Consider the initial value problem (IVP):

d
y’Ed—if:f(t,y), y(to) = o, to<t<T.

Geometrically: solutions are a one parameter family of curves y = y(t) in (¢, y)-plane.
Assume solution y = Y () exists & is unique = exactly one solution curve passes through each

point (Zo, Yo)-

General solution:

tz + C 3/2
=+ .

Different C' give different solution curves. C' = 2 for solution curve through (1, 1):

2 3/2
v (t +2> |
3
E.g. Y(l.l) = (1.07)3/2 = 1.106816606 . . ..

If family of solutions diverge as t increases from to IVP is ill-conditioned (unstable), otherwise
well-conditioned stable.
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Figure 8.1: Solution curves of Example 8.1 for C' = —8, —7,...,12. The circle is the initial point
(1,1).

IVP (linearly) well-conditioned if J = 0f/0y < 0 in ty <t < T (ode unperturbed).
Let y = Y (t) be perturbed at ¢t = 7 to Y (7) 4+ 4. If no further perturbation, y = Y (t) 4+ n(t), where

n=ftY+n =Y =ftY+n - ft,Y)=f,t,n=Jn, n(r)=45, t<t<T,

where & lies between Y & Y + n, by MVT. Hence

n(t) = sel- 7.

J <0 = In(t)| < 0], t>0,
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i.e. disturbance does not grow.
J < Jy <0, Jy constant, = n(t) — 0 as t — oo.
J > 0 = perturbations grow = IVP ill-conditioned.
IVP is stiff on [to, T] if solution slowly varies over most of [ty,T], J <0 & J > 1. E.g.

y' = —1000(y — sint) + cost, y(0) =1, 0<t<m.

Solution: y = e 0% 4 gint,

Varies slowly like sin ¢ over most of [0, 7] but drops rapidly to zero near t = 0. Not stiff on [0, 0.005].
Ezxpansion methods: determine constants ¢; where

Y(t) ~ ; cipi(t)

in terms of known basis functions {¢;(t)}, e.g. polynomial, trigonometric, rational, orthogonal
functions.

Discretisation methods: approximate Y (t) at t1,ta,...,t, by y1,¥2,--.,Yn, Where y; = Y (t;)
& usually y; # y(t;), i = 1,2,...,n. Ignore roundoff error for the present. f; = f(t;,vy;), Vi =
Y(t;), Y/ = Y'(t;). In general, yxiq is calculated from yy, 4o, ...,yx and fi, fo, ..., fr, which have

already been computed, and yy. Method is m-step if y,1 is calculated from yg, ye_1,. .-, Yr—msi1 &
fes fe—1y- - fe—mae1. Not self-starting it m > 1.
In general, (t1,1;) does not lie on solution curve. Even if no further errors are made ys, y3, ..., Yn

will lie on the wrong solution curve.
The error in the first step has propagated to the succeeding steps. In practice, errors occur at
every step; e.g. (t2,y2) does not lie on the solution curve through (¢1,1). However, the numerical
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solution will be acceptable provided all the points (¢;,4;), 7 = 1,2, ..., n, lie closer than some given
tolerance to the solution curve through (%o, yo).

The computed solution g includes roundoff error, usually a secondary consideration since |y —
U] < Y — y-

Can derive discretisation methods using various techniques. E.g. integration of the differential
equation,

y(t)=yo+/t§f(t,y)dt-

Unknown y occurs in integrand; compare numerical quadrature.

Y y =Y't)

to t

Figure 8.2: Geometric interpretation of quadrature methods.
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Example 8.2
/ttl f(t,y)dt = (t1 —to) f(to, o), y(t1) ~ yo + (t1 — to) f(to, yo) -

Repeat to get Euler’s method,

Yk+1 = Yk + DS (te, Yi) -
h =t — ti is the step-size. Backward Euler method:

t1
/ fty)dt = (t1 —to) f(t1,91) , Yk+1 = Yk + P f (tks1, Y1) -

to

The trapezoidal rule gives the trapezoidal rule,

h
Yk+1 = Y + 5 {f (e i) + f (s Y1) -

Simpson’s %—rule gives Milne’s method,

h
Ykl = Yk—1 + 3 {f(te—1,Yp—1) +4f(te, yx) + f(tet1, Yrs1) } -

Not all good methods. E.g. Milne’s method: more accurate than others above but (weakly)
unstable.
Discretisation methods must be convergent & consistent.

1. Method is convergent if
yk<h> - Y<t) ) as hmax — O, k — o0, tk<h) — t,

where hn., = max; h;. Smaller steps give approximate solutions closer to exact solution.
Larger number of steps to reach fixed value of £. Round-off error ignored.
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. Method is consistent if

Yir1(h) — yi(h)
P+

—Y'(t), as hpax — 0, k — 00, tx(h) — t.

. Local truncation error or local error of method at ¢, is
er =k — Yk,

where 7, is determined using method assuming preceding values of y; are exact, i.e. y; = Y;
for:=0,1,... .,k — 1.

. Method is order p if local truncation error = O(h?*1).

. Propagated error at t;, is

er =Yk — Uk -
Propagated error vanishes if no error at preceding steps ¢;, 1 =0,1,2,...,k — 1.

. Global truncation error or global error at tj is
ee =Yp — Yo = (e — Uk) + (T — Vi) = ¢}, +¢; -

. Stability: method may amplify local truncation error at each step to eventually swamp true
solution.

If propagated error is not amplified at each step, i.e.||el| < |ex—1|,/method is stable; otherwise
unstable.
Linear stability: approximate ode 3y’ = f(¢,y) locally by

(y—Y) =ft,y) = f(t.Y) = f,(t, )y - Y).
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“Locally” means for h < £, where £ = length scale of Y (t); f,(t,£) treated as a constant.
(For systems replace f, by Jacobian of system.) Thus stability is usually only considered for

f(t,y) = Ay, where X\ is a constant (complex for systems).

Methods in this course are convergent when stable.
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Methods mostly generalise to first-order systems,

yi — fl(taylvy%'-'?yn)
yé — f2(t7y17y2,---,yn)

/

Y, = fn(t7y17y27 S 7yn) .

with initial conditions

yz<t0>:y?, ?::1,2,...,72,.

In vector notation,

y =f(t,y), y(to) = yo -

A first-order system of n differential equations requires n scalar conditions to determine the n
independent constants of integration. Conditions at one point give IVP. Conditions at two or more
(up to n) different points give boundary-value problems.

Higher-order ode’s & systems of higher-order ode’s subject to initial conditions can be trans-
formed to first-order systems. E.g. convert

u™ = f(t,u,uM u® L uYY)
where ul) = d/u/dt’ (j =1,...,n), to

yi = Y2
/

Yo = Y3
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yqlz—l — Un
Un = [, y1,%2,- - Yn—1)

n—l).

by takingly: = u, yo = uV, y3 = u®, ..., y, = ul
First-order system is (linearly) well-conditioned (or stable) if Jacobian matriz,

(Oh Oh o Of

Oy1  Oya OYn

J) =1 0y Oy OYn | >
Oy n |

\ Oy1  Oys OYn /

has only eigenvalues with negative real part. If J has eigenvalues with positive real part then
system is usually ill-conditioned. If n is a perturbation in y, then

n=1fty+n —£f(ty)~=JIn,

using a Taylor expansion. Perturbations n will be damped out if eigenvalues all have negative real
parts.
If J has eigenvalues with widely differing negative real parts system is stiff.


Administrator
Rectangle

Administrator
Highlight

Administrator
Highlight


Expand exact solution in 3-term Taylor series about %,
1 1
Y () = ylto) + Y (to)(t = to) + 5V (o) (t = 0)* + 2V (€)(t — o).
Determine Y'(tg) & Y (to) using ode: Y'(ty) = f(to, yo)-
To find Y (ty) differentiate iy’ = f(¢,y):
y_Of Ofdy Of Of

V' =% Tagar ot Tay!
Thus Yy' = fi(to, yo) + fy(to, o) Y-

‘Example 8.3
dy 1
— =ty'? 1)=1.
Four term Taylor expansion about ¢t = 1.
Solution
1
y// _ y1/3 + gty—2/3,y/
2 2 1
y"' o= Sy = Sey TR oty Ry

3
Y'(1)=1,Y"(1) =4/3, Y"(1) = 8/9. Hence

9 3

Y(t):1+(t—1)+§(t—1)2+%(t—1)3+....
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Y (1.1) =~ 1.106815, 6 significant figures.
Accuracy of Taylor series worsens the further ¢ is from ¢3. So expand in new Taylor series about
t1 near ty using y; from old series to approximate Y (¢1). Repeat. Thus,

1 1
Yieg1 = Y + hY] + 5h2Yk” + 8hBY”’(g) .

Express Y, and Y,” in terms of f and its derivatives,

Virr = Yo+ hf (10, Yo) + S folte, Yo) + f (e, Yo) £ (e, Yi) b+ O(R)
2

The one-step three-term Taylor series discretisation method

1
Yk+1 = Yr+ hyp+ §hzyg ,
1
= yp+ hf(te, yx) + §h2{ft(tkayk) + fy (e v ) f (trs yi) } -

More terms in Taylor series can usually achieve greater accuracy but disadvantages:

f(t,y) may be too complicated to differentiate;

differentiations increase chance of blunders;

Taylor series may not exist; e.g. v/ = /2y, y(0) = 0, y”(0) does not exist.
Taylor series are not a general purpose method.
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No differentiation in Taylor series method if only two terms:

Euler’s method: U1 = Yp + hy, = yr + h f(te, yx) -

Poor accuracy requires very small step-size h & large number of steps.
Use more accurate methods unless storage limitations demand Euler.

Example 8.4
dy 1/3

— =1 1)=1.
Find Y (1.1) (= 1.1068. .. exactly) using Euler’s method with (a) 1 step & (b) 10 steps.

Solution ty =1,y =1, f(t,y) = ty'/3.
() h=01,4=1+01f1,1)=1+01x1=1100 = Y(L1)= 1.100.
(b) h = 0.01, Y(1.1) ~ 1.106118.

Taylor series of Y (t) about t:

1
Yigr = Yo + hf(te, Vi) + §h2Y”(fk) : te < &k < Tpt1-

Subtract Euler’s method to get the global error at ti 1,

1 1
eht1 = Yit1 — Ykt1 = Ye — e + h{f (e, Yi) — f(te yi) } + §h2Y (&) -

Global error consists of two parts (ignore round-off error):
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1. Local error at ty1:|ef = 2h*Y"(&).

Yi = i = global error = local truncation error.

2. Propagated error at ty1:

orr = Y — yk + h{f (66, Vi) = f(te, yn)} = (1 + AJ(€) (Ve — w) = (1 + hJ)ex,

where £ lies between Y}, & yy.

Thus
eri1 ~ (1+hJd)e, +epq -

Error decays if amplification factor 1 + h.J satisfies |1 + hJ| < 1, i.e. if =2 < hJ < 0.

Well-conditioned IVP = J <0 = Euler’s method stable only if 0 < h < —2/J.

Stiff IVP = J <0&|J|>1 = very small step-size for stability.

Essential difficulty of stiff problems: very small steps to maintain stability:.

Local error control:

"o oM o
Y = Yg—1k =

Local error from t; to £, < € if h chosen such that

2¢

|yk 1k’

1
§|Y”|h2 ’yk 1/-:“12 <€ or h <
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Local relative error control:

/1

2
B < mind 0.9, | 20% L
‘yk—l,k’

hmax = maximum step-size; safety factor = 0.9; change step only every few steps. Check derivative
approximation using computed value of g1

/ /
"o M Y1 — i
y ~ yk,k+1 T t t .
E+1 — Uk

Accept step change only if %]y,’g’k +1]/h* small enough, otherwise reject & reduce h further.

Euler’s method for systems:
stable if |1 + hA| < 1 for any eigenvalue A of system Jacobian matrix J.
Geometrically: interior of circle, centre —1, radius 1, in complex plane.
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Achieve accuracy of any truncated Taylor series method without differentiation by extra evaluations
of f(t,y) at each step. E.g.

kl - h’f(tlm yk)
ke = hf(te +ah,y,+ ki)
Ykt1 = Y +aky + bky.

Taylor expansion for function of two variables:

f(xo+ 2,90 +y) = f(zo,%0) + fu(®o, o)z + fy(zo,y0)y + ... .

Replace xg, x, yo & y by ti, ah, yr and Sh:

ko = hf(te, yr) + h{fi(tr, ye)ah + fy(tr, yx) Bk} + O(R®).
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Substitute into method:

Y1 = Yk + (@ + OIS (tr, yi) + R {bafe(te, ye) + 0B8fy (e, yr) [t yi) } + O(R) .

Subtract from Taylor expansion of Y (¢) about ¢, to obtain

global error :

e _ P T
€+l = Yk+1 — Yk+1 = €y + €l

where propagated error:

eorr = Yi— e+ (a+D)h{f(tx, i) — [ (e, y)} + bah®{ filty, Yi) — filtn, yr)}
+ bR { f (te, Yi) f (e, Yi) — fy (e, yi) f (ths yie) } + O(R?)

& local error:

2

el =(1—a—bhf(ty, Vi) + (1 - boz)tht(tk,Yk) + (% — b3

)h2fy(tk, Yi) f(te, Ya) + O(K)

Propagated error vanishes if y;, = Yj; usually non-zero due to errors at previous steps.
Local error contains Y, but not y;; due to approximate nature of numerical method.

2nd-order 2-stage RK methods: generally e, = O(h), but

egqtl = O(h?))

1
b=1 ba = —
a + , Qo 5

1
b3 = — .
7=3

if:
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Modified Euler Method: b=1/2=a=1/2, a=1=[:

ki = hf(te ys)
ke = hf(tper,yr + k1)

1
Yh+1 = yk+§(k1+k2)-

dy 1/3
— =1 1)=1.

Approximate Y(1.1) using the modified Euler method.
Solution ty=1,y9=1, h=0.1, f(t,y) = ty"/>.

k1
ko

1

= 0.1f(1,1)=01x1=0.1
= 0.1f(1.1,1.1) = 0.113551

1
= 1+ 5(0.1+0.113551) = 1.10678.
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For 2nd-order 2-stage methods global error reduces to

err1 = Yi—yp +h{f(tr Ye) — f(tr,un)} + %h2{ft(tka Yi) = fe(te, i)}
+ %hQ{fy(tka Vi) f(te, Yi) — Fo(te, yi) £ (te, yi) } + O(R?)

_ {gy (y+hf-|— 1h2(f3mLJ‘"f}/)>

2 + O(h3>} ek —|— 6£+1 3

(tx,€)

where ¢ lies between vy, & Y.
To O(h?) amplification factor is

9 1,
G= gy hr+ 5+ 1)}

(tx,€)

Stability of two-stage methods requires |G| < 1.
Linear stability requires |G| < 1 for f(¢,y) = Ay, i.e.

]
'1+h)\+§h2)\2 “1.
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Ezxplicit s-stage Runge-Kutta method:

kl — hf(tkn yk)
ke = hf(ty + azh,yr + B21k)
ks = hf(ts + ash,yx + Barki + Bs2k2)

ks — hf(tk: + &sha Yk + lekl + 652k2 + ...+ 65,5—1]{5—1)
Y1 = Yr + a1k + agks + ...+ asks.

% 521

a3 531 532

Qg 531 632 SR 53,3—1

ay a9 ce Qg1 Qg

Table 8.2: Tabular form of explicit Runge-Kutta methods.

Determine «;, 55, a; by agreement with Taylor expansion of solution to terms O(h?).
Local error = O(h?*!); order of method = p.
Highest order methods explicitly constructed of order 10 with 18 & 17 stages.
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Classical Fourth-Order Four-Stage Method:

kv = hf(te,yw)

1 1

ky = hf(te+ §h,yk + §]€1)
1 1

ks = hf(te+ §h7yk + §7€2)

ki = hf(tess, ye + ks)
1
Yk+1 = Yr T+ 6(k1 + 2ky + 2ks + ky) .

Example 8.6

dy 1

—= = tyl/3 1) =1.
Approximate Y(1.1) using the classical Runge-Kutta method.
Solution ty=1,yo=1, h=0.1, f(t,y) = ty'/>.

ki, = 0.1f(1,1)=0.1

ky = 0.1f(1.05,1.05) = 0.1067216175

ks = 0.1f(1.05,1.053360808) = 0.1068353600

ks = 0.1f(1.1,1.10683536) = 0.1137855274
1

1 = 1+ 6(0.1 + 2 x 0.1067216175 + 2 x 0.1068353600 + 0.1137855274) = 1.10681658 .
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Runge-Kutta methods are easily applied to systems. E.g. the modified Euler method,

kl - hf(tk7 Yk>
ky = hf(tk+17 ky, + ki)

Kit1 = yr+ 2 (k1+k2)

where k; & ks are vectors. For system of two equations:

(k1)1 = hfilte, (yo)r, (Y2)x)
(k1)2 = hfalte, (Y)k, (Y2)k)
(k2)1 = hfi(tesr, (Y)r + (k)1, (Y2)x + (k1)2)
(k2)2 = hfalteya, (yl)k+(k1) (y2)r + (k1)2)

Wk = W)+ 3 {(kl) (K2)1}
(W2)r1 = (y2)i + %{(lﬁ)z + (k2)2} -

If method has order p for a single equation then it has order p for a system, if p < 4.
If p > 4 the order of method for systems may be < p.
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The global error of an explicit Runge-Kutta method of order p is ex11 = Gey + e}, where the
amplification factor to O(hP) is

0 1 1
G=—y+hy + %@ 4 .+ —hPyP)
%y 2 ! (11 €)

The yU) here must be expressed in terms of ¢ and y using the differential equation. The conditions
for stability and linear stability are, respectively, |G| < 1 and

1

1
|1+h)\—|—2h2)\2—|—...—i—p'hp)\p <1.

For Runge-Kutta methods the region of linear stability increases with the order of the method.

The method of estimating the local truncation error from a higher derivative (3" for the Euler
method) relies on the form of the truncation error being known and reasonably simple. This is
not true for Runge-Kutta methods. Instead, two other methods are commonly used for local error
control, extrapolation and embedding. Extrapolation for a p-th order method uses the fact that
the local error for a single step from ¢; to ¢, of size h is of the form

el = ChPH 4 O(h+2),

where C'is a constant. The local error for two steps of size h/2 from ¢ to 5,1 is thus approximately
2C(h/2)PT1. If the corresponding estimates of Y (tz11) are y41(h) and ygi1(h/2), then, neglecting
other errors,

Y(thir) = yera(h) + ChP & gy (h/2) +2C(R/2)P
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This gives the following estimate for the local truncation error,

O A Uk+1(h) — yria(h/2) |
1 —2p

If this is larger or much smaller than some specified error tolerance the stepsize h can be adjusted.
To get a local error € requires a new stepsize H such that C HP™ ~ ¢. Eliminating C,

(sz) ~ yk+1<(hl>_—2y:f<h/2>

or

(1 —27P)e }zﬁi
Yer1(h) — yes1(h/2)

Various safeguards are needed, such as those in §8.4, to make a robust local error control. The
major drawback of the method is the extra work required at each step.

H%h{



Embedding methods use the stages of the method to calculate two approximations to the
solution of different orders

Yk+1 = Yk +arky +agky + ...+ asks
U1 = Yk + arky + agks + ...+ asks.

Yrki1 — Yre1 then provides an estimate of the local error. For example, England’s fourth-order
six-stage method

kl — hf(tkayk>

1 1
ke = hf(ty+ §h7 Yr + §k1>
1 1 1
ks = hf(ty+ ih’ Yr + Zkl + 17@)

ki = hf(teer, ye — ko + 2k3)

2 1

1 1
ke = hf(ty+ gh, U + @(28/@1 — 125ky + 546ks + 54k, — 378ks))

1
Ye+1 = Y+ 6<k1 + 4ks + ky)

with the local error estimate

1
€hi1 = Ykt1 — Jrp1 = %(—42/@ — 224ks — 21k, + 162ks + 125kg) .

Another example is the Dormand-Prince 5(4) method — see Table 8.5.



General linear m-step method of fixed step-size (|an,| + |Gm| # 0):

Ykt1 = Ykt oyp—1+. . .+ UnYk—m+1+R{ B0 f (trs1, Yer1) + 00 f (B yi)+- o -+ Bmf Fe—mt1, Yk—ms1) } -

Explicit if 5y = 0.

Implicit if By # 0: unknown y;1 occurs on both sides = solve non-linear equation for y;,1 at each
step (if f non-linear in y).

Multistep methods for m > 1 more efficient.

AOEEEIVISEOES $ o -l  as—a;—...—a, = 0.

Adams-Bashforth Methods Explicit 5y = 0. y; = f(t;, v;).
Polynomial pi8 . (t) of degree m — 1 interpolates m points (¢;,9}) (i =k —m+1,...,k):

tey1

tk+1
y(trea) = y(te) + Y dt = a1 = Y +/t P2 () dt .
k

ty

Adams-Moulton Methods Implicit £y # 0.
Polynomial p*(t) of degree m interpolates m + 1 points (t;,y}) (i=k—m+1,...,k+1):

(78]

tkt1
Y(tre1) = y(tr) + Yy dt & Ypi1 = yp + /t p (1) dt .
k

ty
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p 51 52 53 54 55 56 Cl'p
1 1 5
3 1 5
21 3 —3 ¥
3| 23 _ 16 5 9
12 12 12 24
4| 25 _ 59 37 _9 251
24 24 24 24 720
5| 1001 2744 2616 1274 251 475
720 720 720 720 720 1440
G | 4277 7923 9982 7208 2877 475 | 19087
1440 1440 1440 1440 1440 1440 | 60480

Table 8.3: Parameters of pth-order Adams-Bashforth method (p =1,...,6).

p| Bo B B2 Bs Ba Bs Cp
T
1 1 1 —3
1 1 1
21 3 3 -1
3| & 8 _ 1 _ 1
12 12 12 24
41 2 19 _5 1 _ 19
24 24 24 24 720
5| 231 646 _ 264 106 _ 19 _ 27
720 720 720 720 720 1440
6 | 475 1427 _ 798 482 173 27 863
1440 1440 1440 1440 1440 1440 60480

Table 8.4: Parameters of pth order Adams-Moulton method (p =1,...,6).



p| B 1 &%) Qa3 Q4 Qa5 Cy
1

11 1 —1
2 4 1 1
213 3 3 —3
a6 18 _9 2 _1
11 11 11 11 4

A 2 a8 36 16 _3 _1
25 25 25 25 25 5

£ 60 800 _300 200 _ 75 12 _1
137 137 137 137 137 137 6

G| 60 360 450 400 _ 225 72 _ 10 | _1
147 147 147 147 147 147 147 7

Table 8.5: Parameters of pth order Gear (closed) method (p =1,...,6).
Y1 = oy + Doy By Boyi,—1 B3yr—2
0 I = o
1 I = Go + B Do O3
2 L= 20 fo (2 203
3 L= 30 Do 2 4035
4 1 — A( Bo Do 803

Table 8.6: Equations determining disposable parameters of 3-step Adams-Moulton method.




EXampIe8id 2-step Adams-Moulton method.

Solution Quadratic polynomial interpolating (tx—1,v5,_1) (tk, Yi) & (trt1, Ypin):

pAM () = (t — ) (¢ — tps1) y (T — tp—1)(t — 1) y (t — te—1)(t — ti) L
? (th—1 — ti) (the1 — tir) il (tk — to—1) (tk — tht1) g (thor — i) (tpes — tp_y) "1
1 1 1
= = (= By — 2~ )t — i+ gt — ) (= )
Integrating
te+1
/t py M (t) dt = L,y — Loy, + Isypys
k
where L L h |
k+1
I:—/ t—t,)(t —t dt:—/ — h)dr = —=h3,
1 22 ” ( k)( k-l-l) 2h2 Jo T(T ) T 6
letting t = t;, + 7. Similarly,
5
I, =—=h?, I3 = 6h3
tht h 2h 5h
/k py™ () dt = —592_1 + Eyf{; + Eyl/c—i—l

th+1 h
Ykt = Yk + /t paM () dt = yi, + T S (s yn) + 8F (b i) — f (b1, ge)
k

replacing 4’ by appropriate f.
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Geamsvieiieds O #0, Si=F=...=0n=0.

Polynomial p& (t) of degree m interpolates m + 1 points (¢;,5;) (i=k—m+1,...,k+1):

dpS (ts1)

0 = f(trt1, Yer1) -

EXample8i® 2-step Gear method.

Solution Quadratic polynomial interpolating (tx_1, yx—1) (tx, Yx) & (trs1, Yksr1):

1 1 1
Py (t) = 55 (t = te)(t — tren) Y1 — 75 (t = tema)(E = tern)yn + 575 (E = te) (= 1) Yt -
2h h 2h
Differentiating
dp§
t — T2
f(trs1, Urtr) 7

tk+1

1 1 1
= Q—hQ(tkH — ) Y1 — ﬁ(tkﬂ — th—1) Yk + 2—h2(2tk+1 — b1 — L) Yks1

1 2 +3
thk—l hyk 2hyk+1-

Rearranging

4 1 2h

S g My .
Ykt1 = Yk = 3V 1+3f(k-|—1ayk+1)
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m-step Adams-Moulton method exact for problems with polynomial solutions of degree m + 1.
Since the method is linear in f, it must be exact for y = t*, k = 0,1,...,m+1, and this determines
the disposable parameters of the method, a1, 8y, 51, . . ., Bm. Similarly, the m-step Adams-Bashforth
method, with disposable parameters a4, 01, ..., 0,,, and Gear’s method, with disposable parameters
Qi, ..., 3y, are exact for problems with polynomial solutions of degree m, in particular for
y=t"k=01,...,m.

EXamplen8l® 3-step Adams-Moulton method. Determine ay, 5y, 51, 82, 83 by requiring method
to be exact for y = 1,¢,t2,¢3,t*. The factor h ensures parameters do not depend on h or k. Hence
take

h=1, t, =0 tg1 =1, tp1=—-1, tp_o=—-2.

Solution
9 19 5) 1

CV1:1, 60:—7 61:—7 62:_—7 /63:—°
24 24 24 24
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The m-step Adams-Moulton, Adams-Bashforth and Gear’s methods are of orders m+1, m and m,
and the local errors are

el — Cphp+1y(p+1)(fk) 7

where p is the order. These methods are convergent within their regions of stability:.
The propagated error of multistep methods at £, is

€£+1 = Yk+1 — Y1 = Z QiYk—i+1 T Zﬁiy;c—i—i-l - Z Qi¥j—ip1 — N Z Bi¥5emigr -
i=1 i=0 i=1 =0
The global error is

m m
T
Cr+1 = ekP+1 -+ efﬂ = Z Qiegit1t+h Z 6ify(tk—i—l—1: §k—i+1)€k—z‘+1 + €hgq -

Setting cg = —1 this can be written as
> {ai + hBify(trmivts Soit1) Yen—is1 = —€py -
i=0

For linear stability, f(t,y) = Ay, and the errors are related by
Z{Oéi + hABi}er—iv1 = —efﬂ :
i=0

This is an inhomogeneous finite-difference equation with constant coefficients. Solutions of the
homogeneous equation are of the form

€ — 01€f+02§§ —|—...—|—Cm§7];
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if the associated characteristic equation

p(€) + hAo(€) = 0

has m distinct roots &1, &o, ..., &, Where

pl€) = ™ + ™+ Fan, (€)= B+ BT+ B

Secular terms must be added if there are repeated roots. The error will not grow and the method
is absolutely stable if the roots of the characteristic polynomial satisfy |&]| < 1,7 = 1,2,... and
there is no repeated root on the circle |£| = 1. There is a region of the complex h\ plane for which
the roots of the characteristc equation satisfy the absolute stability condition |£| < 1.

For hA = 0 the characteristic equation reduces to p(§) = 0. For small hA the roots of p(¢)
provide a first approximation to the roots of p(§) + hAo(€). It can be shown (Gear 1971) that a
necessary and sufficient condition for a method of order p > 1 to be stable is that the roots of p()
satisfy |€] < 1 and that the roots on |£| = 1 be simple. A stable method is only weakly stable if
there is more than one distinct root of p(§) on || = 1 and it is strongly stable if there is only one
root of p(£) on |£] = 1. The Adams and Gear methods are strongly stable. With weakly stable
methods such as Milne’s method there is the possibility of parasitic instability: for A\ small one
of the roots of p(£) on [£] = 1 behaves like the true solution, which is y = Ce*, while the other
root(s) on || = 1 contribute terms which may swamp the true solution.
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Figure 8.3: The pth order Adams-Bashforth method is stable within the contour labelled p =
1,2,3,4,5,6.
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Figure 8.4: The pth order Adams-Moulton method is stable outside the contour labelled p = 1, to
the left of the contour labelled p = 2 and within the contours labelled p = 3,4, 5, 6.
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Figure 8.5: The pth order Gear method is stable outside the contours labelled p = 1,2, 3,4,5,6.
Note the stability regions are infinite in the left half-plane.



Implicit methods are more stable than explicit methods.
Implicit methods require solution of non-linear equations at every step (Gy = [3):

Yk+1 = Yk + 5hf(tk+1> yk:—l-l) + g(yk, Yk—1,- - - ,yk_m+1)
0=F(y) ==y —yx — Bhf(tps1,y) — g.

- .
y;ﬂfﬁl J =y + Bhf (tisr, yéﬁl) +g.

Initial estimate y,(ﬁzl of yry1 predicted (P) by explicit method; e.g. Adams-Bashforth method of
order m or m + 1 predictor for Adams-Moulton method of order m + 1. Function f is evaluated
(E) & correction (C) ygjl is found.

For better stability another E is done giving a PECE method.

1 or 2 iterations give y,.1 to an accuracy of same order as local error of implicit method.
Adams methods generally used for these predictor-corrector methods.
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Functional iteration methods only converge if |ShJ| < 1:

i =l = e+ B w9} — {un + BRF (b, wEn) + 9}

= ph {f(tk-l—l yffll) — [ (1, yfgizl))}
= (el (ulh — i)

For stiff problems, where |J| > 1, this forces such a small step-size, h < (B|J|)™' <« 1, that
predictor-corrector methods are practically useless for stiff problems.

Newton’s Method
1
yl?:l ) = yl(%Ql {F/@l(%:zl)} F(Ql(%:zl) F'=1-phJ.

Newton’s method suitable for stiff problems, since it converges regardless of h if y,ﬁfﬁl is sufficiently
accurate.

Non-stiff: use Adams predictor-corrector methods: more accurate than Gear’s methods for same
number of function evaluations.
Stiff: use Gear’s methods; Adams methods unstable without very small step-size.
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