxeter group of type I3 with diagram

m n

∞1

2

3

where m,n ≥ 3. The maximal finite subgroups are W1 and W3. Thus 〈r2〉 = W1 ∩W3 and
hence any automorphism of W maps r2 to a reflection. Up to inner automorphisms α|W1 is
an automorphism of a group of type I2(m) with m ≥ 3 and hence r1 is always mapped to a
reflection, similarly for r3.

Let wi be the longest element of Wi and let ci = wir2, for i = 1, 3. If m is even then
c3 = ra where a = 1

s(πm)
(a1 +c(πm)a2) is the unique root in Φ+

{a1,a2} that is orthogonal to a2.
Similarly, if n is even then c1 = rb where b = 1

s(πn) (a3 + c(πn)a2). It follows from Theorem B
of [BH99] that

CW (r2) =




〈r2〉 if m and n are odd,
〈r2〉 × 〈ra〉 if m is even and n is odd,
〈r2〉 × 〈rb〉 if m is odd and n is even,
〈r2〉 × 〈ra, rb〉 if m and n are even.

where CW (r2) is the centralizer of r2 in W . (See also [Bri96].) If m and n are both even then

a · b =
−(1 + c(πm) c(πn)

)
s(πm) s(πn)

< −1,

and it follows that { a, b } is a root basis in the sense of Definition 1.38. Thus ra and rb are
simple reflections for the reflection subgroup of W they generate. The root system of this
reflection subgroup is the set {x ∈ Φ |x · a2 = 0 }.
5.9 Definition Let µ be an automorphism of W3 which fixes r2 and ν an automorphism
of W1 which fixes r2. Define αµ,ν : W →W to be the endomorphism satisfying

αµ,ν(r1) = µ(r1)
αµ,ν(r2) = r2

αµ,ν(r3) = ν(r3),

provided such an endomorphism exists.
In fact αµ,ν exists in all cases. Clearly αµ,ν(ri) is an involution for all i. Now

αµ,ν(r1r2) = αµ,ν(r1)αµ,ν(r2) = µ(r1)r2 = µ(r1r2)

and hence
(
αµ,ν(r1)αµ,ν(r2)

)m = 1. Similarly
(
αµ,ν(r2)αµ,ν(r3)

)n = 1, and thus the required
relations hold. and similarly for the rest. Thus αµ,ν defines an endomorphism of W . It is
clear that if µ, µ′ ∈ Aut(W3) and ν, ν′ ∈ Aut(W1) all fix r2 then

αµ,ναµ′,ν′ = αµµ′,νν′ .

Furthermore, αµ,ν = 1 if and only if µ = 1 and ν = 1. Thus

A = {αµ,ν |µ ∈ Aut(W3), ν ∈ Aut(W1) and µ(r2) = ν(r2) = r2 }

is a subgroup of Aut(W ) isomorphic to the direct product of the stabilizers of r2 in Aut(W3)
and Aut(W1).
5.10 Lemma With µ, ν as above, if αµ,ν is an inner automorphism then µ and ν are both
identity automorphisms or both conjugation by r2.
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Proof If αµ,ν is an inner automorphism, say αµ,ν(x) = wxw−1, then we have

wr2w
−1 = r2

wr1w
−1 ∈ 〈r1, r2〉

wr3w
−1 ∈ 〈r2, r3〉.

Thus we have wa2 = ±a2 and, using 1.12, wa1 = s((h−1)πm)
s(πm) a1 +

s
(
hπm

)
s(πm) a2 for some h and

wa3 = s((k−1)πn)
s(πn)

a1 +
s
(
kπn

)
s(πn)

a2 for some k. Identifying elements of W with their matrices
relative to { a1, a2, a3 },

w =


 s

(
(h− 1)πm

)
/ s(πm) 0 0

s(hπm) ±1 s
(
(k − 1)πn

)
/ s(πn)

0 0 s(kπn)/ s(πn)




As w can be written as a product of reflections det(w) = ±1. Hence

s
(
(h− 1)πm

)
s(πm)

× s(kπn)
s(πn)

= ±1.

Each of the two factors on the left of this equation is 0 or is at least 1 in absolute value; thus
we must have

s
(
(h− 1)πm

)
= ± s(πm)

s(kπn) = ± s(πn).

Looking at each possibility we find that wa1 is ±a1 or ±r2(a1) and wa3 is ±a3 or r2(a3).
Thus

wr1w
−1 = r1 or r2r1r2

wr2w
−1 = r2

wr3w
−1 = r3 or r2r3r2.

If w �= 1 or r2, then renumbering (swapping r1 and r2 if necessary) gives

wr1w
−1 = r1

wr2w
−1 = r2

wr3w
−1 = r2r3r2.

But then

−1 = a1 · a3

= wa1 · wa3

= ±(a1 · r2a3)
= ±(a1 · (a3 + 2c(πm)a2)

)
= ±(− 1 − 2 c(πm) c(πn)

)
.

But this forces c(πm) c(πn) = 0 or | c(πm) c(πn)| = 1 contradicting 3 ≤ m,n < ∞. Therefore
αµ,ν is inner only when µ and ν are both the identity or both conjugation by r2.
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We shall prove that Aut(W ) is generated by inner automorphisms, graph automor-
phisms (if m = n) and the automorphisms αµ,ν described above. Let α be an arbitrary
element of Aut(W ). Up to graph automorphisms we may assume that α(W3) is conjugate to
W3 and α(W1) is conjugate to W1; so up to inner and graph automorphisms we may assume
that α(W3) = W3 and α(W1) = uW1u

−1 for some u ∈ W . At the expense of modifying α
by a further inner automorphism, we may assume that u is the minimal length element in
W3uW1. Now

α
(〈r2〉) = α(W3) ∩ α(W1) = W3 ∩ uW1u

−1,

and by Corollary 1.28 we deduce that α(r2) = ri = urju
−1 for some i ∈ { 1, 2 } and j ∈ { 2, 3 }.

Furthermore ai = u(aj), since u(a2) and u(a3) are both positive.
If m and n are both odd then the only w ∈ W with w(a2) = a2 is w = 1, and it

follows that the equation u(ai) = aj determines u uniquely (since a1, a2, a3 all lie in the
same W -orbit). If j = 3 then either u = r3r2

n−1. . . . . (if i = 2) or u = (r2r1 m−1. . . . . )(r3r2 n−1. . . . . )
(if i = 1). However, both of these contradict the fact that u has minimal length in W3uW1.
Similarly, j = 2 and i = 1 leads to u = r2r1

m−1. . . . . , which again contradicts the minimality of
u. So i = j = 2 and u = 1. This gives α(W3) = W3, α(W1) = W1 and α(r2) = r2, and it
follows that α = αµ,ν , where µ = α|W3 and ν = α|W1 .

If n is odd and m even then r1 is not conjugate to either r2 or r3, and so we must
have i = 2. There are two elements w ∈ W with w(a2) = a2, namely 1 and r1r2

m−1. . . . . . So
if j = 2 then either u = 1 or u = r1r2

m−1. . . . . , and if j = 3 then either u = r3r2
n−1. . . . . or

u = (r1r2 m−1. . . . . )(r3r2 n−1. . . . . ). Again, only the case u = 1 is consistent with the fact that u is
minimal length in W1uW3, and as above we deduce that α = αµ,ν .

If m is odd and n is even then r3 is not conjugate to either r2 or r1, and so we must
have j = 2. The only elements of W with w(a2) = a2 are w = 1 and w = r3r2

n−1. . . . . . We
deduce that if i = 2 then either u = 1 or u = r3r2

n−1. . . . . , and if i = 1 then either u = r1r2
m−1. . . . .

or u = (r1r2 m−1. . . . . )(r3r2 n−1. . . . . ). Only u = 1 is possible, and again α = αµ,ν .
We are left with the case in which m and n are both even. For the next calculation we

allow n = 2 as we shall refer to this calculation again in case I5. Since r1, r2, r3 lie in separate
conjugacy classes we deduce that i = j = 2, and u lies in the subgroup {w |w(a2) = a2 }. As
explained above, this group is generated by the reflections ra = r1r2

m−1. . . . . and rb = r3r2
n−1. . . . . ,

and so u is an alternating product of ra’s and rb’s. Note that if the expression for u ends
with rb then u(b) is negative, and since b is in the root system of W1 this contradicts the
minimality of u in W3uW1. Similarly, u cannot begin with ra. So

u = (rbra)k

for some k.
Thus we have W = 〈α(r1), α(r2), α(r3)〉 = 〈r1, r2, rx〉, where x = (rbra)ka3. Now

x = (rbra)ka3

= (rbra)k
(
s(πn)b− c(πn)a2

)
= s(πn)(rbra)kb− c(πn)(rbra)ka2

= s(πn)(rbra)kb− c(πn)a2

since a and b are orthogonal to a2. But { a, b } forms a root basis where

a · b =
−(1 + c(πm) c(πn)

)
s(πm) s(πn)

= − cosh(t)

for some t (since a ·b < −1). The elements of the (infinite dihedral) root system generated by
a and b can be found by calculations analogous to those used to establish 1.12 and 1.13(the
finite case). We find that

(rbra)kb =
sinh

(
(k + 1)t

)
sinh(t)

b+
sinh(kt)
sinh(t)

a.
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We are given a1 · a2 = − c(πm) and as (rbra)ka2 = a2 we have

a2 · x = a2 · (rbra)ka3 = (rbra)ka2 · (rbra)ka3 = a2 · a3 = − c(πn).

Finally

x · a1 = s(πn)
sinh

(
(k + 1)t

)
sinh(t)

b · a1

+ s(πn)
sinh(kt)
sinh(t)

a · a1 + c(πm) c(πn)

= s(πn)
sinh

(
(k + 1)t

)
sinh(t)

(− 1 − c(πm) c(πn)
)

s(πn)

+ s(πn)
sinh(kt)
sinh(t)

s(πm) + c(πm) c(πn)

=
sinh

(
(k + 1)t

)
sinh(t)

(− 1 − c(πm) c(πn)
)

+
sinh(kt)
sinh(t)

s(πm) s(πn) + c(πm) c(πn)

≤ − sinh
(
(k + 1)t

)
sinh(t)

+
sinh(kt)
sinh(t)

+ c(πm) c(πn) < 1

If x ·a1 > −1 then it follows that the restriction of our bilinear form to the space V ′ spanned
by a1 and x is positive definite. By the main theorem of [Deo89], or alternatively Theorem 3.3
of [Dye90], the reflection subgroup W ′ = 〈r1, rx〉 is a Coxeter group on V ′. This implies, by
Lemma 1.1, that W ′ is finite, a contradiction as rxr1 = α(r3r1) is infinite, and so |x · a1| ≥ 1.
Hence x · a1 < −1. Thus { a1, a2, x } is a root basis for 〈r1, r2, rx〉 = W . Hence every root
in Φ+ can be expressed as a positive linear combination of a1, a2 and x. But it is clearly
impossible to express a3 as a positive linear combination of a1, a2 and x unless the coefficient
of a1 in x is zero. This coefficient is s(πn)

s(πm)
sinh(kt)
sinh(t) , which is zero if and only if k = 0. This

gives x = a3 and so α is the identity. Thus we have proved the following.
5.11 Proposition Let W be a Coxeter group of type I3 with diagram

m n

∞1

2

3

and A = {αµ,ν |µ ∈ Aut(W3), ν ∈ Aut(W1) and µ(r2) = ν(r2) = r2 }. Then

Aut(W ) = Inn(W )A (if m �= n)

or

Aut(W ) = Inn(W )AGr(W ) (if m = n)

where in the latter case we have |Gr(W )| = 2. Further Inn(W ) ∩ A has order 2, generated
by conjugation by r2.

I4: Let W be a Coxeter group of type I4 with diagram

∞ ∞
1 2 3

The maximal finite standard parabolic subgroups are W2 and 〈r2〉. Thus any automorphism
of W maps r2 to a conjugate of itself. The finite standard parabolics include the two just men-
tioned together with 〈r1〉 and 〈r3〉. So, by Proposition 2.3, representatives of the conjugacy
classes of involutions are r1, r2, r3 and r1r3.
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5.12 Definitions Define ψ : W → W by

ψ(r1) = r1

ψ(r2) = r2

ψ(r3) = r1r3.

Let γ be the obvious graph automorphism of W .
5.13 Lemma The function ψ is an automorphism of W which does not preserve reflec-
tions.

Proof The observations that r1, r2 and r1r3 are involutions and that

ψ(r1)ψ(r3) = r3 = ψ(r3)ψ(r1)

show that ψ is an endomorphism of W which does not preserve reflections. Noting that
ψ2 = 1 completes the proof.

Let α ∈ Aut(W ). If α does not preserve reflections then either α(r1) or α(r3) belongs
to the class of r1r3. Up to graph automorphisms we may assume that α(r3) is in the class of
r1r3. If α(r1) is conjugate to r1, then ψα preserves reflections, and if α(r1) is conjugate to r3
then ψγα preserves reflections. So we may suppose that α preserves reflections. Furthermore,
up to inner automorphisms α(W2) = W2 and hence up to inner by graph automorphisms we
may assume

α(r1) = r1

α(r3) = r3.

We know that α(r2) = wr2w
−1 and (by Lemma 5.7) as α is surjective we must have w ∈W2.

Hence α is inner, being conjugation by w. We have therefore proved most of the following.
5.14 Proposition If W is a Coxeter group of type I4 with diagram

∞ ∞
1 2 3

then Aut(W ) = Inn(W ) � 〈ψ, γ〉.
Proof It only remains to show that none of the automorphisms in 〈ψ, γ〉 are inner. As
〈ψ, γ〉 ∼= Sym3 we check the five non-identity automorphisms. Since

ψ(r3) = r1r3

γ(r1) = r3

ψγ(r3) = r1

γψγ(r1) = r1r3

ψγψγ(r1) = r3

none of the non-identity automorphisms preserve the conjugacy classes of reflections. So they
cannot be inner.

I5: Let W be a Coxeter group of type I5 with diagram
m ∞

1 2 3

The maximal finite standard parabolics are W2 and W3. Given that 〈r1〉 = W2 ∩W3 we
know that any automorphism of W maps r1 to a reflection. If α(r1) is conjugate to r2 but
not r1 then m must be even; however, in this case r2 is not conjugate to the reflections in
W2, whereas α(r1) is in subgroups from both conjugacy classes of maximal finite parabolics.
Thus α(r1) is a conjugate of r1.

Representatives of the classes of involutions are r1, r2, r3, r1r3 and the longest element
of W3; this last only occurs if m is even and if m is odd then r1 and r2 are conjugate. Now
r3 is not conjugate to any element in a parabolic subgroup of order 2m and so cannot be
mapped to an element in W3 by any automorphism. Thus, if α ∈ Aut(W ) then α(r3) is
conjugate to r3 or r1r3.
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5.15 Definitions Let ψ : W →W be the automorphism given by

ψ(r1) = r1, ψ(r2) = r2 and ψ(r3) = r1r3,

and for any automorphism ζ ofW3 such that ζ(r1) = r1 let αζ : W →W be the automorphism
given by

αζ(r1) = r1, αζ(r2) = ζ(r2) and αζ(r3) = r3.

(Thus αζ is analogous to αζ,1 for the I3 case.) Let

B = gp〈ψ, {αζ | ζ ∈ Aut(W3) such that ζ(r1) = r1 }〉.

Notice that αζψ = ψαζ for all ζ. Notice also that if ζ ∈ Aut(W3) is conjugation by r1
then αζ is conjugation by r1 on W . It is not hard to see that this is the only nontrivial inner
automorphism in the group B. For suppose that w ∈W induces an inner automorphism that
lies in B. Since all elements of B map r3 to r3 or r1r3, it follows that wr3w−1 = r3, since
r1r3 is not a reflection. Furthermore, wr1w−1 = r1, and wr2w−1 = rx for some x in the root
system of W3. So w(a2) is in the root system of W3, and since w(a2) ·w(a1) = a2 ·a1 it follows
that w(a2) is either a2 or r1(a2). The former possibility gives the identity automorphism and
the latter gives conjugation by r1.

Now let α be any automorphism ofW . Then up to the automorphism ψ we may assume
that α preserves reflections. Up to inner automorphisms we may assume that α(W3) = W3

and α(r1) = r1. Then µ = α|W3 is an automorphism of W3 that fixes r1, and so replacing α
with αµ−1α we get an automorphism of W that fixes both r1 and r2. As α(r3) is a conjugate
of r3 the methods used for I3 finish the proof of the following.
5.16 Proposition If W is a Coxeter group of type I5 with diagram

m ∞
1 2 3

then Aut(W ) = Inn(W )B and | Inn(W ) ∩ B| = 2.
Note that if ζ is conjugation by r1 then αζ is inner, being conjugation by r1. All other

ζ give rise to outer automorphisms.

There is one case still outstanding: Ã1×A1. Let W be a Coxeter group of type Ã1×A1

with diagram

∞1

2

3

The finite standard parabolic subgroups are 〈r1〉, 〈r2〉, 〈r3〉, 〈r1, r2〉 and 〈r2, r3〉. It is clear
that 〈r2〉 = Z(W ) thus we have α(r2) = r2 for all automorphisms α of W .
5.17 Definition Define α12 : W →W by

α12(r1) = r1r2

α12(r2) = r2

α12(r3) = r3.

It is easily seen that α12 is an automorphism of W . Let γ denote the obvious graph auto-
morphism.

Let α be any automorphism of W . Following α with an inner by graph automorphism
if necessary we may assume that α(W3) = W3. Now α(r2) = r2 and so either α(r1) = r1 or
α(r1) = r1r2. If α(r1) = r1r2, then α12α(r1) = α12(r1r2) = r1r2r2 = r1. Thus, replacing
α with α12α we may assume that α(r1) is conjugate to r1. Then α(r3) is conjugate to
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r3 or r2r3. If α(r3) = w′r2r3w′−1 then γα12γα(r1) = r1 and γα12γα(r3) = wr3w
−1, where

w = γα12γ(w′). So we may assume up to inner, γ and α12, that

α(r1) = r1

α(r2) = r2

α(r3) = wr3w
−1.

As r2 is central we may assume that w ∈ W2, and hence α|W2 is an automorphism of a
Coxeter group of type Ã1 with r1 
→ r1. Thus α|W2 is inner, by Proposition 4.5, and therefore
α is inner.
5.18 Proposition If W is a Coxeter group of type Ã1 ×A1 with diagram

∞1

2

3

then Aut(W ) = Inn(W ) � 〈α12, γ〉.
Proof It is easily checked that 〈α12, γ〉 is a group of type I2(4) and that none of the non-
identity automorphisms in this group preserves the classes of reflections. Thus

Inn(W ) ∩ 〈α12, γ〉 = { 1 } .
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Index and Notation

A, 82
Ã1

automorphism, 62
diagram, 61

Ã1 ×A1

automorphisms, 88
ab n. . . , 33
affine Weyl groups, 61
αµ,ν , 82
An, 7
An diagram, 7
automorphisms, 21
longest element, 7
normal subgroups, 40

Ãn

automorphisms, 62
diagram, 61

B = B(u, v)
degenerate, 1
non-degenerate, 1
positive definite, 1

B, 87
B̃2

automorphisms, 62
diagram, 61

Bn, 7
automorphisms, 28
diagram, 8
longest element, 8
normal subgroups, 40

B̃n

automorphisms, 62
diagram, 61

bond, 1

centralizer (CW (w)), 82
chain joining

conjugacy classes, 39
reflections r and r′, 16, 40

ci, 82
cl(wk), 20

C̃n

automorphisms, 62
diagram, 61

c(θ), 4
Coxeter diagram, 1

finite type, 36
Coxeter group, 1

degenerate, 1
graph universal, i
non-degenerate, 1
positive definite, 1

Deletion Condition, 3

disjoint union (∪̇), 2
Dn, 8

automorphisms, 28
diagram, 8
longest element, 9
normal subgroups, 41

D̃n

automorphisms, 62
diagram, 61

E6, 9
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42

Ẽ6

automorphisms, 62
diagram, 61

E7, 10
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42

Ẽ7

automorphisms, 62
diagram, 61

E8, 10
automorphisms, 29
diagram, 10
longest element, 10
normal subgroups, 42

Ẽ8

automorphisms, 62
diagram, 61

edge, 1
En, 21
En, 68
E ′

n, 21

E?
n, 21

F4, 10
automorphisms, 30
diagram, 10
longest element, 10
normal subgroups, 42

F̃4

automorphisms, 62
diagram, 61

finite type, 36
forest, 14
Fr,s, 68
fundamental domain, 62

G̃2

automorphisms, 62
diagram, 61

γ, 19
graph automorphisms, 5
graph universal, i
Gr,s, 68



Gr(W ), 5

H3, 11
automorphisms, 32
diagram, 11
longest element, 11
normal subgroups, 43

H4, 11
automorphisms, 32
diagram, 11
longest element, 11
normal subgroups, 43

Hn

see Table I, 70
Hr,s, 68

I1

automorphisms, 78
diagram, 77

I2(m), 9
automorphisms, 33
diagram, 9
longest element, 9

I2

automorphisms, 81
diagram, 77

I3

automorphisms, 85
diagram, 77

I4

automorphisms, 86
diagram, 77

I5

automorphisms, 87
diagram, 77

infinite bond, 77
infinite dihedral group, 84
inner by graph, 15
involution, 19
irreducible

group, 1
matrix, 35

length, 2
linked, 39
l(w), 2

maximal finite subgroup, 11

N(w), 2
nearly finite, 35
negative root, 1

parabolic subgroup, 4
maximal finite standard, 13

Φ, 1
Φ+, 1
Φ−, 1
ΦI , 4
φα, 14
Π, 1
πk, 4
positive definite, 1
positive root, 126/1/2001 91



92 Errata

Errata

Page 56 line 14. Replace the diagram

5

5

q3

1 5

2 4

with the diagram

5

5

q3

1 5

2 4

Page 56, line 21. Replace ‘q ≤ 5’ with ‘q = 5’.

Page 56, line 24. Replace the sentence ‘Thus Aut(W ) = R(W ).’ with: Thus Aut(W ) = R(W )
if q ≥ 5. If q = 3 or 4 then W3 is the unique maximal finite standard parabolic subgroup of its
type. The general argument in the proof of Theorem 3.16 then shows that all automorphisms
are inner by graph if q = 3 or 4. We now concentrate on the q ≥ 5 case.




