THE UNIVERSITY OF SYDNEY FACULTIES OF ARTS, ECONOMICS, EDUCATION AND SCIENCE

MATH2069

DISCRETE MATHEMATICS & GRAPH THEORY PAPER 2 GRAPH THEORY

June/July 2007			LECTURER:	WD Palmer
T_{IME}	Allowed: One	and a half hour	rs	
Name:				
SID:	Seat Number:			

This examination has two sections: Multiple Choice and Extended Answer.

The Multiple Choice Section is worth 30% of the total examination; there are 24 questions; the questions are of equal value; all questions may be attempted.

Answers to the Multiple Choice questions must be coded onto the Multiple Choice Answer Sheet.

The Extended Answer Section is worth 70% of the total examination; there are 7 questions; the marks for each question are shown; all questions may be attempted; working must be shown.

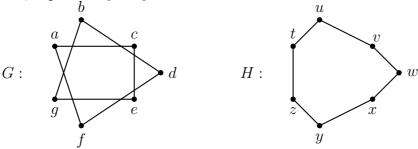
THE QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM.

Extended Answer Section

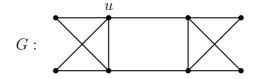
Answer these questions in the answer book(s) provided.

Ask for extra books if you need them.

- 1. (a) [3 Marks] Let u and v be (not necessarily distinct) vertices of a graph G. Carefully define the terms: a uv-walk; uv-trail and a uv-path.
 - (b) [3 Marks] Prove that every uv-walk contains a uv-path.
 - (c) [3 Marks] Prove that if the graph G is disconnected then its complement \overline{G} is connected.
 - (d) [3 Marks] Let G be a simple graph of order 12 and size 28. The degree of each vertex of G is either 3 or 5. Find the degree sequence of G.
 - (e) [3 Marks] The graphs G and H, with vertex-sets V(G) and V(H), are drawn below. Determine whether or not G and H drawn below are isomorphic. If they are isomorphic, give a function $g:V(G)\to V(H)$ that defines the isomorphism. If they are not, explain why they are not.

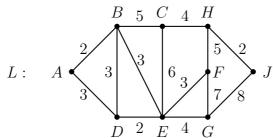


2. Consider the graph G which is drawn below:



- (a) [1 Marks] Copy and complete Euler's Theorem: "A connected graph is Eulerian ..."
- (b) [2 Marks] Use Euler's Theorem to show that G drawn above is Eulerian.
- (c) [3 Marks] Describe and apply Fleury's algorithm for finding an Eulerian circuit in G. Use vertex u as the starting point in your construction.

3. (a) [2 Marks] Let F be a forest of order n which consists of k trees. Find the size of F.

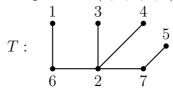


- (b) [3 Marks] Describe Krusal's algorithm for finding a minimum weight spanning tree for an edge weighted graph. Use the Krusal's algorithm to find a minimum weight spanning tree for the weighted graph above. Write down the weight of the minimum weight spanning tree.
- (c) [3 Marks] Make a copy of the graph L. Use Dijstra's algorithm to add to your copy a label to each vertex, showing the least weight of all paths from A to that vertex. (in your working, show all temporary and permanent labels.)

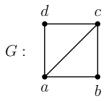
 Hence determine all least weight paths from A to J.
- **4.** (a) [2 Marks] Sketch a labelled graph whose adjacency matrix A is given by:

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right].$$

(b) [4 Marks] Form the Prüfer sequence for the given labelled tree, T, and draw the labelled tree whose Prüfer sequence is (3, 2, 2, 2, 4).

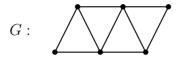


- (c) [2 Marks] State the Matrix-Tree Theorem.
- (d) [3 Marks] Use the Matrix-Tree Theorem to determine the number of spanning trees for the graph G drawn below.

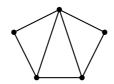


- **5.** (a) [1 Marks] Define the chromatic number $\chi(G)$ of the graph G.
 - (b) [3 Marks] Let G be any graph with maximum vertex-degree $\Delta(G)$. Prove that $\chi(G) \leq \Delta(G) + 1$ for any graph G.
 - (c) [3 Marks] State Brooks' Theorem. Applying Brooks' Theorem, or otherwise, find the chromatic number of the graph G which is shown below:

- 6. (a) [1 Marks] Define the chromatic index (or edge chromatic number) of a graph.
 - (b) [2 Marks] State Vizing's theorem on chromatic index.
 - (c) [3 Marks] Find, supplying your reasons, the chromatic index for the graph given below:



(d) [5 Marks] State the two reduction formulae for chromatic polynomials of simple graphs. Using one of these formulae, or otherwise, find the chromatic polynomial for the following graph.



- 7. (a) [3 Marks] State and prove Euler's Formula for a connected plane graph of order n, size e and with f faces.
 - (b) [3 Marks] Let G, of order n, be a connected 3-regular plane graph in which every vertex lies on one face of length 4, one face of length 6 and one face of length 8. Determine the number of faces of G.
 - (c) [3 Marks] Show that the order of a self-complementary simple graph is either 4k or 4k + 1, where k is a positive integer.
 - (d) [3 Marks] Show that $K_{n,n}$ is Hamiltonian if and only if $n \geq 2$. Hence show that $K_{n,n}$ has $\frac{n!(n-1)!}{2}$ Hamiltonian cycles.

End of Extended Answer Section