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1 General Information

You should start with a general information about honours studies at the University of Syd-
ney, the Faculty of Science web page honours in Science, and the |general overview of honours
in the School of Mathematics and Statistics.

1. Honowurs in Applied Mathematics

Honours in Applied Mathematics is a one-year program consisting of four 6 credit point
units of study and 24 credit points of research project. For more information about the
structure and completion requirements of Applied Mathematics honours program see
Table A.

2. Project supervision

The candidate is required to find a prospective supervisor from among the the School of
Mathematics and Statistics staff, who is agreeable to supervise the candidate’s project
in the candidate’s chosen topic. Students are required to submit to the Honours Coor-
dinator the Expression of Interest form approved by their supervisor before submitting
the honours application to the Faculty of Science. The form signed by the honours coor-
dinator should be attached to their online honours application.

3. Entry requirements

Current students at the University of Sydney may apply for admission to Bachelor of
Advanced Studies (Honours) (Mathematics (Applied)) or Bachelor of Science (Honours)
(Mathematics (Applied)) depending on whether they completed two majors or one major.
The [Faculty requirements which must be met include:

- qualifying for a degree in a major which is cognate to the proposed honours stream,
that is, a major (or two majors) which provides a suitable background for the hon-
ours stream. In borderline cases the decision of whether a major is cognate is in the
hands of the relevant Honours Coordinator and the Faculty of Science;

- having a WAM of at least 65;
- securing the agreement of a supervisor.

In addition, the School of Mathematics and Statistics may require that the student has a
total of at least 18 or 24 credit points (depending on their major requirement) of relevant
3000-level units of study in which:

- the average mark of advanced level units of study is at least 65;
- the average mark of mainstream level units of study is at least 75.

If you have completed a mix of advanced and mainstream units where some are above
and some below the thresholds, if you are not sure which of your courses are relevant,
or if your average is just on the wrong side of the threshold, you can seek further advice
from the relevant Honours coordinator.

4. Students from other institutions

Students from institutions other than the University of Sydney must possess qualifi-
cations which are deemed equivalent to the above and may apply for admission into
Bachelor of Science (Honours) (Mathematics (Applied)).


https://www.sydney.edu.au/study/study-options/honours.html
https://www.sydney.edu.au/science/study/undergraduate-courses/honours-in-science.html
https://www.maths.usyd.edu.au/u/UG/HM/coordinator/honours-overview_2024.pdf
https://rp.sydney.edu.au/handbooks/science/subject_areas_fm/mathematics_applied_honours_table.shtml
https://www.maths.usyd.edu.au/u/UG/HM/coordinator/expression_of_interests_math_stats.pdf
https://sydney.edu.au/science/study/undergraduate-courses/honours-in-science.html

5. Online honours applications to the Faculty of Science

Application and enrolment information should be obtained from the Faculty of Science
from their websites for current BSc or BSc/BAS students at the University of Sydney
and for students from other institutions.

— The Faculty of Science standard application deadline for honours commencing in
Semester 1 is 15 January and for honours commencing in Semester 2 it is 25 June.

— All acceptances into honours (including in cases where the schools requirements are
not met) are ultimately at the discretion of the School. However, a student meeting
all of the above criteria should be confident of acceptance.

6. Honours scholarships

For scholarships available to honours students, see the website.

For further details, you may contact the honours coordinator

Prof Marek Rutkowski: Carslaw 814; marek.rutkowski@sydney.edu.au

2 Important Dates in 2026

Semester 1: 23 February to 31 May
e Seminar presentation: Thursday/Friday, 23-24 April (week 8)
¢ Project submission: Monday, 25 May (week 13)
For students completing in Semester 1, 2026. An electronic file (pdf format) must be

uploaded on Canvas before the deadline.

e Examination period: 9-20 June

Semester 2: 3 August to 8 November
¢ Seminar presentation: Thursday/Friday, 24-25 September (week 8)
¢ Project submission: Monday, 2 November (week 13)
For students completing in Semester 2, 2026. An electronic file (pdf format) must be

uploaded on Canvas before the deadline.

e Examination period: 16-28 November


https://www.sydney.edu.au/students/honours.html
https://www.sydney.edu.au/students/information-for-bachelor-of-advanced-studies-current-students-.html
https://www.sydney.edu.au/courses/courses/uc/bachelor-of-science-honours.html
https://www.sydney.edu.au/scholarships/domestic/bachelors-honours/faculty/science.html

3 Applied Mathematics Honours

Independent research can be a life changing experience. In this honours program you will
complete a research project in the discipline of Applied Mathematics. Together with your su-
pervisor, you will identify a novel research question and develop a model, or propose some
mathematical or computational analysis. You will then carry out this program of work to pro-
duce results that can be interpreted in terms of the underlying real-world problem. Your work
will be assessed by a twenty minute presentation towards the end of your honours year and a
40 to 60 page honours thesis. Successful completion of your honours will clearly demonstrate
that you have mastered significant research and professional skills for either undertaking a
PhD or any variety of future careers.

3.1 Honours structure

Honours in Applied Mathematics consists of four 6-credit point coursework units including
two core units in Applied Computational Mathematics and Advanced Methods in Applied
Mathematics. Students will also complete 24-credit points of research project.

3.2 Coursework (24 credit points)

1. Core units (12 credit points)
Students are required to complete the following core units of study:

— Semester 1: MATH4411 Applied Computational Mathematics
— Semester 2: MATH4412 Advanced Methods in Applied Mathematics

2. Selective units (12 credit points)
In addition to two core units, students should choose their two selective units from units
offered by the School of Mathematics and Statistics listed as 4000 level or higher, which
have not already been taken for credit with the proviso that at most one unit labelled
5000 or higher may be taken. For the full list of selective units available to honours stu-
dents in Applied Mathematics, see Table Al Your selection of units should be discussed
with your supervisor and you should get their approval of your choice of selective units.

3.3 Honours project AMAT4103-4106 (24 credit points)

Each student is required to complete an honours project (composed of a written thesis and a
seminar presentation) on an Applied Mathematics topic, under the supervision of a member
of staff of the School of Mathematics and Statistics. Students should enrol in two project units
in each semester: AMAT4103-4104 in their semester 1 and AMAT4105-4106 in their final
semester.

3.4 Applied Mathematics honours coordinator in 2026

Prof Marek Rutkowski
Room 814, Carslaw Building
Email: marek.rutkowski@sydney.edu.au
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https://www.maths.usyd.edu.au/u/PG/
https://rp.sydney.edu.au/handbooks/science/subject_areas_fm/mathematics_applied_honours_table.shtml

4 Core Units of Study

MATH4411 Applied Computational Mathematics (Semester 1)

Computational mathematics fulfils two distinct purposes within Mathematics. On
the one hand the computer is a mathematicians laboratory in which to model prob-
lems too hard for analytical treatment and to test existing theories; on the other
hand, computational needs both require and inspire the development of new math-
ematics. Computational methods are an essential part of the tool box of any math-
ematician. This unit will introduce you to a suite of computational methods and
highlight the fruitful interplay between analytical understanding and computa-
tional practice.

In particular, you will learn both the theory and use of numerical methods to simu-
late partial differential equations, how numerical schemes determine the stability
of your method and how to assure stability when simulating Hamiltonian systems,
how to simulate stochastic differential equations, as well as modern approaches to
distilling relevant information from data using machine learning. By doing this
unit you will develop a broad knowledge of advanced methods and techniques in
computational applied mathematics and know how to use these in practice. This
will provide a strong foundation for research or further study.

MATH4412 Advanced Methods in Applied Mathematics (Semester 2)

Much of our physical world is nonlinear. If you take two rulers and place one on top
of another, the height of the combined object is the sum of the individual heights of
each ruler. But whether you are looking at herds of bisons in a landscape, the viral
load in an infective patients bloodstream, or the interaction of black holes far away
in the universe, it turns out the sum of individual components does not necessarily
give a true measure of reality. To describe these systems, we need methods that
apply to nonlinear mathematical models.

This course will cover theoretical methods (some exact, some in limits and oth-
ers that are qualitative) to describe, solve and predict the results of such mod-
els. Classical mathematical methods were developed for linear models. We will
start with building blocks to describe models of semi-classical quantum mechanics
and related orthogonal polynomials. These turn out to be generalizable to models
that arise in modern physics, such as quantum gravity and random matrix theory.
These lead naturally to integrable systems.



5 Choice of Selective Units of Study

In addition to the core units, honours students in Applied Mathematics should choose their
two selective units from units offered by the School of Mathematics and Statistics listed as
4000 level or higher, which have not already been taken for credit with the proviso that at
most one unit labelled 5000 or higher may be taken. Your choice of selective units of study
should always be done in consultation with a supervisor of your research project.

For the full list of selective units available to students enrolled in Applied Mathematics
honours and specific rules governing your honours studies, see Table Al

6 SCIE4999 Final Honours Mark Unit

SCIE4999 Final Honours Mark Unit. All students in Science Honours must enrol in this
non-assessable unit of study in their final semester (but not before the final semester). This
unit will contain their final Honours mark as calculated from the coursework and research
project units (50% each).

Applied Mathematics honours students should enrol in AMAT4103 and AMAT 4104 in the
first semester of their honours year and in AMAT4105 and AMAT4106 in the second semester.
They should be correctly enrolled in their final project unit AMAT4106 and SCIE4999 in their
projected final semester.

N.B.: Changes to enrolments into AMAT4106 and SCIE4999 must be made before the census
date and will only be approved if they are the “fault” of the university. A student’s error is
not an acceptable reason. Wording of forms must represent how this was the error of the
school/faculty/university or it will not be accepted by the fees team.

7 Marking Scale for Honours

The final honours mark SCIE4999 for each student is based on the following marking scheme:
e 50% for the project unit AMAT4103-4106,

e 50% for four units of study (12.5% for each).

The marking scale for Honours is significantly different from the undergraduate marking
scale at the University of Sydney. The project will be marked with this scale in mind.

GRADE OF HONOURS FACULTY-SCALE
First Class, with Medal 95-100
First Class (possibly with Medal) 90-94
First Class 80-89
Second Class, First Division 75-79
Second Class, Second Division 70-74
Third Class 50-69
Fail 00—49



https://rp.sydney.edu.au/handbooks/science/subject_areas_fm/mathematics_applied_honours_table.shtml

8 Honours Research Project in Applied Mathematics

A significant part of the honours year is the completion of a research project by each student.
Each student must choose a project supervisor who is willing to supervise the student’s chosen
topic for the project. Project topics and supervisors should be finalised by the beginning of
the first semester, so that students can commence work immediately on their projects. The
following list shows the main Applied Mathematics research areas:

e Dynamical systems

e Geophysical and astrophysical fluid dynamics

Industrial and biomedical modelling

Integrable systems

Mathematical biology

Members of the Applied Mathematics Research Group in 2026: Anna Aksamit, Eduardo Alt-
mann, Nathan Duignan, Holger Dullin, Ben Goldys, Georg Gottwald, Nalini Joshi, Peter
Kim, Christopher Lustri, Robert Marangell, John Mitry, Mary Myerscough, Jordan Pitt, Pan-
tea Pooladvand, Milena Radnovié, Pieter Roffelsen, Marek Rutkowski, Martin Wechselberger,
Caroline Wormell, Yiming Ying, Dingxuan Zhou, Zhou Zhou.

Their email addresses and research interests can be found here.

8.1 Project assessments

The final mark from the project unit AMAT4103-4106 will be awarded according to the fol-
lowing marking scheme:

e 70% for the written honours thesis,
e 20% for an oral exam on the honours thesis,

e 10% for a seminar presentation on the honours project.

The written thesis will be marked by three examiners and each marking will therefore con-
stitute 1/3 of the final mark from the written thesis.

The seminar is an opportunity for each student to present the material of their research
project to members of Applied Mathematics Research Group. The seminar talk will be of 25
minutes duration, with an additional 5 minutes set for questions from staff members and
fellow students. The presenter of the best talk will be awarded the Chris Cannon Prize.

The oral exam of 30 minutes duration on the honours thesis will be conducted during the
second week of the final exam period.

Marks for the thesis and seminar presentation will be awarded for:
(i) selection and synthesis of source material,
(i) evidence of understanding;
(iii) evidence of critical ability;
(iv) clarity, style and presentation;
(v) mathematical and/or modelling expertise.


www.maths.usyd.edu.au/ut/people.html

8.2

Project guidelines

The student should consult the supervisor on a regular basis, preferably at least once a
week. This is the student’s responsibility.

A realistic schedule for work on the project should be drawn up at an early stage, and
adhered to as closely as possible. If it proves necessary to modify the original plans, a
revised schedule should be drawn up after discussion with the supervisor.

At the end of Semester 1, a one page report is to be submitted to the Honours Coordi-
nator. This report includes a half page description about the students aim/scope of the
project and a half page description about what the student has achieved in Semester 1
and what the student wants to achieve in Semester 2. This report has to be approved by
the supervisor before submission.

The project should be based on some four to six original primary source articles, which
themselves represent a substantial contribution to the topic. Secondary sources, such as
books, review papers, etc., should also be consulted and cited.

The thesis should be both a discursive and a critical account of the selected topic. It
should be written at a level that an expert Applied Mathematician can be expected to
understand. The work must contain substantial mathematical content.

Students are recommended to use IATEX in typesetting their projects. Additional infor-
mation on KTEX can be found here.

The length of the written thesis should be between 40 to 60 typed (normal IZTgX font size)
A4 pages. Only in exceptional circumstances, and after consultation with the supervisor,
should the project exceed 60 pages. This number includes all figures, contents pages,
tables, appendices, etc. Computer programs essential to the work should be included
(with adequate commentary) as additional material.

Computer programs essential to the work should be included (with adequate commen-
tary) as additional material in appendices.

Students should be careful to provide full and correct referencing to all material used
in the preparation of projects. Be explicit in stating what is your contribution and what
is someone else’s contribution. Avoid quoting verbatim unless reinforcing an important
point.

Three examiners will be appointed to assess each written thesis. Although marking
schemes might sligtly vary, the assessment of the thesis will be based on:

(i) selection and synthesis of source material;
(i1) evidence of understanding;

(iii) evidence of critical ability;

(iv) clarity, style and presentation;

(v) mathematical and/or modelling expertise.

Students who have worked on their project topics as Vacation Scholars are required to
make a declaration to that effect in the preface of their thesis.


https://www.maths.usyd.edu.au/u/SMS/texintheschool.html

8.3 Recent honours theses in Applied Mathematics

e Hamish Blair: Microlocal analysis and the geometry of distributions.
e Nicholas Cranch: Customising the stability of truncation schemes.

e Kai Nielson: The effects of partial slip on the stability of the rotating disc boundary
layer.

e Jessica Slegers: Harnack-type inequalities for nonlinear evolution equations
e Samuel Lin: Symmetries and exact solutions of PDEs.

e Chamal Perera: Orbits of a small satellite co-orbiting around a Lagrange point 1 space
station.

e Timothy Lapuz: A geometric approach to transonic accretion flows: Stars and black
holes.

e Andre Nunez: Optimal sex allocation for dioecious species.

e Viney Kumar: How does the evolution of monogamy depend on human life history? A
mathematical model.

e Kenny Chen: Partial difference equations on face centred cubic lattices.

e Charles Lilley: Optimising a novel combination cancer treatment.

e Emily Cooper: Modelling refugee behaviour.

e Mia Bridle: Spectral analysis of coupled and decoupled eigenvalue problems.
e Elizabeth Rose: The vortex filament equation.

e Yige Bian: Mathematical modelling of cancer immunotherapy.

e Ren Li: Optimal tensor network decoder for fault-tolerant quantum error correction of
the XZZX surface code.

e Patrick Cahill: Who'’s going to win? Modelling elections with an adapted Hegselmann-
Krause model and data assimilation.

e Harry Hiatt: A traveller’s guide to billiard knots.

e Yuan Xu: A lipid-structured model of atherosclerosis with smooth muscle cell-derived
macrophages.

e Ivan Hu: Glycolytic oscillations in the integrated oscillator model.

e Charlotte Banbury: Mathematical modelling of T cell and cancer cell dynamics in the
immune system.

e Kate Fiumara: Modelling of T cell affinity maturation.



Ewan Macfarlane: Null geodesic trajectories of photons around Schwarzschild black
holes with Hamiltonian methods: The Halo Drive.

Lei Qu: Balancing exploration and exploitation: Exploratory optimal control and stop-
ping time.

Georgia Wang: Mathematical modelling of tumour-immune dynamics in combination
checkpoint blockade therapy.

Fei Han: Differentially private stochastic gradient descent.

Quinn Cooney: Dives and Lazarus: Time evolution of revival PDEs, and characterisation
of weak revivals.

Zhiyi Wang: Spectral analysis of self-adjoint operators with application in quantum
mechanics.

Xavier Dimos: Applications of rotors to Melnikov theory for piecewise-smooth systems.



8.4 Proposed project topics in 2026

You will find below a list of proposed project topics for honours students in Applied Mathemat-
ics in 2026. Prospective students interested in any of these topics are encouraged to discuss
them with the named supervisors as early as possible.

Notice that the list of project topics is not exhaustive and thus you may wish to suggest
your own topic for the project or discuss any other topic with a potential supervisor. How-
ever, each student must find a member of staff who will agree to supervise the project before
applying for admission to Applied Mathematics honours.

Meso-scale structures in complex networks
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

Characterizing the main statistical features of complex networks is an important step in
the study of a variety of systems, from social media to ecology. One of the most successful
approaches is to identify groups of nodes with similar connectivity patterns to obtain an in-
termediate, meso-scale, description of the network as a whole. The goal of this project is to
explore data-analysis methods for the detection of such structures with mathematical models
that reveal the mechanisms behind their formation.

Random walks in Monte Carlo
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

Markov Chain Monte Carlo (MCMC) methods allow for efficient computational explorations
of rare configurations that are widely used in Applied Mathematics, Data Science, and Ma-
chine Learning. The goal of this project is to study different MCMC methods and their suit-
ability to address problems of interest in the study of problems of interest, which could focus
on the sampling of infection trees in epidemics or on triangulation of manifolds in computa-
tional topology.

Fractals in transient chaos
Prof E. Altmann; Carslaw 526; eduardo.altmann@sydney.edu.au; phone 9351-4533

One of the most beautiful aspects of non-linear dynamics is that their long-time behaviour
is often described by fractal sets. This happens not only in the famous case of chaotic at-
tractors but also in dynamical systems in which the asymptotic dynamics is trivial, but the
transient dynamics is chaotic. In this project we will investigate how such fractal sets appear
in simple dynamical systems and how they change with the presence of perturbations, such
as noise or dissipation in an otherwise Hamiltonian system.
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Quantizing Painlevé equations.
Dr H. Desiraju; Carslaw 630; harini.desiraju@sydney.edu.au

Description: Painlevé equations are a class of integrable second order ODEs with an ex-
traordinarily rich mathematical foundation, from their Hamiltonians to the associated geom-
etry. As such, the problem of quantizing these equations is a multi-faceted one, in the sense
that one could quantize one or more of their associated structures. These quantizations have
recently appeared in several areas of mathematics and physics from random matrices to black
hole physics. In this project we would study the quantization of Painlevé equations in one or
more ways, using their Hamiltonians and associated linear problems for example.

Finding regularity in chaos
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Chaotic systems are identified by the unpredictability of their motions. Some examples
include models of the weather, planetary motion, or the ion trajectories in a nuclear fusion
reactor. Remarkably, these chaotic systems often have a subset of initial conditions which
provide predictable, regular motion. Finding the initial conditions that lead to regular motion
is essential to understanding the motion of a chaotic system. In particular, for nuclear fusion
reactors, it is crucial to try and maximise the initial conditions that give regular motion to
achieve a stable reactor. In this project, you will study techniques for detecting regions of
chaos and apply it to an important system, for example, nuclear fusion reactors.

Numerical detection of integrability
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Integrable systems are identified by their complete predictability. Some examples include
the two-body problem, some problems of rigid body dynamics, and magnetic fields constructed
for optimal confinement of a plasma. The study of integrable systems lies on the intersec-
tion of dynamical systems, differential geometry, topology, algebra, and much more. Given a
system with parameters, it is often important to know when this system is integrable. For
example, in the case of confinement of a plasma, the magnetic field lines need to form an inte-
grable system to ensure the plasma is confined. In this project, you will develop a technique
for numerically finding when a value of the parameters gives an integrable system and apply
it to important systems.

Optimal magnetic axes
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au A stellarator is a proposed de-

vice for the magnetic confinement of the plasma created in a nuclear fusion reaction. In a
stellarator, the magnetic field lines form the shape of a twisted donut. At the centre of the
stellarator lies a magnetic field line which closes on itself to form a loop, called the mag-
netic axis. In this project you will try to understand how the entire stellarator must look for
good confinement of a plasma based purely off the shape of the magnetic axis. The project
could involve methods from differential geometry, dynamical systems, Hamiltonian mechan-
ics, Fourier analysis, and the theory of 3d curves.
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Other possible research projects
Dr N. Duignan; Carslaw 606; nathan.duignan@sydney.edu.au

Other possible research projects under the supervision of Dr Duignan include topics in
integrable systems, chaotic and regular dynamics, Hamiltonian mechanics, (pre)symplectic
geometry, the n-body problem, plasma physics and toroidal confinement devices, normal form
theory, and applications of each topic.

You can read more on https:/www.maths.usyd.edu.au/u/nathand/. Please contact him if
interested!

Chaotic dynamics of the pentagon
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

A chain of planar rigid bodies is a simple mechanical system with n segments connected by
joints that allow free rotation. Connecting the first segment to the last by another joint gives
a closed chain. Since the distance between the joints is fixed the closed chain has n degrees of
freedom. Reduction by translations and rotations leaves n 3 degrees of freedom specifying the
shape. For certain parameters the dynamics of this system is chaotic in the sense of Anosov.
The goal of the project is to study the dynamics in the first non-trivial case of the pentagon
(n=5). In a chaotic system periodic orbits are dense in phase space, and the goal of the project
is to find and describe the periodic orbits of this system, using a combination of analytical and
numerical tools.

Non-normality in the Hopf bifurcation
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

A real square matrix is normal if it commutes with its transpose. For example, orthogonal,
symmetric, and skew-symmetric matrices are normal matrices. Non-normal matrices are
important in regards to understanding stability and instability in dynamical systems. For
example, certain types of instabilities in fluid dynamics can be explained using non-normal
matrices. The Hamiltonian Hopf bifurcation describes the bifurcations that can occur when
two pairs of imaginary eigenvalues collide on the imaginary axis and branch off into the
complex plane. Non-normal matrices appear naturally near this bifurcation. The goal of
the project is to describe and analyse the transient growth associated to non-normality as it
appears near this bifurcation.

Symplectic integration of the regularised planar circular restricted 3 body problem
Prof H. Dullin; Carslaw 714; holger.dullin@sydney.edu.au; phone 9351-4083

The restricted three body problem describes the motion of a test particle in the field of two
heavy masses rotating around each other in circular orbits. The problem has a singularity
when the test particle collides with either of the other masses. The collision can be regu-
larised, such that the solutions are defined for all times. The goal of the project is to construct
and implement a symplectic integration method for the regularised problem. This can then be
used to study periodic orbits in this chaotic system, in particular collision orbits. The study of
collision orbits is interesting and relevant because double collision orbits describe the motion
of a spacecraft from one body to the other.

12



Stochastic games with incomplete information
Prof B. Goldys; Carslaw 709; beniamin.goldys@sydney.edu.au; phone 9351-2976

Stochastic games arise in various problems of mathematical finance, economics, social sci-
ences and biology. They also provide tools to study certain deterministic partial differential
equations, such as p-Laplace equation and curvature flows. In many problems arising in sci-
ences players do not have complete information about the game but still must make decisions.
The aim of this project is to study this little understood problem.

Magnetic nanowires
Prof B. Goldys; Carslaw 709; beniamin.goldys@sydney.edu.au; phone 9351-2976

Ferromagnetic materials are naturally divided into micro-meter size domains, each of
which has a magnetic moment (spin) that can be represented by a unit vector pointing “up”
or “down.” This allows for coding information and for this reason ferromagnetic materials
provide a widely used basis for the design of magnetic memories. Behaviour of a large system
of spins is modelled using a system of partial differential equations closely related to certain
equations arising in differential geometry (harmonic maps). It was observed by physicists
that imperfections of the material and the so-called thermal noise can destroy the coded in-
formation, so that understanding impact of noise is crucial for design of magnetic memories.
A one-dimensional nanowire is frequently used as a model of real wire of positive width. To
what extent this approximation is valid in the presence of noise is an open problem we will
investigate.

Data-driven modelling: Finding models for observations in finance and climate
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

When given data, which may come from observations of some natural process or data col-
lected form the stock market, it is a formidable challenge to find a model describing those
data. If the data were generated by some complex dynamical system one may try and model
them as some diffusion process. The challenge is that even if we know that the data can be
diffusive, it is by no means clear on what manifold the diffusion takes place. This project aims
at applying novel state-of-the-art methods such as diffusion maps and nonlinear Laplacian
spectral analysis to determine probabilistic models. You will be using data from ice cores en-
coding the global climate of the past 800kyrs as well as financial data. In the latter case you
might be able o recover the famous Black-Scholes formula (but probably not). This project
requires new creative ideas and good programming skills.

Optimal power grid networks and synchronisation
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Complex networks of coupled oscillators are used to model systems from pacemaker cells to
power grids. Given their sheer size we need methods to reduce the complexity while retaining
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the essential dynamical information. Recent new mathematical methodology was developed
to describe the collective behaviour of large networks of oscillators with only a few parameters
which we call “collective coordinates.” This allows for the quantitative description of finite-size
networks as well as chaotic dynamics, which are both out of reach for the usually employed
model reduction methods.

You will apply this methodology to understand causes of and ways to prevent glitches and
failure in the emerging modern decentralised power grids. As modern societies increase the
share of renewable energies in power generation the resulting power grid becomes increas-
ingly decentralised. Rather than providing a power supply constant in time, the modern
decentralised grid generates fluctuating and intermittent supply. It is of paramount impor-
tance for a reliable supply of electric power to understand the dynamic stability of these power
grids and how instabilities might emerge. A reliable power-grid consists of well-synchronised
power generators. Failing to assure the synchronised state results in large power outages as,
for example, in North America in 2003, Europe in 2006, Brazil in 2009 and India in 2012
where initially localised outages cascade through the grid on a nation-wide scale. Such cas-
cading effects are tightly linked to the network topology. Modern power-grids face an intrinsic
challenge: on the one hand decentralisation was shown to favour synchronisation in power
grids, on the other hand decentralised grids are more susceptible to dynamic perturbations
such as intermittent power supply or overload.

The project uses analytical methods as well as computational simulation of models for
power grids. You will start with a simple network topology and then, if progress is made, use
actual power grid topologies.

Data assimilation in numerical weather forecasting and climate science
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Data assimilation is the procedure in numerical weather forecasting whereby the infor-
mation of noisy observations and of an imperfect model forecast with chaotic dynamics, we
cannot trust, is combined to find the optimal estimate of the current state of the atmosphere
(and ocean). Data assimilation is arguably the most computationally costly step in producing
modern weather forecasts and has been topic of intense research in the last decade. There ex-
ists several approaches, each of which with their own advantage and disadvantages. Recently
a method was introduced to adaptively pick the best method to perform data assimilation.
This method employs a switch which, although it seems to work, has not been linked to any
theoretical nor physical properties of the actual flow. This project will be using toy models for
the atmosphere to understand the witch with the aim of improving the choice of the switching
parameter.

Networks of coupled oscillators
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

Many biological systems are structured as a network. Examples range from microscopic
systems such as genes and cells, to macroscopic systems such as fireflies or even an applaud-
ing audience at a concert. Of paramount importance is the topography of such a network,
i.e., how the nodes, let’s say the fireflies, are connected and how they couple. Can they only
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see their nearest neighbours, or all of them. Are some fireflies brighter than others, and how
would that affect the overall behaviour of a whole swarm of fireflies? For example, the famous
‘only 6 degrees of separation’-law for the connectivity of human relationships is important in
this context.

In this project we aim to understand the influence of the topography of such a network.
Question such as: How should a network be constructed to allow for maximal synchronization
will be addressed. This project requires new creative ideas and good programming skills.

Other possible projects
Prof G. Gottwald; Carslaw 625; georg.gottwald@sydney.edu.au; phone 9351-5784

I work on numerous topics. Please check out my webpage. The publication list will show
you topics I am interested in. If any of those topics grab your interest or if you have your own
idea for a topic, please talk to me.

Discrete soliton equations
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Famous PDEs such as the Korteweg-de Vries equation (which have soliton solutions) have
discrete versions (which also have soliton solutions). These discrete versions are equations
fitted together in a self-consistent way on a square, a 3-cube or an N-dimensional cube. These
have simple, beautiful geometric structures that provide information about many properties:
solutions, reductions to discrete versions of famous ODEs, and deeper aspects such as La-
grangians. This project would consider generalisations of such structures and/or properties of
the solutions, such as finding their zeroes or poles.

Integrable discrete or difference equations
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

The field of integrable difference equations is only about 20 years old, but has already
caused great interest amongst physicists (in the theory of random matrices, string theory, or
quantum gravity) and mathematicians (in the theory of orthogonal polynomials and soliton
theory). For each integrable differential equation there are, in principle, an infinite number of
discrete versions. An essay in this area would provide a critical survey of the many known dif-
ference versions of the classical Painlevé equations, comparisons between them, and analyse
differing evidence for their integrability. Project topics would include the derivation of new
evidence for integrability. The field is so new that many achievable calculations remain to be
done: including derivations of exact solutions and transformations for the discrete Painlevé
equations.
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Exponential asymptotics
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Near an irregular singular point of a differential equation, the solutions usually have di-
vergent series expansions. Although these can be ‘summed’ in some way to make sense as
approximations to the solutions, they do not provide a unique way of identifying a solution.
There is a hidden free parameter which has an effect like the butterfly in chaos theory. This
problem has been well studied for many classes of nonlinear ODEs but almost nothing is
known for PDEs and not much more is known for difference equations. This project would
include studies of a model PDE, like the famous Korteweg-de Vries equation near infinity, or
a difference equation like the string equation that arises in 2D quantum gravity.

Cellular automata
Prof N. Joshi; Carslaw 629; nalini.joshi@sydney.edu.au; phone 9351-2172

Cellular automata are mathematical models based on very simple rules, which have an
ability to reproduce very complicated phenomena. (If you have played the Game of Life on a
computer, then you have already seen automata with complicated behaviours.) This project
is concerned with the mathematical analysis of their solutions, which lags far behind corre-
sponding developments for differential or difference equations.

In this project, we will consider a family of cellular automata called parity filter rules,
for which initial data are given on an infinite set. For example, consider an infinitely long
train of boxes, a finite number of which have a ball inside, whilst the remainder are empty.
At each time step, there is a simple rule for moving the leftmost ball in a box to the next
empty box on the right. Continue until you have finished updating all nonempty boxes in the
initial train. (Try this out for yourself with adjacent boxes with three balls, followed by two
empty boxes and then two boxes with balls inside. What do you see after one update? Two
updates?) It turns out that these box-and-ball systems replicate solitons, observed in solutions
of integrable nonlinear PDEs. In this project, we will consider how to derive parity filter rules
from nonlinear difference equations, and how to analyse their solutions. One direction for the
project is to analyse the solutions as functions of initial data. Another direction is to develop
ways to describe long-term behaviours.

Modelling the evolution of human post-menopausal longevity and pair bonding
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

A striking contrast between humans and primates is that human lifespans extend well
beyond the end of the female reproductive years. Natural selection favours individuals with
the greatest number of offspring, so the presence of a long female post-fertile period presents
a challenge for understanding human evolution.

One prevailing theory that attempts to explain this paradox proposes that increased longe-
vity resulted from the advent of grandmother care of grandchildren. We have developed
preliminary age-structured PDE models and agent-based models to consider the intergen-
erational care of young proposed by this Grandmother Hypothesis. The project will involve
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extending the models to consider whether the presence of grandmothering could increase the
optimum human longevity while simultaneously maintaining a relatively early end of fertility
as seen in humans (and killer whales).

Analytical approaches will involve developing numerical schemes for the PDEs and ana-
Iytically and numerically studying the steady state age distributions and growth rates of the
populations with and without grandmothering and under different life history parameters,
e.g. longevity and end of fertility.

We have now also begun to explore mating strategies, especially pair bonding, yet another
unique human characteristic among mammals. Speculations about how pair bonding devel-
oped from our ancestral roots abound and are open to being quantified, modelled, and anal-
ysed. Like the grandmothering models, these investigations will involve PDEs or agent-based
models.

Modelling cancer immunotherapy
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

A next generation approach to treating cancer focuses on cancer immunology, specifi-
cally directing a person’s immune system to fight tumours. Recent directions in cancer im-
munotherapy include

e Oncolytic virotherapy: infecting tumours with genetically-engineered viruses that pref-
erentially destroy tumour cells and induce a local anti-tumour immune response,

e Preventative or therapeutic cancer vaccines: stimulating a person’s immune system to
attack tumour colonies to prevent or hinder tumour development,

e Cytokine therapy: using immunostimulatory cytokines to recruit immune cells and en-
hance existing anti-tumour immune responses.

These treatments can be used alone or in combination with each other or with other forms
of treatment such as chemotherapy. Since immunotherapy often involves immune responses
against small tumours, often close to inception, they are highly spatially dependent and often
probabilistic. The goal of the will be to develop differential equation and possibly probabilis-
tic agent-based models to understand the tumour-virus-immune dynamics around a small,
developing tumour and determine conditions that could lead to effective tumour reduction or
complete elimination. The project will involve developing the models and schemes for numer-
ically simulating the ODE and PDE systems, and if possible, performing a stability analysis
of the ODE system.

Modelling liver disease and risk factors
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

(In collaboration with Dr Joachim Worthington, The Daffodil Centre)

Fatty liver disease can decrease quality-of-life and lead to significant risk of developing
liver cancer. Fatty liver disease is usually caused by weight gain, excess alcohol intake, or
other metabolic factors such as diabetes. For people with fatty liver disease, routine monitor-
ing to detect development of late-stage liver disease or cancer as early as possible can lead to
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better health outcomes. However, for many this is not necessary as their risk is relatively low.
In particular, alcohol cessation and weight loss can quickly reduce risk of liver disease and
cancer, meaning ongoing monitoring has limited benefits.

The goal of this project will be to analyse existing models of liver disease, and analyse and
potentially adapt them to capture the impact of risk factor changes over time, such as weight
gain/loss and alcohol use/cessation. This will include understanding the dynamics of these
models and introducing time-dependent parameters. You could also look at potential data
sources that could inform the impact of changes to risk factors, such as data from mice model
studies. This project would suit someone with coding/numerical analysis experience and a
potential interest in epidemiology/public health.

References:

e Holzhiitter et al., Mathematical modeling of free fatty acid-induced non-alcoholic fatty
liver disease (NAFLD), biorxiv, 2020.

e Attia, Novel approach of multistate Markov chains to evaluate progression in the ex-
panded model of non-alcoholic fatty liver disease, Frontiers in Applied Mathematics and
Statistics, 2022.

Estimating the potential impact of lead-time bias in epidemiological PDE modelling
Prof P. Kim; Carslaw 621; peter.kim@sydney.edu.au; phone 9351-2970

(In collaboration with Dr Joachim Worthington, The Daffodil Centre)

In epidemiology and public health, predictive models are often used to “chain together”
multiple events that can occur across a person’s lifetime. Typically, the data to inform the
time between these events comes from trial data. However, trial data on a disease of interest
does not start from the time a person develops a disease, but from the time they were recruited
to the trial, which may be long after. This is related to lead-time bias, which is a statistical
bias that occurs when observing a disease detected by screening, which will naturally be
diagnosed earlier than a disease detected by the onset of symptoms. Understanding these
biases can improve epidemiological modelling.

This project will review existing approaches and sources to estimating lead-time biases,
and use simple existing models of liver disease to estimate the eventual of these biases on
health outcomes. This could involve exploring Bayesian models of lead time bias, or expanding
on the use of Kolmogorov backward equations in development of epidemiological models. This
project would suit someone with coding/numerical analysis experience and a potential interest
in epidemiology/public health.

References:

e Wu et al., Bayesian inference for the lead time in periodic cancer screening, Biometrics,
2020.

e Ge et al., Estimating lead-time bias in lung cancer diagnosis of patients with previous
cancers, Statistics in Medicine, 2021.

e Worthington et al, An economic evaluation of routine hepatocellular carcinoma surveil-
lance for high-risk patients using a novel approach to modelling competing risks, medrxiv,
2024.
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Numerical rational approximation and asymptotic analysis
Dr C. Lustri; Carslaw 627; christopher.lustri@sydney.edu.au; phone 9351-3879

Asymptotic methods are mathematical techniques that allow us to analytically approxi-
mate the solutions to highly complex problems. I am particularly interested in using these
methods to study nonlinear waves and fluid dynamics. A significant limitation on asymp-
totic methods is that they typically require some nice leading-order approximation of system
behaviour, which is not always possible. In this project, we will explore the behaviour of com-
plex model systems by replacing nice leading-order approximations with numerically approx-
imated rational function approximations, such as Pade or AAA approximations, and develop
hybrid asymptotic methods for complex systems.

Nonlinear waves and bifurcations in difference equations and discrete lattices
Dr C. Lustri; Carslaw 627; christopher.lustri@sydney.edu.au; phone 9351-3879

Dr C. Lustri; Carslaw 627; christopher.lustri@sydney.edu.au; One of the most significant
challenges in the study of discrete systems is combining continuous long-wave approxima-
tions with essentially discrete phenomena. If we naively apply continuum approximations, we
can lose discrete-scale behaviour, such as discrete bifurcations. Projects in this category in-
volve applying discrete multiple scales techniques to study systems such as discrete nonlinear
Schrodinger equations in order to predict the shapes of the impulse, the onset of catastrophic
behaviour, and the effect of integrable and non-integrable discretizations.

Stokes phenomenon in PDEs
Dr C. Lustri; Carslaw 627; christopher.lustri@sydney.edu.au; phone 9351-3879

Stokes phenomenon describes rapidly-changing asymptotic behaviour in the solutions to
differential equations, which is typically hidden from conventional asymptotic analyses. Meth-
ods known as exponential asymptotics have been used to capture these effects, and Stokes
phenomenon in ordinary differential equations is a relatively well-understood problem. Stokes
phenomenon in partial differential equations is much more complicated and has only been
studied in relatively simple cases. These methods require us to understand the behaviour
of the PDE solution in the complex plane. This project involves learning about exponential
asymptotic methods, and applying them to approximate the solutions to model PDEs from
wave dynamics.

Modelling self-assembly in ant populations
Dr C. Lustri; Carslaw 627; christopher.lustri@sydney.edu.au; phone 9351-3879

Ants in the wild can assemble into complicated structures including bridges, chains, nests,
and boats. This project aims to develop models for ant behaviour and interactions that can
be used to predict properties of structures created by spontaneous self-assembly. This project
will explore the construction and predict the mechanical properties of hanging chains of ants
as they lift leaves with different rigidity, and attempt to determine whether ants optimise
their behaviour to build efficient structures based on local information alone.
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Geometric aspects of Turing bifurcations
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

The Turing bifurcation is a classical example of a diffusion driven instability. This project
will attempt to look at some geometric aspects of the system at the onset of a Turing bifur-
cation, as well as potential factorisation of the system when the diffusion is either extremely
large or extremely small.

Fast-slow splitting in characteristic determinants
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Eigenvalue problems on a finite interval can often be characterised in terms of the vanish-
ing of the determinant of a matrix. Such a determinant is called the characteristic determi-
nant of the system. When multiple time-scales are present, this often results in the ability to
factor the characteristic determinant into characteristic determinants of lower-dimensional
systems. This project will look at how this factorisation takes place, based on the entries of
the original system.

Symmetries in PDEs
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

This project is about the relationship between symmetries of partial differential equation,
the coordinate systems in which the equation admits solutions via separation of variables and
the properties of the special functions that arise in this manner. A major focus of this project
lying at the intersection of geometry, algebra and analysis is the characterisation of separable
coordinate systems in terms of the second-order symmetry operators of for the equations.

Chemotaxis in models with zero/megative diffusivity
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Chemotaxis is the movement of a cell via advection either towards or away from a chemi-
cal source. It has been used in many biological models, from slime-moulds to motile bacteria,
to roadway construction by humans. Typically linear diffusivity has been studied, but lately
models where the diffusivity is allowed to change sign have become of interest. This project
will examine the existence of travelling wave solutions in such models, as well as some ele-
mentary stability properties of such solutions.

Stability in a model of herd grazing and chemotaxis
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

This project will examine a model of the formation of a herd of grazing animals. The model
will focus on two major factors, how the animal seeks food and how the the animals interact
with each other. Remarkably, the model shares many properties with another, well studied
model, that of so-called bacterial chemotaxis. The aim of this project will be to analyse, both
numerically and analytically, such a model, and to understand certain special solutions in the
model, called travelling waves, as well as their stability.
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Absolute spectrum of St. Venant roll waves
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Roll waves are a phenomenon that occurs when shallow water flows down an inclined ramp.
Mathematically they can be modelled by the St. Venant equations. Typically roll waves occur
as periodic solutions, however if they are far enough apart, they can be treated as solitary
waves. In this case, the spectrum of the linearised operator governs their dynamics, and in
particular, their stability properties. This project will focus on computing the absolute and
essential spectrum of these solitary waves. Medium computational skills are required for this
project.

Other possible research topics
A/Prof R. Marangell; Carslaw 720; robert.marangell@sydney.edu.au; phone 9351-5795

Other projects under the supervision of Dr Marangell include topics in the areas of non-
linear standing or travelling waves, topics in the application of geometric and topological
methods in dynamical systems and PDEs, symmetries in ODEs and PDEs and other research
topics in the history of mathematics and science in general. Examples of nonlinear standing
and travelling waves come from models in a wide range of areas which include mathematical
biology, chemistry and physics. More specific examples would be standing/travelling waves
in population dynamics, combustion models, and quantum computing, but really there are
many, many examples, so please contact Dr Marangell for further details.

PDE models for the distribution of ingested lipids in macrophages in atheroscle-
rotic plaques
Prof M. R. Myerscough; Carslaw 626; mary.myerscough@sydney.edu.au; phone 9351-3724

Atherosclerotic plaques are accumulations of lipid (fat) loaded cells and necrotic (dead)
cellular debris in artery walls. They are caused by LDL (which carries ‘bad cholesterol’) pen-
etrating the blood vessel wall, becoming chemically modified (usually oxidised) and setting
off an immune reaction. In response to this immune reaction, macrophages (a type of white
blood cell) enter the artery wall and consume the modified LDL. In this way macrophages
accumulate lipids and as more LDL and more cells enter the vessel walls the population of
cells also grows. Other processes can affect the growth or regression of the plaque, such as cell
death, cells leaving the tissue and lipid export from inside cells to HDL (which carries ‘good
cholesterol’ which is good because it’s been carried away from the plaque). When atheroscle-
rotic plaques grow very large and rupture they can cause heart attacks and strokes which are
one of the two leading causes of death in the developed world. (The other is cancer.)

We have written a partial differential equation model for the accumulation of cells and
lipids in plaques. In this model, the number of macrophages in the plaque is a function of
both time ¢ and accumulated lipid a. The primary equation is an advection equation with
nonlinear source and sink terms, including a term with an integral convolution that models
what happens when macrophages phagocytose (=eat) other macrophages that are dead or
dying.
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We have done an analysis of this model at steady state when all the processes (lipid in-
gestion, macrophages leaving the plaque, the action of HDL) occur at a constant rate. This
project will build on this analysis and has the aim of producing numerical solutions to the
model when model processes are functions of a, the accumulated lipid inside the cell. This
project is particularly suitable for students who are interested in applications of mathematics
to biomedical problems, have completed a third year unit on PDEs and have at least some
experience in coding in Matlab, C, Python or similar.

Mathematical billiards
A/Prof M. Radnovi¢; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782

Mathematical billiards have been an established topic for research for about one century.
They have application in any situation involving collisions and reflections. They are used
as a model for the popular game of billiards, and also in laser techniques, the statistical
interpretation of the second law of thermodynamics wind-tree model, the dynamics of ideal
gas, tri-atomic chemical reactions etc. The field of mathematical billiards is at the cutting edge
of mathematics research, and work in the field is highly valued: several Fields Medals were
recently awarded for contributions in the area. The research on this project can vary from
making computer simulations to more theoretical work. Writing an essay is also available.

Poncelet porisms
A/Prof M. Radnovi¢; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782

Suppose that two conics are given in the plane, together with a closed polygonal line in-
scribed in one of them and circumscribed about the other one. The Poncelet porism states that
then infinitely many such closed polygonal lines exist and all of them with the same number of
sides. That statement is one of most beautiful and deepest contributions of the 19th century
geometry and has many generalisations and interpretations in various branches of mathe-
matics. In this essay, the student will present rich history and current developments of the
Poncelet porism.

Elliptical billiards and their periodic trajectories
A/Prof M. Radnovi¢; Carslaw 624; milena.radnovic@sydney.edu.au; phone 9351-5782

We consider billiards in a domain bounded by arcs of several conics belonging to a confocal
family. When the boundary of such a billiard does not contain reflex angles, the system turns
out to be integrable. Geometrically, the integrability has the following manifestation - for
each billiard trajectory, there is a curve, called caustic, which is touching each segment of
the trajectory. For elliptical billiards, the caustics are conics from the same confocal family.
Integrability implies that the trajectories sharing the same caustic are either all periodic with
the same period or all non-periodic.

On the other hand, if there is at least one reflex angle on the boundary, the integrability will
be broken, although the caustics still exist. Such billiards are thus called pseudo-integrable
and there may exist trajectories which are non-periodic and periodic with different periods
sharing the same caustic.

An essay on this topic would provide a review of classical and modern results related to
the elliptical billiards. In a project, the student would explore examples of billiard desks.
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Geometric singular perturbation theory and its applications
Prof M. Wechselberger; Carslaw 628; martin.wechselberger@sydney.edu.au; phone 9351-3860

Projects under the supervision of Prof M. Wechselberger include research topics in the
field of dynamical systems with an emphasis on the study of pattern generation of so called
multiple time-scales dynamical systems.” These multi-scale systems are ubiquitous in nature
and control most of our physiological rhythms. For instance, one cycle of a heartbeat consists
of a long interval of quasi steady state interspersed by a very fast change of state, the beat
itself. The same is true for the creation of neural action potentials. In these physiological
systems, the very fast relaxation of energy leads to the notion of a relaxation oscillator and
indicates physiological processes evolving on multiple timescales.

Topics could range from a theoretical study of possible multiple time-scales dynamics as-
sociated with relaxation oscillators to the analysis of a concrete physiological rhythm and
algorithmic implementation of geometric singular perturbation theory.

For more information on possible topics, please have a look at, e.g., the monograph| Geo-
metric singular perturbation theory beyond the standard form by Prof M. Wechselberger.

The theory behind computing dynamical resonances from data
Dr C. Wormell; Carslaw 491; caroline.wormell@sydney.edu.au

Ruelle-Pollicott resonances are mysterious complex numbers associated to dynamical sys-
tems that describe emergent patterns in their long-term dynamics. They are eigenvalues of
a certain operator known as a Koopman operator, studied in an appropriate function space.
They can be estimated by various means: one exciting but poorly-understood way is by ap-
proximating Koopman operators from observed time series data. However, doing this can
often give results with large, random errors that need to be quantified. In this project you will
study some new means of quantifying these errors (essentially, creating confidence intervals
for these eigenvalues).

There are various possible directions to take this project:

e Applying these methods computationally to study climate systems.

e Applying these methods analytically to simple dynamics (e.g. Ornstein—Uhlenbeck pro-
cesses, linear contraction) to better make sense of the stability of Koopman operators in
different

e Using the underlying mathematics to assess whether different methods of approximat-
ing the Koopman operator (e.g. those using information about derivatives of the system)
may lead to more accurate estimations of resonances.

e Extending these methods to study the sensitivity of dynamical systems statistics to ex-
ternal perturbations (“linear response”)
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Linear response for a few coupled maps
Dr C. Wormell; Carslaw 491; caroline.wormell@sydney.edu.au

Chaotic dynamical systems are practically impossible to predict long-term, but tend to have
stable long-term statistics that we can profitably study. This is a much more general, abstract
notion of the idea that we cant really predict rainfall a year in advance, but can quantify what
a 1in 20 year flood looks like. Of great interest therefore is how the statistics change when
the dynamical system changes. Intuitively, one expects the change in statistics should be at
least a differentiable function of the system (“linear response”).

However, linear response is rigorously known not to hold for the simple one-dimensional
tent map z,,11 = 1 — a|z,|, where the state x,, evolves in [—1, 1] and the parameter describing
the system a € (1,2]. In this case, long-term statistical averages of the system are non-
differentiable functions of a, as a result of singularities caused by the turning point at x,, = 0.

However, there is reason to believe that adding more dimensions to the state space should
“smear” out the singularities and allow linear response to hold. In this project, we will study
the effect of driving tent maps by other dynamical systems, and try and come up with formulae
that determine when linear response (or higher order differentiability of the statistics) should
hold.

Accurate numerical estimates for the Lorenz attractor
Dr C. Wormell; Carslaw 491; caroline.wormell@sydney.edu.au

The Lorenz system is a 3-dimensional ODE, well-known for its role in the discovery of
chaos by Edward Lorenz in 1963. Its attractor is a butterfly-shaped fractal, bifurcated by
the stable manifold of a fixed point. However, the split in the attractor caused by this sta-
ble manifold, however, makes the structure of the dynamics slightly more complicated than
many other models for chaos. For this reason many important quantities associated with the
Lorenz attractor’s long-term behaviour (e.g. fractal dimension, Lyapunov exponents, and rate
of convergence to statistical equilibrium) are not known with much precision.

The goal of this computational project is to estimate at least one of these famous quan-
tities to floating point accuracy. To do this, we will construct a Hofbauer extension on the
Lorenz system. This breaks down the dynamical structure down into a graph whose nodes
are dynamical configurations ordered by increasing rarity. The long-term behaviour of the
Lorenz system can then be described through eigenvalues of so-called transfer operators on
this graph; we will use highly accurate FFT-based discretisations of the transfer operators to
estimate these eigenvalues, and thus the interesting quantities of the Lorenz attractor.

Sources of error in computing linear response from data
Dr C. Wormell; Carslaw 491; caroline.wormell@sydney.edu.au

Chaotic dynamical systems, while deterministically unpredictable, are known to sample
special probability distributions known as SRB measures over the long term. Of particular
interest is how these SRB measures change when the dynamical system itself changes. The
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infinitesimal change in the SRB measure to an infinitestimal perturbation is known as the
linear response. There have long existed formulae that notionally allow linear response to
be computed from data observed from the unperturbed system, but computations using these
formaule have met with only sporadic success. This is in part because the formulae appear to
be highly sensitive to small errors.

This project will study one hopeful way of computing linear response formulae, via Koop-
man operators. In the context of both toy systems and simple models of atmospheric dynamics,
we will seek to understand which kinds of error are manageable in the context of computing
linear response, and which break the computations. This will either provide the basis for re-
liable linear response calculations in climate models and other applications, or demonstrate
that it is truly impracticable.

Combining geometric and time series information in estimating dynamical reso-
nances
Dr C. Wormell; Carslaw 491; caroline.wormell@sydney.edu.au

The long-term behaviour of many dynamical systems can be described by their Ruelle-
Pollicott resonances, a set of eigenvalue-like complex numbers that describe how quickly the
future state of a system decorrelates from the current state.

There are two common ways to estimate these resonances: by time series analysis (i.e.
estimating a signal from dynamical system as an auto-regressive process), or by computing
the eigenvalues of the operator that tries to approximate future values of simple functions
of the state by other simple functions. The first method resolves resonances accurately, but
is typically limited to only one or two resonances, and gives limited spatial information; the
second can in theory resolve all resonances, but is often highly inaccurate.

In practice, scientists often use a combination of these two approaches. This project will
connect the two respective approaches mathematics: using a mixture of rigorous mathematics
and computer simulations, we will explore how linking these approaches can combine their
strengths, and how to most effectively construct a combined approach when estimating from
finite data.

Learning with a general loss by neural networks
Prof D. X. Zhou; Carslaw 523; dingxuan.zhou@sydney.edu.au

This project aims at mathematics analysis of deep learning with a general loss function by
neural networks. The objectives include analysis of the induced deep learning algorithms and
numerical simulations in dealing with some practical data.

Key references:

[1] F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cam-
bridge University Press, 2007.

[2] D. X. Zhou, Deep convolutional neural networks, Wiley Encyclopedia of Electrical and
Electronics Engineering, J. Webster (ed.), 2021. DOI: 10.1002/047134608X.W8424
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9 Prizes and Awards

The following prizes may be awarded to Applied Mathematics Honours students of suffi-
cient merit. Students do not need to apply for these prizes. A complete list of the prizes and
scholarships offered by the School of Mathematics and Statistics can be found here.

University Medal

A University Medal is awarded at the discretion of the Faculty to the highest achieving stu-
dents who, in the opinion of the Faculty, have an outstanding academic record. A student
meets the minimum levels of academic performance required for the award of a University
Medal if: their final honours mark SCIE4999 is equal to or greater than 90 and their WAM on
entry to Honours is equal to or greater than 80. The medal is always awarded when the final
honours mark SCIE4999 is 95 or higher. More than one medal may be awarded in any year.

Joye Prize in Mathematics

Awarded to the most outstanding student completing the honours program in the School of
Mathematics and Statistics.

K. E. Bullen Memorial Prize

Awarded annually to the most proficient student in Applied Mathematics honours, provided
that the student’s work is of sufficient merit.

Barker Prize

Awarded at the honours year examination for proficiency in Pure Mathematics, Applied Math-
ematics or Statistics.

M. J. and M. Ashby Prize

Offered annually for the best honours project, submitted by a student in the Faculty of Sci-
ence, that forms part of the requirements of Pure Mathematics, Applied Mathematics or
Statistics.

Norbert Quirk Prize No IV

Awarded annually for the best project on a given mathematical subject by a student enrolled
in a Fourth Year course in mathematics (Pure Mathematics, Applied Mathematics or Statis-
tics) provided that the essay is of sufficient merit.

Australian Federation of Graduate Women Prize in Mathematics.

Awarded annually, on the recommendation of the Head of the School of Mathematics and
Statistics, to the most distinguished woman candidate who graduates with first class Honours
in Applied Mathematics, Pure Mathematics or Statistics.

Chris Cannon Prize

For the best adjudged project seminar presentation of an Applied Mathematics honours stu-
dent.
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10 AMSI Courses

Students are welcomed to check the courses offered in January 2026 at the
e AMSI Summer School

hosted by the University of Sydney as well as the courses available via the
e Advanced Collaborative Environment|/ (ACE).

In principle, at most one AMSI/ACE course can be taken for credit by enrolling in the
unit AMSI4001. It should be noted, however, that this is only possible if very special circum-
stances can be demonstrated. In particular, it is not enough to show that a given AMSI/ACE
course is beneficial for a student since AMSI/ACE can be completed without enrolment in
AMSI4001. Furthermore, it should be stressed that enrolment in AMSI4001 can only be done
in consultation with the student’s supervisor and with explicit prior approvals by the Applied
Mathematics honours coordinator (Prof M. Rutkowski) and the School’s honours coordinator
(Prof L. Paunescu).

11 Rights and Responsibilities

Applied Mathematics Honours students will have access to the following:

e Office space and a desk in the Carslaw building.

e A computer account with access to e-mail, as well as If&TEX and printing facilities for the
preparation of projects.

A photocopying account paid by the School for assembling project source material.
e After-hours access to the Carslaw building.

A pigeon-hole in room 728.

Participation in the School’s social events.
e (Class representative at School meetings.

Applied Mathematics Honours students have the following obligations:

e Regular attendance at the weekly seminars in Applied Mathematics.
e Have regular meetings with project supervisors, and meet all deadlines.
e Utilise all School resources in an ethical manner.

e Contribute towards the academic life in Applied Mathematics at the School of Mathe-
matics and Statistics.
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12 Life After Fourth Year

Postgraduate Studies

Many students completing the Honours programme have in the past gone on to pursue
postgraduate studies at the University of Sydney, at other Australian universities, and at
overseas universities. Please see the School’s Coordinator of Postgraduate Studies if inter-
ested in enrolling for an MPhil or PhD at the School of Mathematics and Statistics. Students
who do well in Applied Mathematics Honours may be eligible for postgraduate scholarships,
which provide financial support during subsequent study for higher degrees at Australian
universities. The honours coordinator is available to discuss options and provide advice to
students interested in pursuing studies at other universities.

Careers

Students seeking assistance with post-grad opportunities and job applications should feel
free to ask lecturers most familiar with their work for advice and written references. The
Director of the Applied Mathematics Teaching Program and Course Coordinators may also
provide advice and personal references for interested students.
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