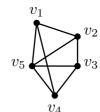
Graph Theory

Tutorial 3 (Week 10)

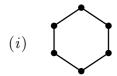
2008

Draw all the spanning trees of this graph:

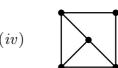
- If A is the adjacency matrix of a simple graph G with vertex set $\{v_1, v_2, \dots, v_n\}$, and $(A^k)_{ij}$ is the (i,j) term of A^k , show that $(A^2)_{ii} = \deg(v_i)$.
- 3. Write down the adjacency matrix, A, (i)for this graph.



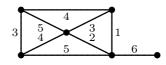
- (ii) Calculate A^2 , and verify that the result proved in Question 2 holds.
- (iii) Find the number of different walks of length 4 from v_5 to v_5 .
- (iv) Verify that the trace of A^3 is 6 times the number of triangles in the graph.
- - Is G a simple graph? (i)
- (ii) What is the degree sequence of G?
- (iii) How many edges does G have?
- Let A be the adjacency matrix of a bipartite graph. Prove that the diagonal entries of A^{2n+1} are all equal to 0, for any natural number n.
- Find the number of spanning trees in each of the following graphs:



- $(ii) K_7 \qquad (iii) K_{3,3}$



Use Kruskal's algorithm to find all least weight spanning trees for this weighted graph.

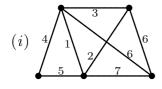


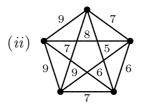
8. Find a minimum cost spanning tree for the graph with this cost matrix. How many such trees are there?

	A	B	C	D	E	F		
A	0	12	0	14	11	0	17	8
B	12	0	9	0	12	15	10	9
C	0	9	0	18	14	31	0	9
D	14	0	18	0	0	6	23	14
E	11	12	14			15	16	0
F	0	15	31	6	15	0	8	16
G	17	10	0	23	16	8	0	22
H	8	9	9	14	0	16	22	0

Extra questions

9. Find a minimum weight spanning tree in each of the following weighted graphs:





10. Use the Matrix Tree Theorem to verify the fact that the number of spanning trees of the complete graph K_n is equal to the number of labelled trees on n vertices.