MATH3062 NUMBER THEORY AND ALGEBRA, 2012, TERRY GAGEN

Lecture 1: 5 March 2012

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2, \ldots\} \\
\mathbb{Z} & =\{0, \pm 1, \pm 2, \ldots\} \\
\mathbb{Q} & =\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}
\end{aligned}
$$

Similarly \mathbb{R} and \mathbb{C} are the sets of real and complex numbers respectively. This course is largely about arithmetic in \mathbb{Z} and some related algebras. We can add subtract and multiply in \mathbb{Z} but we cannot divide there. For example, we cannot solve $2 x=1$ in \mathbb{Z}. Some kind of division is possible, for example non-zero cancellation: $2 x=4 y$ implies that $x=2 y$.

Definition: We say that $a \mid b$ in \mathbb{Z} if there exists $x \in \mathbb{Z}$ such that $b=a x$. Note that $a \mid b$ is not the same as a / b.

Clock arithmetic.
$\mathbb{Z}_{7}=\{0,1,2,3,4,5,6\}$ Addition (and then multiplication) are defined as in ordinary arithmetic except that we remove multiples of 7 until we get back to the set \mathbb{Z}_{7}. So $3+6=8=8-7=1$ and $3.6=18=18-2.7=4$ and $3^{4}=81=81-11.7=4$. We have that if x is any element of \mathbb{Z}_{7}, then $-x$ is the unique element such that $x+(-x)=0$. Hence we have $-3=4$ because $3+4=0$ and in general

$$
\begin{array}{cccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
-x & 0 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

Multiplicative inverses are a bit more difficult. Whatever $\frac{1}{2}$ is, call it x it has the property that $2 x=1 \in \mathbb{Z}_{7}$. Hence $\frac{1}{2}=4$.

We have

$$
\begin{array}{cccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
x^{-1} & * & 1 & 4 & 5 & 2 & 3 & 6
\end{array}
$$

There is a more complicated notation $\equiv(\bmod n)$ for modular arithmetic but I don't want us to be bothered by that here. We'll use equality and remember that we are dealing with mod 7 or 12 or 911 , for example, when that's the situation.

Problem: Evaluate $2 \frac{3}{4}-1 \frac{3}{5} \in \mathbb{Z}_{7}$.
This is shorthand for

$$
2+3 \times \frac{1}{4}-1-3 \times \frac{1}{5}=2+3.2-1-3.3=-2=5 .
$$

It is also possible to calculate this as folows

$$
\begin{aligned}
2 \frac{3}{4}-1 \frac{3}{5} & =\frac{11}{4}-\frac{8}{5} \\
& =\frac{55-32}{20} \\
& =\frac{23}{20} \\
& =\frac{2}{6} \\
& =\frac{1}{3} \\
& =5 .
\end{aligned}
$$

That this is the same answer as before is no accident, but we won't go into showing why that is here.

We then did similar calulations in \mathbb{Z}_{11} and \mathbb{Z}_{12}. Only division is at all difficult. In \mathbb{Z}_{11} we find

$$
\begin{array}{cccccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
x^{-1} & * & 1 & 6 & 4 & 3 & 9 & 2 & 8 & 7 & 5 & 10
\end{array}
$$

It turns out that there are only four units in \mathbb{Z}_{12}, namely $\{1,5,7,11\}$.
The algebras \mathbb{Z} and \mathbb{Z}_{n} are examples of rings. We won't define that concept more precisely here. We say that and element x is a unit in a ring R if there exists $y \in R$ such that $x y=1$. We write the set of all units in R as R^{*}. So we have

$$
\begin{aligned}
\mathbb{Z}_{7}^{*} & =\{1,2,3,4,5,6\} \\
\mathbb{Z}_{11}^{*} & =\{1,2,3,4,5,6,7,8,9,10\} \\
\mathbb{Z}_{12}^{*} & =\{1,5,7,11\} \\
\mathbb{Z}^{*} & =\{1,-1\} .
\end{aligned}
$$

Students should make sure that they can do modular arithmetic using their calculators.
Now we take a prime, say 911 and the last three digits of someone's telephone number - in this case 671 and ask: What is $671^{-1} \in \mathbb{Z}_{911}$? (if it exists)?

