Cheat Sheet of Mathemtical Notation and Terminology

Logic and Sets		
Notation	Terminology	Explanation and Examples
$a:=b$	defined by	The object a on the side of the colon is defined by b.
		Examples:x := 5 means that x is defined to be 5 , or $f(x):=x^{2}-1$ means that the function f is defined to be $x^{2}-1$, or $A:=\{1,5,7\}$ means that the set A is defined to be $\{1,5.7\}$.
$S_{1} \Rightarrow S_{2}$	implies	Logical implication: If statement S_{1} is true, then statement S_{2} must be true. We say S_{1} is a sufficient condition for S_{2} or S_{2} is a necessary condition for S_{1}.
		Examples:($n \in \mathbb{N}$ even) $\Rightarrow\left(n^{2}\right.$ even).
$S_{1} \Leftrightarrow S_{2}$	equivalent to	Logical equivalence: If statement S_{1} is true, then statement S_{2} must be true, and vice versa. We say S_{2} is a necessary and sufficient condition for S_{1}.
		Examples: $(\ln x>0) \Leftrightarrow(x>1)$.
\exists	there exists	Abbreviation for there exists
\forall	for all	Abbreviation for for all
$\{\ldots\}$	set	The "objects" listed between the curly brackets are members of the set being defined.
		 The elements of a set can be any kind of objects such as numbers, functions, points, geometric objects or other.
$\overline{a \in A}$	element of	a is an element of the set A, that is, a is in the set A.
\emptyset or \{\}	empty set	The special set that does not contain any element.
\{ x \| property $\}$	set of ... with ...	Notation indicating a set of elements x satisfying a certain property.
		Examples: $\{n \in \mathbb{N} \mid n$ is even $\}$, where $n \in \mathbb{N}$ is the typical element and the property satisfied is that n is even. $\left\{x^{2} \mid x \in \mathbb{N}\right\}$, where the typical member is a square of some number in \mathbb{N}.
$A \subseteq B$	subset of	The set A is a subset of B, that is, every element of A is also an element of B. More formally: $b \in B \Rightarrow b \in A$.
		Examples: $\mathbb{Q} \subseteq \mathbb{R},\{1,4,7\} \subseteq\{1,2,3,4,5,6,7\}$
$\overline{A \cup B}$	union	The set of elements either in A or in B. More formally: $(x \in A \cup B) \Leftrightarrow(x \in A$ or $x \in B)$.
		Examples: $\{1,4,7\} \cup\{4,5,8\}=\{1,4,5,7,8\}$ (elements are not repeated in a union if they appear in both sets!)
		Note:We can look at a union of an arbitrary collection of sets: The set of objects that appear in at least one of the sets in the collection.
$A \cap B$	intersection	The set of elements that are in A and in B. More formally: $(x \in A \cap B) \Leftrightarrow(x \in A$ and $x \in B)$.
		Examples: $\{1,4,7\} \cap\{1,2,3,5,6,7\}=\{1,7\}$
		Note: We can look at the intersection of an arbitrary collection of sets: The set of objects that appear in every set in the collection.
$A \backslash B$	complement	The set of elements that are in A but not in B. More formally: $(x \in A \backslash B) \Leftrightarrow(x \in A$ and $x \notin B)$.
		Examples: $\{1,4,5,7\} \backslash\{1,2,3,6,7\}=\{4,5\}$

Interval notation

Notation	Terminology	Explanation and Examples
[a, b]	closed interval	If $a, b \in \mathbb{R}$ with $a \leq b$ the closed interval is the set $\{x \in \mathbb{R} \mid a \leq x \leq b\}$
		Examples: $[-3,5]$ is the set of real numbers between -3 and 5 , including the endpoints -3 and 5 .
(a, b)	open interval	If $a, b \in \mathbb{R}$ with $a \leq b$ the open interval is the set $\{x \in \mathbb{R} \mid a<x<b\}$
		Examples: $(-3,5)$ id the set of real numbers between -3 and 5 , excluding the endpoints -3 and 5 .
[a,b) or (a, b]	half open interval	If $a, b \in \mathbb{R}$ with $a \leq b,[a, b)$ is the set of all numbers between a and b with a included and b excluded. In case of $(a, b]$ the endpoint a is excluded and b is included.
		Examples: $[-3,5$) is the set of real numbers between -3 and 5 , including -3 but excluding 5. For $(-3,5]$ the endpoint -3 is excluded and 5 is included.
$\begin{aligned} & {[a, \infty) \text { or }(-\infty, a)} \\ & (a, \infty) \text { or }(-\infty, a) \end{aligned}$	a] closed half line a) open half line	If $a \in \mathbb{R}$, then $[a, \infty)$ is the set of real numbers larger than or equal to a, and $(-\infty, a]$ is the set of real numbers less than or equal to a If $a \in \mathbb{R}$, then (a, ∞) is the set of real numbers strictly larger than a, and $(-\infty, a)$ is the set of real numbers strictly less than a
		Examples: $(0, \infty)$ set of all positive real numbers; $(-\infty, 5]$ set of all real numbers less than or equal to 5 .
Functions		
$\begin{array}{ll} \text { Notation } & \text { Te } \\ \hline f: A \rightarrow B & f u n \end{array}$	Terminology	Explanation and Examples
	function	A function f from the set A to the set B is a rule that assigns every element $x \in A$ a unique element $f(x) \in B$. The set A is called the domain and represents all possible (or desirable) "inputs", the set B is called the codomain and contains all potential "outputs".
$x \mapsto f(x) \quad$ is	is mapped to	The function maps x to the value $f(x)$.
		Examples:g: $\mathbb{R} \rightarrow \mathbb{C}, \theta \mapsto g(\theta):=e^{i \theta}$. A function from \mathbb{R} to \mathbb{C} given by $e^{i \theta}$; $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x):=1+x^{2}$. A function from \mathbb{R} to \mathbb{R} given by $1+x^{2} ;$ $h: \mathbb{C} \rightarrow[0, \infty), z \mapsto h(z):=\|z\|$. A function from \mathbb{C} to $[0, \infty)$ given by $\|z\|$.
	image or range	The set of values $f: A \rightarrow B$ attains: $\operatorname{im}(f):=\{f(x): x \in A\} \subseteq B$.
		Examples: $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x):=x^{2}$. The codomain is \mathbb{R}, the image or range is $[0, \infty)$.
	surjective or onto	A function $f: A \rightarrow B$ is called surjective if $\operatorname{im}(f)=B$, that is, the codomain coincides with the range. More formally: For every $b \in B$ there exists $a \in A$ such that $f(a)=b$.
		Note: $f: A \rightarrow \operatorname{im}(f)$ is always surjective. The choice of codomain is quite arbitrary. We often just state the general objects rather than the image or range. For instance function values are in \mathbb{R} if we are not intested in the image.
	injective or one-to-one	A function $f: A \rightarrow B$ is called injective if $\operatorname{im}(f)=B$, that is, every point in the image comes from exactly one point in the domain A. More formally: If $a_{1}, a_{2} \in A$ are such that $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
	bijective	A function $f: A \rightarrow B$ is called bijective if it is surjective and injective.
$f^{-1} \quad$ inv	inverse function	A function $f: A \rightarrow B$ is called invertible if it is bijective. The inverse function $f^{-1}: B \rightarrow A$ is defined as follows: Given $b \in B$ take the unique point $a \in A$ such that $f(a)=b$ and set $f^{-1}(b):=a$ (by surjectivity such a exists, by injectivity it is unique).

