Mixing time of the Swendsen-Wang process on the complete graph

Tim Garoni

School of Mathematical Sciences
Monash University
Collaborators

- Peter Lin (Monash University ➔ University of Washington)
Probability on Graphs

- Many problems in statistical mechanics are of the form:
 - Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - E.g. complete graphs K_n, or tori \mathbb{Z}_n^d
 - Construct sample space Ω_n of combinatorial objects built from G_n
 - Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n
Probability on Graphs

Many problems in statistical mechanics are of the form:

- Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|
 - E.g. complete graphs K_n, or tori \mathbb{Z}_d^n
- Construct sample space Ω_n of combinatorial objects built from G_n
- Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Potts model:

- $\Omega = [q]^V$ for fixed $q \in \{2, 3, 4 \ldots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)}$ for $\sigma \in \Omega$
 - $H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$
 - $\beta = 1/\text{temperature}$
Many problems in statistical mechanics are of the form:

- Consider a sequence of finite graphs $G_n = (V_n, E_n)$ with:
 - $G_n \subset G_{n+1}$ and $|V_{n+1}| > |V_n|$
 - E.g. complete graphs K_n, or tori \mathbb{Z}^d_n
- Construct sample space Ω_n of combinatorial objects built from G_n
- Define (up to normalization) a probability $\pi_{n,\beta}(\cdot)$ on Ω_n

Potts model:

- $\Omega = [q]^V$ for fixed $q \in \{2, 3, 4 \ldots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)}$ for $\sigma \in \Omega$
 - $H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$
 - $\beta = 1/$temperature

- If $\beta \approx 0$ then $\pi(\cdot) \approx$ uniform on Ω ("Disorder")
- If $\beta \gg 1$ preference for $u \sim v$ to have $\sigma_u = \sigma_v$ ("Order")
- Phase transition between order and disorder at critical β_c
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#$-P hard on generic graphs
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#P$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#\text{-}P$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $#\cdot P$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π

- E.g. Single-vertex Glauber chain for Potts model:
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#\text{-NP}$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π

- E.g. Single-vertex Glauber chain for Potts model:
 - Transitions: $\sigma \mapsto \sigma'$
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:
 - Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
Markov-chain Monte Carlo

▶ We often don’t know how to normalize $\pi(\cdot)$
 ▶ E.g. Potts partition function Z is $\#\text{-}P$ hard on generic graphs
▶ But we can often do the following:
 ▶ Construct a transition matrix P on Ω which:
 ▶ Is irreducible
 ▶ Has stationary distribution $\pi(\cdot)$
 ▶ Generate random samples with (approximate) distribution π

▶ E.g. Single-vertex Glauber chain for Potts model:
 ▶ Transitions: $\sigma \mapsto \sigma'$
 ▶ Uniformly choose $v \in V$
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#\text{-}P$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π

- E.g. Single-vertex Glauber chain for Potts model:
 - Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via
 \[
 \pi(\sigma'_v | \{\sigma_u\}_{u \in V \setminus v}) = \frac{e^{\beta \# \{u \sim v : \sigma'_v = \sigma_u\}}}{\sum_{\sigma_v \in [q]} e^{\beta \# \{u \sim v : \sigma_v = \sigma_u\}}}
 \]
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is #-P hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π

- E.g. Single-vertex Glauber chain for Potts model:

 - Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$
\pi(\sigma'_v | \{\sigma_u\}_{u \in V \setminus v}) = \frac{e^{\beta \# \{u \sim v : \sigma'_v = \sigma_u\}}}{\sum_{\sigma_v \in [q]} e^{\beta \# \{u \sim v : \sigma_v = \sigma_u\}}}
$$
Markov-chain Monte Carlo

- We often don’t know how to normalize $\pi(\cdot)$
 - E.g. Potts partition function Z is $\#\text{-}P$ hard on generic graphs
- But we can often do the following:
 - Construct a transition matrix P on Ω which:
 - Is irreducible
 - Has stationary distribution $\pi(\cdot)$
 - Generate random samples with (approximate) distribution π
- E.g. Single-vertex Glauber chain for Potts model:
 - Transitions: $\sigma \mapsto \sigma'$
 - Uniformly choose $v \in V$
 - $\sigma'_u = \sigma_u$ for $u \neq v$
 - Choose $\sigma'_v \in [q]$ independently of σ_v via

$$
\pi(\sigma'_v | \{\sigma_u\}_{u \in V \setminus v}) = \frac{e^{\beta \# \{u \sim v: \sigma'_v = \sigma_u\}}}{\sum_{\sigma_v \in [q]} e^{\beta \# \{u \sim v: \sigma_v = \sigma_u\}}}
$$
Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic
Mixing times

- **Consider a Markov chain**
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

\[
d(t) := \max_{x \in \Omega} \| P^t(x, \cdot) - \pi(\cdot) \| \leq C \alpha^t, \quad \text{for } \alpha \in (0, 1)
\]

- **Mixing time** quantifies the rate of convergence

\[
t_{mix}(\epsilon) := \min \{ t : d(t) \leq \epsilon \}
\]
Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

\[d(t) := \max_{x \in \Omega} \| P^t(x, \cdot) - \pi(\cdot) \| \leq C\alpha^t, \quad \text{for } \alpha \in (0, 1) \]

- **Mixing time** quantifies the rate of convergence

 \[t_{\text{mix}}(\epsilon) := \min \{ t : d(t) \leq \epsilon \} \]

- **How does** t_{mix} **depend on size of** Ω?
Mixing times

- Consider a Markov chain
 - finite state space Ω
 - transition matrix P
 - stationary distribution π
 - irreducible
 - aperiodic

\[
d(t) := \max_{x \in \Omega} \| P^t(x, \cdot) - \pi(\cdot) \| \leq C\alpha^t, \quad \text{for } \alpha \in (0, 1)
\]

- **Mixing time** quantifies the rate of convergence

\[
t_{\text{mix}}(\epsilon) := \min \{ t : d(t) \leq \epsilon \}
\]

- **How does t_{mix} depend on size of Ω?**
 - If $t_{\text{mix}} = O(\text{poly}(\log |\Omega|))$ we have **rapid mixing**
 - Otherwise, we have **torpid mixing**
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:
- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.
Swendsen-Wang process

- Irreducible aperiodic Markov chain on \([q]^V\)
- Stationary distribution is \(q\)-state Potts model

Given \(\sigma_t \in [q]^V\), SW chooses \(\sigma_{t+1}\) as follows:

- Independently for each \(i \in [q]\) perform independent bond percolation on \(G[\sigma_t^{-1}(i)]\) with \(p = 1 - e^{-\beta}\).
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:
- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.
Swendsen-Wang process

- Irreducible aperiodic Markov chain on \([q]^V\)
- Stationary distribution is \(q\)-state Potts model

Given \(\sigma_t \in [q]^V\), SW chooses \(\sigma_{t+1}\) as follows:
 - Independently for each \(i \in [q]\) perform independent bond percolation on \(G[\sigma_t^{-1}(i)]\) with \(p = 1 - e^{-\beta}\).
 - Let \(A_{t+1} \subseteq E(G)\) be the union of all occupied edges
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:
- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.

 Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges.
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$.
 Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges.
- Independently & uniformly q-colour each component of (V, A_{t+1}).
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:
- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- Independently & uniformly q-colour each component of (V, A_{t+1})
Swendsen-Wang process

- Irreducible aperiodic Markov chain on $[q]^V$
- Stationary distribution is q-state Potts model

Given $\sigma_t \in [q]^V$, SW chooses σ_{t+1} as follows:

- Independently for each $i \in [q]$ perform independent bond percolation on $G[\sigma_t^{-1}(i)]$ with $p = 1 - e^{-\beta}$. Let $A_{t+1} \subseteq E(G)$ be the union of all occupied edges
- Independently & uniformly q-colour each component of (V, A_{t+1})
On \(K_n \):

- Potts model has transition at \(\beta = \lambda_c / n \) with \(\lambda_c = \Theta(1) \)
 - Continuous transition for \(q = 2 \) (Ising)
 - Discontinuous transition for \(q \geq 3 \)
SW process on complete graph

On K_n:

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$
 $$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$
- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
SW process on complete graph

On K_n:
- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$
 \[-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}\]
- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $SW_n(\lambda, q) = \text{SW process on } K_n$ with parameters λ and q
SW process on complete graph

On K_n:
- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$

 \[-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}\]
- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- Let $SW_n(\lambda, q) = \text{SW process on } K_n \text{ with parameters } \lambda \text{ and } q$

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:
SW process on complete graph

On K_n:

- Potts model has transition at $\beta = \frac{\lambda_c}{n}$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$

- Potts energy depends only on magnetization $s(\sigma)$
 \[-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{ constant}\]

- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

Let $SW_n(\lambda, q) = \text{SW process on } K_n \text{ with parameters } \lambda \text{ and } q$

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:

- Independently for each $i \in [q]$ choose Erdős-Renyi graph $G(\sigma_t^{-1}(i), \lambda/n)$.
SW process on complete graph

On K_n:

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$

 $$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$

- Let $\text{SW}_n(\lambda, q) = \text{SW process on } K_n \text{ with parameters } \lambda \text{ and } q$

Given $\sigma_t \in [q]^n$, $\text{SW}_n(\lambda, q)$ chooses σ_{t+1} as follows:

- Independently for each $i \in [q]$ choose Erdős-Renyi graph $G(\sigma_t^{-1}(i), \lambda/n)$.
 Let $A_{t+1} = \bigcup_{i \in [q]} G(\sigma_t^{-1}(i), \lambda/n)$.

SW process on complete graph

On K_n:
- Potts model has transition at $\beta = \lambda_c / n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$
 $$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$
- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $SW_n(\lambda, q) =$ SW process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $SW_n(\lambda, q)$ chooses σ_{t+1} as follows:
- Independently for each $i \in [q]$ choose Erdős-Renyi graph $G(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \bigcup_{i \in [q]} G(\sigma_t^{-1}(i), \lambda/n)$.
- Independently and uniformly q-colour each component of (V, A_{t+1})
On K_n:

- Potts model has transition at $\beta = \lambda_c/n$ with $\lambda_c = \Theta(1)$
 - Continuous transition for $q = 2$ (Ising)
 - Discontinuous transition for $q \geq 3$
- Potts energy depends only on magnetization $s(\sigma)$
 \[-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}\]
- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$ fraction of vertices coloured $i \in [q]$ by σ
- Let $\text{SW}_n(\lambda, q) =$ SW process on K_n with parameters λ and q

Given $\sigma_t \in [q]^n$, $\text{SW}_n(\lambda, q)$ chooses σ_{t+1} as follows:

- Independently for each $i \in [q]$ choose Erdős-Renyi graph $G(\sigma_t^{-1}(i), \lambda/n)$. Let $A_{t+1} = \cup_{i \in [q]} G(\sigma_t^{-1}(i), \lambda/n)$.
- Independently and uniformly q-colour each component of (V, A_{t+1})

Note: edge probability in $G(\sigma_t^{-1}(i), \lambda/n)$ is $\lambda/n = s^i(\sigma_t)\lambda/|\sigma_t^{-1}(i)|$
Rapid mixing for $q = 2$

Potts model on K_n has **continuous** phase transition when $q = 2$
Rapid mixing for $q = 2$

Potts model on K_n has **continuous** phase transition when $q = 2$

Theorem (Cooper, Dyer, Frieze & Rue 2000)

If $q = 2$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

*for all $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.***
Rapid mixing for $q = 2$

Potts model on K_n has continuous phase transition when $q = 2$

Theorem (Cooper, Dyer, Frieze & Rue 2000)

If $q = 2$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

for all $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$ with $\delta \sqrt{\log n} \to \infty$ as $n \to \infty$.

Theorem (Long, Nachmias, Ning, & Peres 2012)

If $q = 2$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = \begin{cases}
\Theta(1) & \lambda < \lambda_c \\
\Theta(n^{1/4}) & \lambda = \lambda_c \\
\Theta(\log n) & \lambda > \lambda_c
\end{cases}$$

Ray, Tamayo, & Klein (1989) conjectured $n^{1/4}$ at λ_c
Torpid mixing for $q \geq 3$

Potts model on K_n has **discontinuous** phase transition when $q \geq 3$
Torpid mixing for $q \geq 3$

Potts model on K_n has **discontinuous** phase transition when $q \geq 3$

Theorem (Gore & Jerrum 1999)

If $q \geq 3$ *then* $SW_n(\lambda_c, q)$ *has mixing time*

$$t_{\text{mix}} = \exp(\Omega(\sqrt{n}))$$
Torpid mixing for $q \geq 3$

Potts model on K_n has **discontinuous** phase transition when $q \geq 3$

Theorem (Gore & Jerrum 1999)

If $q \geq 3$ *then* $\text{SW}_n(\lambda_c, q)$ *has mixing time*

$$t_{\text{mix}} = \exp(\Omega(\sqrt{n}))$$

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012)

If $q \geq 3$ *then the single-site Glauber process for the Potts model has*

$$t_{\text{mix}} = \begin{cases}
\Theta(n \log n) & \lambda < \lambda_{o}(q) \\
\Theta(n^{4/3}) & \lambda = \lambda_{o}(q) \\
\exp(\Omega(n)) & \lambda > \lambda_{o}(q)
\end{cases}$$

where $\lambda_{o}(q) < \lambda_{c}(q)$, *so torpid mixing begins before transition*
Magnetization distribution

Large n distribution of $s(\sigma)$ known explicitly:

$$-\frac{1}{n} \log P(s(\sigma) = a) \sim \phi_\lambda(a) - \inf_{a \in \Delta_{q-1}} \phi_\lambda(a)$$

$$\phi_\lambda(a) = \sum_{i=1}^{q} \left(a_i \log a_i - \frac{1}{2} \lambda a_i^2 \right)$$

Minima of ϕ_λ correspond either to:

- **disordered** state: $s^i = 1/q$ for all $i \in [q]
- **ordered** states: $s^i = \alpha > 1/q$ and $s^j = \frac{1-\alpha}{q-1}$ for $j \neq i$

$$\lambda_0(q) := \inf \{ \lambda \geq 0 : \text{there exist ordered local minima of } \phi_\lambda \}$$

$$\lambda_d(q) := \sup \{ \lambda \geq 0 : \text{the disordered state locally minimizes } \phi_\lambda \}$$
Complete picture for $\text{SW}_n(\lambda, q)$ with $q \geq 3$

Theorem (Lin & G. 2013)

If $q \geq 3$ then $\text{SW}_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = \begin{cases}
\Theta(1) & \lambda < \lambda_0(q) \\
\Theta(n^{1/3}) & \lambda = \lambda_0(q) \\
\exp(\Omega(\sqrt{n})) & \lambda_0(q) < \lambda < \lambda_d(q) \\
\Theta(\log(n)) & \lambda \geq \lambda_d(q)
\end{cases}$$
Complete picture for $SW_n(\lambda, q)$ with $q \geq 3$

Theorem (Lin & G. 2013)

If $q \geq 3$ then $SW_n(\lambda, q)$ has mixing time

$$t_{\text{mix}} = \begin{cases}
\Theta(1) & \lambda < \lambda_0(q) \\
\Theta(n^{1/3}) & \lambda = \lambda_0(q) \\
\exp(\Omega(\sqrt{n})) & \lambda_0(q) < \lambda < \lambda_d(q) \\
\Theta(\log(n)) & \lambda \geq \lambda_d(q)
\end{cases}$$

- Gore & Jerrum’s torpid mixing result extends to a non-trivial interval $(\lambda_0(q), \lambda_d(q))$ containing $\lambda_c(q)$
- Nothing special happens at $\lambda_c(q)$
- Non-trivial scaling arises at $\lambda_0(q)$
- Low and high temperature same as Ising case
Sketch of Proof

If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \quad (\ast)$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- $\theta(\lambda) n = \mathbb{E}\text{(size of giant component)}$ in Erdös-Renyi $G(n, \lambda/n)$
- $(Y_t)_{t\geq 0}$ is a sequence of martingale increments
- $\text{var}(Y_t | \sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (\ast) exact
Sketch of Proof

- If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then

\[
s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1}
\]

where

\[
D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x
\]

- $\theta(\lambda) n = \mathbb{E}$(size of giant component) in Erdös-Renyi $G(n, \lambda/n)$
- $(Y_t)_{t \geq 0}$ is a sequence of martingale increments
- $\text{var}(Y_t | \sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (*) exact

- Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

\[
\lambda_o = \inf\{\lambda \geq 0 : D_{\lambda,q}(x) \text{ has a root on } (1/q, 1]\}
\]

\[
\lambda_d = \sup\{\lambda \geq 0 : D_{\lambda,q}(1/q) = 0\}
\]
Sketch of Proof

- If $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \sigma_t]$ then
 \[
 s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \quad (\ast)
 \]

 where
 \[
 D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x
 \]

- $\theta(\lambda)n = \mathbb{E}$ (size of giant component) in Erdős-Renyi $G(n, \lambda/n)$
- $(Y_t)_{t \geq 0}$ is a sequence of martingale increments
- $\text{var}(Y_t | \sigma_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (\ast) exact

- Roots of $D_{\lambda,q}$ coincide with minima of Potts free energy $\phi_{\lambda,q}$

 $\lambda_o = \inf\{\lambda \geq 0 : D_{\lambda,q}(x) \text{ has a root on } (1/q, 1]\}$

 $\lambda_d = \sup\{\lambda \geq 0 : D_{\lambda,q}(1/q) = 0\}$

- Coupling arguments reduce mixing time to hitting time of s_t^1
Swendsen-Wang drift

\[D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x \]

\[t_{\text{mix}} = \begin{cases}
\Theta(1) & \lambda < \lambda_o(q) \\
\Theta(n^{1/3}) & \lambda = \lambda_o(q) \\
\exp(\Omega(\sqrt{n})) & \lambda_o(q) < \lambda < \lambda_d(q) \\
\Theta(\log(n)) & \lambda \geq \lambda_d(q)
\end{cases} \]
Discussion

- Our hitting-time estimates for s^1_t explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof
Discussion

- Our hitting-time estimates for s_t^1 explain exponent values in mixing times for several other Potts/Ising processes
 - Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
 - Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof

- Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real $q > 1$ for complete graph Chayes-Machta chain. Can this be proved?
Our hitting-time estimates for s_t^1 explain exponent values in mixing times for several other Potts/Ising processes.

- Mixing time exponents depend on:
 - drift asymptotics near roots
 - decay of noise term
- Give conjectured results for the Potts censored Glauber chain
 - construct couplings to complete proof

Jon Machta (private communication) has conjectured mixing time asymptotics at λ_c for all real $q > 1$ for complete graph Chayes-Machta chain. Can this be proved?

Can one say anything for the Glauber chain for the Fortuin-Kasteleyn model?