Cheat Sheet of Mathemtical Notation and Terminology

Logic and Sets

Notation	Terminology	Explanation and Examples
a := b	defined by	The object a on the side of the colon is defined by b .
		<i>Examples:</i> $x := 5$ means that x is defined to be 5, or $f(x) := x^2 - 1$ means that the function f is defined to be $x^2 - 1$, or $A := \{1, 5, 7\}$ means that the set A is defined to be $\{1, 5, 7\}$.
$S_1 \Rightarrow S_2$	implies	Logical implication: If statement S_1 is true, then statement S_2 must be true. We say S_1 is a sufficient condition for S_2 or S_2 is a necessary condition for S_1 .
		$Examples: (n \in \mathbb{N} \text{ even}) \Rightarrow (n^2 \text{ even}).$
$S_1 \Leftrightarrow S_2$	equivalent to	Logical equivalence: If statement S_1 is true, then statement S_2 must be true, and vice versa. We say S_2 is a necessary and sufficient condition for S_1 .
		<i>Examples</i> : $(\ln x > 0) \Leftrightarrow (x > 1)$.
Э	there exists	Abbreviation for there exists
А	for all	Abbreviation for for all
{}	set	The "objects" listed between the curly brackets are members of the set being defined.
		<i>Examples</i> : {0, 2, 5, 7}, {2 + i , $7 - \sqrt{5}$ }, { $3, 3, 3, 5$ } The elements of a set can be any kind of objects such as numbers, functions, points, geometric objects or other.
$a \in A$	element of	<i>a</i> is an element of the set <i>A</i> , that is, <i>a</i> is in the set <i>A</i> .
		<i>Examples</i> : $\pi \in \mathbb{R}, 4 \in \{1, 4, 7\}, \mathfrak{s} \in \{\mathfrak{S}, \mathfrak{s}, \mathfrak{S}\}$
Ø or {}	empty set	The special set that does not contain any element.
{x property}	set of with	Notation indicating a set of elements x satisfying a certain property.
		<i>Examples:</i> { $n \in \mathbb{N} \mid n$ is even}, where $n \in \mathbb{N}$ is the typical element and the property satisfied is that n is even. { $x^2 \mid x \in \mathbb{N}$ }, where the typical member is a square of some number in \mathbb{N} .
$A \subseteq B$	subset of	The set A is a subset of B, that is, every element of A is also an element of B. More formally: $b \in B \Rightarrow b \in A$.
		<i>Examples</i> : $\mathbb{Q} \subseteq \mathbb{R}, \{1, 4, 7\} \subseteq \{1, 2, 3, 4, 5, 6, 7\}$
$A \cup B$	union	The set of elements either in <i>A</i> or in <i>B</i> . More formally: $(x \in A \cup B) \Leftrightarrow (x \in A \text{ or } x \in B)$.
		<i>Examples</i> : $\{1, 4, 7\} \cup \{4, 5, 8\} = \{1, 4, 5, 7, 8\}$ (elements are not repeated in a union if they appear in both sets!)
		<i>Note:</i> We can look at a union of an arbitrary collection of sets: The set of objects that appear in at least one of the sets in the collection.
$A \cap B$	intersection	The set of elements that are in <i>A</i> and in <i>B</i> . More formally: $(x \in A \cap B) \Leftrightarrow (x \in A \text{ and } x \in B)$.
		<i>Examples:</i> $\{1, 4, 7\} \cap \{1, 2, 3, 5, 6, 7\} = \{1, 7\}$
		<i>Note:</i> We can look at the intersection of an arbitrary collection of sets: The set of objects that appear in every set in the collection.
$A \setminus B$	complement	The set of elements that are in <i>A</i> but not in <i>B</i> . More formally: $(x \in A \setminus B) \Leftrightarrow (x \in A \text{ and } x \notin B)$.
		<i>Examples</i> : $\{1, 4, 5, 7\} \setminus \{1, 2, 3, 6, 7\} = \{4, 5\}$

Interval notation

Notation	Terminology	Explanation and Examples
[<i>a</i> , <i>b</i>]	closed interval	If $a, b \in \mathbb{R}$ with $a \le b$ the closed interval is the set $\{x \in \mathbb{R} \mid a \le x \le b\}$
		<i>Examples</i> : $[-3, 5]$ is the set of real numbers between -3 and 5, including the endpoints -3 and 5.
(<i>a</i> , <i>b</i>)	open interval	If $a, b \in \mathbb{R}$ with $a \le b$ the open interval is the set $\{x \in \mathbb{R} \mid a < x < b\}$
		<i>Examples</i> : $(-3, 5)$ id the set of real numbers between -3 and 5, excluding the endpoints -3 and 5.
[<i>a</i> , <i>b</i>) or (<i>a</i> , <i>b</i>]	half open interval	If $a, b \in \mathbb{R}$ with $a \leq b$, $[a, b)$ is the set of all numbers between a and b with a included and b excluded. In case of $(a, b]$ the endpoint a is excluded and b is included.
		<i>Examples:</i> $[-3, 5)$ is the set of real numbers between -3 and 5, including -3 but excluding 5. For $(-3, 5]$ the endpoint -3 is excluded and 5 is included.
$[a,\infty)$ or $(-\infty,a]$	closed half line	If $a \in \mathbb{R}$, then $[a, \infty)$ is the set of real numbers larger than or equal to <i>a</i> , and $(-\infty, a]$ is the set of real numbers less than or equal to <i>a</i>
(a,∞) or $(-\infty,a)$	open half line	If $a \in \mathbb{R}$, then (a, ∞) is the set of real numbers strictly larger than a , and $(-\infty, a)$ is the set of real numbers strictly less than a
		<i>Examples:</i> $(0, \infty)$ set of all positive real numbers; $(-\infty, 5]$ set of all real numbers less than or equal to 5.

Functions

Notation	Terminology	Explanation and Examples
$f: A \to B$	function	A function f from the set A to the set B is a rule that assigns every element $x \in A$ a unique element $f(x) \in B$. The set A is called the <i>domain</i> and represents all possible (or desirable) "inputs", the set B is called the <i>codomain</i> and contains all potential "outputs".
$x \mapsto f(x)$	is mapped to	The function maps x to the value $f(x)$.
		<i>Examples:</i> $g: \mathbb{R} \to \mathbb{C}, \theta \mapsto g(\theta) := e^{i\theta}$. A function from \mathbb{R} to \mathbb{C} given by $e^{i\theta}$; $f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) := 1 + x^2$. A function from \mathbb{R} to \mathbb{R} given by $1 + x^2$; $h: \mathbb{C} \to [0, \infty), z \mapsto h(z) := z $. A function from \mathbb{C} to $[0, \infty)$ given by $ z $.
im(<i>f</i>)	image or range	The set of values $f : A \to B$ attains: $im(f) := \{f(x) : x \in A\} \subseteq B$.
		<i>Examples:</i> $f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) := x^2$. The codomain is \mathbb{R} , the image or range is $[0, \infty)$.
	surjective or onto	A function $f : A \to B$ is called <i>surjective</i> if $im(f) = B$, that is, the codomain coincides with the range. More formally: For every $b \in B$ there exists $a \in A$ such that $f(a) = b$.
		<i>Note:</i> $f : A \to im(f)$ is always surjective. The choice of codomain is quite arbitrary. We often just state the general objects rather than the image or range. For instance function values are in \mathbb{R} if we are not intested in the image.
	injective or one-to-one	A function $f : A \to B$ is called <i>injective</i> if $im(f) = B$, that is, every point in the image comes from exactly one point in the domain A. More formally: If $a_1, a_2 \in A$ are such that $f(a_1) = f(a_2)$, then $a_1 = a_2$.
	bijective	A function $f: A \rightarrow B$ is called <i>bijective</i> if it is surjective and injective.
f^{-1}	inverse function	A function $f : A \to B$ is called <i>invertible</i> if it is bijective. The inverse function $f^{-1} : B \to A$ is defined as follows: Given $b \in B$ take the unique point $a \in A$ such that $f(a) = b$ and set $f^{-1}(b) := a$ (by surjectivity such a exists, by injectivity it is unique).