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Newton polyhedra generalize the notion of the degree. The
support s(P ) of a Laurent polynomial P is the set of the powers
of the monomials appearing in P with nonzero coefficients. The
Newton polyhedron ∆(P ) is the convex hull of s(P ).
Example. Let P be y2 + a0 + a1x+ a2x

2 + a3x
3, where a0 6= 0,

a1 6= 0, a2 6= 0, a3 6= 0. Then ∆(P ) is
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and s(P ) = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 0)}.
Discrete invariants of X ⊂ (C∗)n defined by a generic

equation P (x) = 0 with fixed support s(P ) do not de-
pend on the specific choice of the equation; they de-
pend only on Newton polyhedron ∆ = ∆(P ).
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Curve X ⊂ (C∗)2 defined by a generic equation P = 0.

Example 1 (Kh). The genus g(X) is equal to the numberB(∆)
of integral points in the interior of ∆ = ∆(P ).

Example 2 (Kh). Let X̄ = X
⋃
A(X) be a smooth compact

model of X. Then #A(X) equals to the number of integral
points in the boundary of ∆.

Example 3 (D.Berstein, Kh). The Euler characteristic χ(X)
of X is equal to the volume V (∆) of ∆ multiplied by −2!

Toy geometric application. The invariants 1)–3) are related:

χ(X̄) = χ(X) + #A(X) = 2− 2g(X).

It implies the Pick formula for an integral polygon ∆:

V (∆) = #((∆ \ ∂∆)
⋂

Z2) + 1/2#∂(∆
⋂

Z2)− 1.
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Toric varieties and the combinatorics of polyhedra
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Toric variety is a normal connected n-dimensional algebraic
variety M on which an (C∗)n acts algebraically and has one orbit
isomorphic to (C∗)n. Under the action of (C∗)n, M is broken
up into a finite number of orbits isomorphic to tori of different
dimensions. To every Newton polyhedron ∆, we can associate a
compact projective toric variety M∆ in such a way that every k-
dimensional face Γ ⊂ ∆ corresponds to a complex k-dimensional
orbit OΓ ⊂M∆. If Γ1 ⊂ Γ2, then OΓ1

⊂ ŌΓ2
.
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Simple polyhedra and quasismooth toric varieties

A bounded polyhedron is simple if it is an intersection of half-
spaces in general position. An n-dimensional simple polyhedron
has the same structure near each vertex as the positive orthant
in Rn near the origin. In particular, each vertex of a simple n-
dimensional polyhedron is incident with n edges, and any k of
these edges belong to one k-dimensional face containing the vertex.

The F -vector of a simple n-dimensional polyhedron is the vec-
tor (F0, . . . , Fn) where Fk is the number of k-dimensional faces
of the polyhedron. The necessary and sufficient conditions for a
vector to be F -vector of a simple n-dimensional polyhedron were
conjectured by McMullen.

Simple polyhedra correspond to guasismooth toric vari-
eties. Using topology and algebraic geometry of such varieties
Stanley, Billera and Lee proved McMullen’s conjecture.
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Polyhedra and groups generated by reflections in
Lobachevsky spaces

Theorem (Nikulin).The average number of l-dimensional faces
of a k-dimensional face of a simple n-dimensional polyhedron
for 0 ≤ l < k ≤ (n+ 1)/2 is ≤ f (l, k, n), where f is an explicit
function. If n → ∞, f tends to the number of l-dimensional
faces of a k-dimensional cube.

Theorem (Vinberg). In a Lobachevsky space of dimension
> 32, there are no discrete groups generated by reflections with
a compact fundamental polyhedron.

Theorem (Kh). The bound in Nikulin’s Theorem is valid not
only for simple polyhedra, but also for edge simple polyhedra.

Theorem (Prokhorov, Kh). In a Lobachevsky space of dimen-
sion > 995, there are no discrete groups generated by reflec-
tions with a fundamental polyhedron of finite volume.
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Problem: How many solutions in (C∗)n has a system of equa-
tions P1 = · · · = Pn = 0, where P1, . . . , Pn are generic Laurent
polynomials with the fixed supports A1, . . . , An ⊂ Zn?

Let us slightly reformulate the problem:

Let Ai ⊂ (Z)n be a finite set; let LAi be the space generated
xm, where m ∈ Ai. How many solutions in (C∗)n has a system
of equations P1 = · · · = Pn = 0 where P1 ∈ LA1

, . . . , Pn ∈ LAn
is a generic n-tuple of functions?

The Newton polyhedron ∆i of Pi is the convex hull of Ai.

Theorem (Kouchnirenko). If A1 = · · · = An = A, then the
number of solutions of the system is equal to the volume V (∆)
of ∆ = ∆1 = · · · = ∆n multiplied by n!

Theorem (Bernstein) (also known as BKK theorem). The num-
ber of solutions of the system is equal to the mixed volume
V (∆1, . . . ,∆n) of ∆1, . . . ,∆n multiplied by n!.
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Mixed volume
(∃ !) V (∆1, . . . ,∆n), on n-tuples of convex bodies in ∆i ⊂ Rn,

such that:

1. V (∆, . . . ,∆) is the volume of ∆;

2. V is symmetric;

3. V is multi-linear; for example,

V (∆′1 + ∆′′1 ,∆2, . . . ) = V (∆′1,∆2, . . . ) + V (∆′′1 ,∆2, . . . );

4. 0 ≤ V (∆1, . . . ,∆n);

5. ∆′1 ⊆ ∆1, . . . ,∆
′
n ⊆ ∆n⇒ V (∆′1, . . . ,∆

′
n) ≤ V (∆1, . . . ,∆n);

6. Alexandrov–Fenchel inequality

V 2(∆1,∆2, . . . ,∆n) ≥ V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n);

7. isoperimetric inequality (n = 2, ∆1 is the unite circle, ∆ = ∆2)

(
1

2
length of ∂∆)2 ≥ πV (∆).

8



Intersection index on an irreducible variety X

Let K(X) be the semigroup of spaces L of rational functions
on X such that: a) dimL < ∞, and b) L 6= 0. For L1, L2 ∈
K(X), the product is the space L1L2 ∈ K(X) generated by
elements fg, where f ∈ L1, g ∈ L2. Assume that dimX = n.

For L1, . . . , Ln ∈ K(X), the intersection index [L1, . . . , Ln] is

#x ∈ X : (f1(x) = · · · = fn(x) = 0),

where f1 ∈ L1, . . . , fn ∈ Ln is a generic n-tuple of functions. We
neglect roots x ∈ X , such that ∃ i : (f ∈ Li ⇒ f (x) = 0), and
such that ∃f ∈ Lj for 1 ≤ j ≤ n having a pole at x.

The intersection index is well-defined. It is multi-
linear with respect to the product in K(X).

BKK theorem computes the intersection index for X = (C∗)n
and for an n-tuple of spaces generated by monomials.

9



Grothendieck semigroup and group

For a commutative semigroup S let

a ∼ b⇔ (∃c ∈ S)|(a + c = b + c).

The Grothendieck semigroup Grs(S) of S is S modulo the
equivalents relation ∼.

The Grothendieck group Gr(S) of S is the group of formal
differences of Grs(S).

Let ρ : S → Grs(S) be the natural map.

Theorem (Kh). Let K be the semigroup of finite subsets Zn ⊂
Rn with respect to addition, then Grs(K) consists of convex
polyhedra and ρ(A) is the convex hull ∆(A) of A.

We need the following algebraic analog of this theorem.
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The Grothendieck semigroup Grs(K(X)) of K(X)

One can describe the relation ∼ in K(X) as follows: f ∈ C(X)
is called integral over L if it satisfies an equation

fm + a1f
m−1 + · · · + am = 0

with m > 0 and ai ∈ Li. The collection of all integral functions
over L is a finite-dimensional subspace L called the completion of
L. In K(X):

1. L1 ∼ L2⇔ L1 = L2;

2. L ∼ L;

3. L ∼M ⇒M ⊂ L.

The index [L1, . . . , Ln] can be extended to the Grothendieck
group Gr(K(X)) of K(X) and considered as a birationally
invariant generalization of the intersection index of
divisors which is applicable to non-complete varieties.
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Regularization of a semigroup of integral points

For a semigroup S ⊂ Zn of integral points let:
1) G(S) ⊂ Zn be the group generated by S;
2) L(S) ⊂ Rn be the subspace spanned by S;
3) C(S) be the closure of the convex spanned by S.

The regularization S̃ of S is the semigroup C(S) ∩G(S).

Theorem (Kaveh, Kh). Let C ′ ⊂ C(S) be a strongly con-
vex cone which intersects the boundary (in the topology of the
linear space L(S)) of the cone C(S) only at the origin. Then
there exists a constant N > 0 (depending on C ′), such that any
point in the group G(S) which lies in C ′ and whose distance
from the origin is bigger than N belongs to S.
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Semigroup of integral points and its NO body

Let M by a hyperplane in L(S). Let Mk be the affine space
parallel to M and intersecting G(S) and C(S) which has distance
k from the origin (the distance is normalized in such a way that
as values it takes all the non-negative integers k).

The Hilbert function HS of the semigroup S in the
codirection M is define by HS(k) = #Mk ∩ S.

The convex body ∆(S,M) = C(S) ∩M1 is by definition the
Newton–Okounkov of the semigroup S in the codirec-
tion M .

Theorem (Kaveh, Kh). The function HS(k) grows like aqk
q,

where q is the dimension of the convex body ∆(S), and the
q-th growth coefficient aq is equal to the (normalized in the
appropriate way) q-dimensional volume of ∆(S).
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Algebra of almost finite type, its NO body (begging)

Let F be a field of transcendence degree n over k. We deal with
graded subalgebras in the algebra F [t] of polynomials over F :

1.AL =
⊕

k≥0L
ktk, where L ⊂ F is a subspace, dimkL < ∞;

L0 = k and Lk is the span of all the products f1 · · · fk with
f1, . . . , fk ∈ L.

2. An algebra of almost integral type is a graded subalgebra
in some algebra AL.

We construct a Zn+1-valued valuation vt on F [t] by extending a
Zn-valuation v on F which takes all the values in Zn.

By definition the NO body of an algebra A of an almost
finite type is the NO body of the semigroup S(A) = vt(A \ {0})
projected to the first factor Rn × R→ Rn.
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Algebra and its NO body (continuation)

Theorem (Kaveh, Kh). The Hilbert function HA(k) of an
algebra A of almost integral type grows like aqk

q, where q =
dimR ∆(A) and aq is the (normalized in the appropriate way)
q-dimensional volume of ∆(A).

One defines a componentwise product of graded subalgebras.
Consider the class of graded algebras of almost integral type such
that, for k � 0, all their k-th homogeneous components are non-
zero. Let A1, A2 be algebras of such kind and put A3 = A1A2. It
is easy to verify the inclusion ∆(A1) + ∆(A2) ⊂ ∆(A3).

Brunn–Minkowsky inequality in convex geometry

V 1/n(∆1) + V 1/n(∆2) ≤ V 1/n(∆1 + ∆2).

Theorem (Kaveh, Kh). a
1/n
n (A1) + a

1/n
n (A2) ≤ a

1/n
n (A3).
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NO bodies and Intersection theory (beginning)

With a spaceL ∈ K(X), we associate the algebraAL, its integral
closure AL in the field C(X)[t] and their NO bodies ∆(AL) ⊆
∆(AL). For a big space L we have ∆(AL) = ∆(AL).

Theorem (Kaveh, Kh). For L ∈ K(X) we have:
[L, . . . , L] = n!Vol(∆(AL)).

Theorem implies the Kušnirenko theorem.

For any J ⊂ {1, . . . , n} let LJ be
∏
i∈J Li.

Theorem (Kaveh, Kh). For L1, . . . , Ln ∈ K(X) we have:

[L1, . . . , Ln] = (−1)n
∑
J

(−1)#(J)[LJ , . . . , LJ ] =

= (−1)n
∑
J

(−1)#(J)Vol(∆(ALJ)).
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NO bodies and Intersection theory (continuation)

The BKK theorem is a special case of the above theorem.

Proof:

1. The Newton polyhedron of the product of two Lau-
rent polynomials is equal to the sum of the corre-
sponding Newton polyhedra.

2. Let ∆1, · · · ,∆n be convex bodes in Rn. For any J ⊂ {1, . . . , n}
let ∆J be

∑
i∈J ∆i. The following formula holds:

n!V (δ1, . . . , δn) = (−1)n
∑
J

(−1)#(J)Vol(∆J).
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Brunn–Minkowsky inequality in intersection theory

Theorem (Kaveh, Kh). For L1, . . . , Ln ∈ K(X) we have:

∆(AL1L2
) ⊇ ∆(AL1

) + ∆(AL2
).

Brunn–Minkowsky inequality (Kaveh, Kh). Let L1, L2 ∈
K(X) and L3 = L1L2, then:

1. [L1, . . . , L1]1/n + [L2, . . . , L2]1/n ≤ [L3, . . . , L3]1/n.

2. In particular, for n = 2 we have:

[L1, L1]1/2 + [L2, , L2]1/2 ≤ [L1L2, L1L2]1/2.

Squaring the last inequality, one obtains the following

Hodge type inequality(Kaveh, Kh). For n = 2, we have

[L1, L1][L2, L2] ≤ [L1, L2]2.
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Alexandrov–Fenchel type inequality in algebra

Alexandrov–Fenchel inequality in convex geometry

V 2(∆1,∆2, . . . ,∆n) ≥ V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n).

Theorem (Kaveh, Kh). Let X, dimX = n, be an irreducible
variety, let L1, . . . , Ln ∈ K(X) and let L3, . . . , Ln be big sub-
spaces. Then [L1, L2, L3, . . . , Ln]2 ≥

[L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

An older version of this theorem dealing with the intersection
theory of divisors due to Teissier and Kh.

The Alexandrov–Fenchel inequality in convex geometry follow
easily from this theorem via the BKK theorem. This trick has
been known. Our elementary proof of the key analogue of the
Hodge index inequality which makes all the chain of arguments
involved elementary and more natural.
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Some other results (begginng)

1. Let Ka be the set of primary ideals of the ring of regular
functions at a ∈ X, dimX = n. The local intersection index
[L1, . . . , Ln]a for Li ∈ Ka is equal to the multiplicity at a of a
system f1 = · · · = fn = 0, where fi is a generic function from Li.
Local algebraic Alexandrov–Fenchel type inequality

[L1, L2, . . . , Ln]2a ≤ [L1, L1, . . . , Ln]a[L2, L2, . . . , Ln]a.

2. Let C ⊂ Rn be a strongly convex cone. A compact setA ⊂ C is
called C-co-convex body if C \A is convex. One can construct
a theory of C- co-convex bodies analogous to the theory of
convex bodies and define the mixed volume VC(Ai1 . . . , Ain) of an
n-tuple of C-co-convex bodies (Ai1 . . . , Ain).

Local geometric Alexandrov–Fenchel inequality
VC(A1, A2, . . . , An)2 ≤ VC(A1, A1, . . . , An)VC(A2, A2, . . . , An).
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Some other results (continuation)

3. NO body and reductive group action. For L ∈ K(X)
the NO body ∆(AL) strongly depends on a choice of Zn-valued
valuation v on C(X). If X is equipped with a reductive group
action and if one is interested only in the invariant subspaces L ∈
K(X), then one can use this freedom to make all results more
precise and explicit

4. NO body and Fujita approximation theorem. An-
other result of the theory: one can prove analogues of Fujita ap-
proximation theorem for semigroups of integral points and graded
algebras which implies a generalization of this theorem for arbi-
trary linear series.
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THANK YOU!
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