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Summary

In this work, we investigate methods for computing equations of
Humbert surfaces — moduli spaces for principally polarized abelian surfaces
possessing real multiplication by a real quadratic order. Our main approach
is to use Fourier expansions of modular forms and apply ‘Runge’s method’
to find relations among them. We find equations of Humbert components in
a number of different models including the Rosenhain model, the symmetric
Satake model, Runge’s model and level 1 models. We then take intersec-
tions of Humbert surfaces to produce equations describing Shimura curves.
For small discriminants, we find parametrizations of Humbert components
which allow us to construct rational points. Amongst these we search for
modular Jacobian surfaces defined over the rationals. We reduce our Hum-
bert equations modulo p to study ‘congruence primes’ — primes at which the
reduction mod p of a modular Jacobian surface splits as a product of ellip-
tic curves. In the final chapter, we compute (3, 3)-isogeny relations which
are used to improve the CRT-method to compute Igusa class polynomials;
Humbert surfaces are shown to significantly improve this algorithm.

Statement

This thesis contains no material which has been accepted for the award of
any other degree or diploma. All work in this thesis, except where duly
attributed to another person, is believed to be original.
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Introduction

Georges Humbert (1859—-1921) obtained a doctorate in mathematics in
1885 for his thesis “Sur les courbes de genre un”. Since that time, the study
of elliptic curves has grown immensely and with the help of modern com-
puters, conjectures like the Birch and Swinnerton-Dyer conjecture encour-
age further investigations both theoretical and computational. For higher
genus curves on the other hand, less has been achieved in terms of explicit
calculation. In relatively recent times more attention has been focused on
computing with genus 2 curves, beginning in 1989 when hyperelliptic curve
cryptography was proposed by Koblitz [48]. By virtue of the zeta function,
all genus 2 curves over a finite field have complex multiplication by a quar-
tic CM-field and as a consequence, CM-points have been intensely studied.
Less attention has been given to genus 2 Jacobians having different endo-
morphism algebras, for example indefinite (Q-quaternion algebras or real
quadratic fields. Humbert [35] found relations (defining a surface) in terms
of hyperelliptic roots which determine when a principally polarized abelian
surface has endomorphism ring isomorphic to a quadratic order of discrim-
imant A for values A = 1,4,5,8. Humbert surface equations were later
studied by Hecke [32] and Franke [20] in their dissertations. By the early
1980’s, the theory of Humbert surfaces was well and truly established [79],
yet it would take another 17 years before anybody computed a new Humbert
surface explicitly (admittedly, many equations were calculated for Hilbert
modular surfaces which are closely related). In 1999, Runge [71] com-
puted models of components of Humbert surfaces, which included models
for five new discriminants. His motivation was to compute Shimura curves
(quaternionic multiplication) in the intersection of Humbert surfaces. Our
motivation is somewhat broader, for we also apply the results to explicit
CM-theory, endomorphism computations and the investigation of modular
abelian surfaces. The fact that every quartic CM-field contains a real qua-
dratic field means that a CM-point can be identified as a point on a Humbert
surface. This can be used to great effect in speeding up the CRT method for
computing Igusa class polynomials and speeding up endomorphism ring
computations (Section 7.9).

vi



INTRODUCTION vii

Chapter 1 provides reference to the background material on abelian
varieties and moduli spaces. Here we describe classical theta functions
and Satake compactifications as well as provide some examples of mod-
uli spaces of abelian surfaces having a real multiplication (RM) structure
(Hilbert modular surfaces).

Chapter 2 is an overview of Humbert surfaces. The main result of Sec-
tion 2.1 is Humbert’s Lemma (Theorem 2.9) which says that the locus Ha
of principally polarized abelian surfaces having real multiplication by a qua-
dratic order of discriminant A is a two dimensional subvariety (called a
Humbert surface) of the Siegel modular threefold Hy/Sp,(Z) and can be
described in Hy by a single linear relation:

T3 — ]{7'1 +£7‘2

where 7 = (74 2) € Ho and A = 4k + (. In Section 2.2 we see that
Humbert surfaces are degree 2 quotients of Hilbert modular surfaces.

We then detail our Humbert surface computations in Chapter 3. The
method used to find Humbert relations involves Fourier expansions of mod-
ular forms. These expansions are constructed using theta constants for
which explicit expansions are known. Finding an algebraic relation between
these modular forms reduces to searching for a linear relation between
monomials, each represented as a power series. This algorithm (“Runge’s
method” [71]) is applied to various models of moduli spaces with level
structure, for example the Rosenhain model which has level 2 structure.
Another level 2 model which we investigate is the symmetric Satake model
X[2] in P due to van der Geer [79]. The projection map down to level 1 is
a Galois cover by the group S, where Sg acts by permutations on the coor-
dinate functions of P°. Geometric properties (stabilizer of a component in
Sg, number of components, degree) are known for Humbert components in
this model and assist with their computation.

Chapter 4 summarizes the arithmetic theory of quaternion algebras and
paves the way for Chapter 5 where we identify Shimura curves — curves ap-
pearing in the intersection of Humbert surfaces. Technically speaking these
are quotients of Shimura curves by Atkin-Lehner subgroups, the precise
groups determined by Victor Rotger in his PhD thesis [67]. This method
was given by Hashimoto and Murabayashi in [31] who found Shimura
curves of discriminant 6 and 10 using Humbert’s original equations for H;
and Hg. At the time, the only other known equations of Humbert surfaces
were [, and H, which limited the method. Using the symmetric Satake
model, Besser [8] computed Shimura curves of discriminants 6, 10 and 15
by hand, where the discriminant 15 curve appears in the intersection of two
distinct Humbert components of discriminant 8. Using yet another model,
Runge [71] extended the list of discriminants of Humbert components but
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did not publish any Shimura curve equations. We provide algorithms to
automate the process and produce some equations for larger examples.

In Chapter 6 we parametrize some of our Humbert components and find
2-parameter families of points on level 1 Humbert surfaces. Using these we
can find rational points on level 1 Humbert surfaces. We also find rational
points for which the RM is defined over Q. The recently proven generalized
Shimura-Taniyama conjecture implies that these abelian surfaces are mod-
ular, i.e. isogenous to a 2-dimensional factor of Jy(/N) for some N. We then
work in the other direction and study the reduction of modular Jacobians at
primes p using Humbert surfaces mod p.

The final chapter is joint work with Kristin Lauter and Reinier Broker
at Microsoft Research and is essentially self-contained. Using the Fourier
expansions method of Chapter 3, we compute (3, 3)-isogeny relations. We
use them to make the Galois action on the CM-moduli explicit, improv-
ing the CRT-method to compute Igusa class polynomials. The last section
demonstrates that Humbert surfaces can be used to speed up parts of the
algorithms even further.

The cover picture is a connected component of the (3, 3)-isogeny graph
for the quartic CM-field K = Q[X]/(X* + 22X? + 73). The white dots
represent principally polarized abelian surfaces over 409 whose endomor-
phism ring is isomorphic to the ring of integers of /. See Example 7.17 for
the details.

Many of the computations are too large to include in this thesis. For
convenience, the data has been made accessible online at

http://sites.google.com/site/humbertequations/ .



CHAPTER 1

Abelian Varieties and their Moduli Spaces

This chapter is divided into two parts. The first part provides reference
for the theory of complex abelian varieties and the classification of their en-
domorphism algebras. The second part describes moduli spaces of abelian
varieties. Our exposition is based on Birkenhake-Lange [9] and Rosen [66].

Definition 1.1. An abelian variety A defined over a field k is a projective
group variety over k.

It can be shown that the group law on an abelian variety is necessarily
commutative. An abelian variety over C is analytically isomorphic to a
complex torus. However, the converse is not true: in dimensions greater
than one, not all complex tori are abelian varieties. We undertake a study of
the precise conditions as to when a complex torus is an abelian variety.

1.1. Complex tori

Definition 1.2. A complex torus of dimension g is a quotient V /A where V
is a complex vector space of dimension g and A C V is a lattice (discrete
free Z-module) of rank 2g.

Let us study complex analytic morphisms between complex tori. Since
translations are clearly morphisms, we can compose an arbitrary morphism
with a translation so it suffices to restrict our attention to morphisms that
send 0 to 0.

Lemma 1.3. Let T} = Vi/Ay and Ty = V5 /Ay be complex tori and let
a:Ty — Ty be a holomorphic map with «(0) = 0. Then « is a ho-
momorphism that is induced by a C-linear map &.:Vy — Vy satisfying
(A1) C Ag. We call & the analytic representation of a.

Proof. By the universal property of the projection map 7y : Vo — 15, the
map « o my lifts to a holomorphic map & : V; — V5 which makes the fol-
lowing diagram commutative.

Vi — W

ml lm

T, T 15
1
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We necessarily have &(A;) C A, and & is uniquely determined mod A, so
if we specify &(0) = 0 then & is unique. From the commutative diagram
a(v+ A) = a(v) mod Ay if A is in A; so 92 (v+)\) ()forall)\m
Ay. Sofori = 1,...,g we have that 8a is a holomorphlc functlon on the
compact complex manifold 77, hence by ‘Liouville’s Theorem all the partial
derivatives are constant, so & is linear. Hence & is a homomorphism and

therefore « is as well. ]

Proposition 1.4. If a: Ty — T is a homomorphism of complex tori then
a(Th) is a subtorus of Ty and ker « is a closed subgroup of Ty. The con-
nected component (ker )® is a subtorus and is of finite index in ker a.

Proof. See Birkenhake-Lange [9, Proposition 1.2.4]. U

If f: Ty — T5 is a nonzero homomorphism, then n f is nonzero for all
nonzero integers n. Hence there is a natural embedding

HOIl’l(Tl, Tg) — HOII](Tl, T2> & Q =: HOI’IlQ(Tl, TQ) .

Definition 1.5. A homomorphism o.: Ty — T; of complex tori is called an
1sogeny if «v is surjective and has finite kernel. The cardinality of the kernel
is called the degree of o

Example 1.6. (multiplication by n). Let T = V//A be a complex torus of
dimension g. The map [n]y: T — T, x — nx is an isogeny of degree n
with kernel equal to (1A)/A 22 (Z/nZ)*.

The following lemma demonstrates the importance of multiplication
maps.

Lemma 1.7. Let T}, T be complex tori and let o: Ty — T3 be an isogeny
of degree d. There exists a unique isogeny o : Ty — T} satisfying coa =
[dhb and O_/v o = [d]Tl-

Proof. See Birkenhake-Lange [9, Proposition 1.2.6]. U

Note that the above lemma tells us that an isogeny f in Hom(7}, T3) has
an inverse in Hom(75, T}) ® Q, namely (deg f)~1 fV.

1.2. Projective embeddings

A complex torus A = V/A is an abelian variety if and only if it can
be embedded into projective space. To do this, one needs to find an ample
divisor on A. First we briefly describe the necessary divisor theory.

Let M be a compact complex manifold. A (Cartier) divisor on M is
given by an equivalence class of families {(U,, fa)}acs Where the U,, form
an open covering of M, where f,, # 0 is meromorphic on U,, and f,/ fs is
nonvanishing and holomorphic on U,NUz # . Two families {(U,, fa) }acr
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and {(Vj3, gs) }ges are equivalent if f,/gs is nowhere zero and holomor-
phic on U, N V. A divisor D is said to be effective (or positive), written
D > 0, if the defining functions f, are holomorphic for all . One can
check this property is independent of the choice of representative. Let 1,/
be the constant function on M taking the value 1. The divisor {(M, 1)}
is called the zero divisor.

The sum of two divisors is

{(Ua fa) Yaer + {(V,98)}ses = {(Ua N V3, fags) }aperxs -

The set of divisors on M form an abelian group, written as Div(M ). We
define the set of principal divisors Prin(M) C Div(M) to be the divisors
of the form

div(f) = {(M, f)} .
where f # 0 is a meromorphic function on M.

A complex analytic map p: M — N of compact complex manifolds

induces a map

p*: Div(N) — Div(M)
{Wa,90)} — {07 Wa.gaop)}

called the pullback of p.
Let C(M) be the set of meromorphic functions on A/. For any divisor
D we have the associated vector space of meromorphic functions

L(D) = {f € C(M) | div(f) + D > 0}
which is finite dimensional. Write /(D) for the dimension of £(D) and let
fo, ..., fn be abasis of L(D). Then we obtain a complex analytic map
op: M — P

v (fo@) s fal@)
where n = ¢(D) — 1. Note that ¢, is only well-defined if /(D) > 1.

Theorem 1.8. (Cousin’s Theorem) Every divisor on CY is principal.
Proof. See Birkenhake-Lange [9, Lemma 2.1.1]. O

Let "= V/A be a complex torus and 7 : V — T be the natural projec-
tion map. Given a meromorphic function f: 7" — C, the pullback by 7 is
the function 7* f := fom:V —C. Letting g = 7* f we see that g(v+\) =
g(v) for all A in A hence g is A-periodic. For a in V, write t,: V — V to
denote the translation map ¢,(z) = x +a. Let D' = {(U,, f.)} be a divisor
onT;then D = 7*D' = {(7~'U,, 7* f,)} is a divisor on V which satisfies
tiD = D for all A € A. By Cousin’s Theorem, D = div(f) for some
fin C(V). So tiD = D gives us f(z + A\) = Ux(2)f(z) for all X in A,
where U, (z) is a nowhere vanishing holomorphic function (called a factor
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of automorphy). We can write U, (z) = e(hy(z)) where e(z) = exp(27iz).
The function h,(z) must satisfy
hayiag(2) = ha (2 4+ Xo) + hy,(2) mod Z.
The simplest and most important example is
ha(z) = L(z,\) + J()\)

where L(z,\) is linear in z and J: A — C is independent of z. These
hy(z) determine automorphy factors for theta functions.

Definition 1.9. (Theta functions) Let L:V x A — C and J: A — C be
maps with L(z,\) is linear in z for all X in A. A theta function of type
(L, J) is a meromorphic function 6 on'V such that

0(z+ X)) =e(L(z,\) + J(N\)0(2)
forall z € Vand A € A.

The following theorem is a sharper form of Cousin’s Theorem for com-
plex tori and indicates the important role theta functions will play.

Theorem 1.10. (Poincaré) Let D' be a divisor on T. Then 7*D’ = div(0)
where 0 is a theta function with respect to some type (L, J).

Proof. See Lang [52, Ch. X §1]. O

Proposition 1.11. Let 6, and 0, be theta functions with respect to a lattice
A, and suppose 01, 05 define the same divisor. Then there exists a quadratic
form ) :'V — C, a linear form R : V — C and a constant S € C such
that

(1.12) 01(2)/02(2) = exp(Q(2) + R(z) + S) .

Proof. See Hindry-Silverman [33, Lemma A.5.2.3]. U

A theta function of the form exp(Q(z) + R(z) + S) is called a trivial theta
function.

Corollary 1.13. For any trivial theta function 0, we have div(6;) = div(6,6)
as divisors on V.

Definition 1.14. A Riemann form on a complex torus V /A is a Hermitian
form H :V x V — C with the property that Im H(A, A) C Z.

Lemma 1.15. There is a one-to-one correspondence between Hermitian
forms H:V x V — C and alternating forms E:V x V — R which
satisfy E(ix,iy) = E(x,y) given by

E=ImH, H(w,y) = E(iz,y) +iE(z,y) .

Proof. See Birkenhake-Lange [9, Lemma 2.1.7]. O
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For this reason, some authors define a Riemann form to be Im H instead
of H. From the functional equation of the theta function, one can show that
L(z, \) is Z-linear, and since V' = A ® R, it can be extended to give a map
L:V x V — C which is R-linear in the second variable and C-linear in
the first variable.

Proposition 1.16. Let 0 be a theta function of type (L, J) with respect to
the the lattice A. Define E(z,w) := L(z,w) — L(w, z). Then E is a real
valued bilinear alternating form and takes integral values on A x A. Hence
H(z,y) = E(iz,y) + iE(z,y) defines a Riemann form on V//A. Further-
more, H depends only on the divisor D = div(f). Given two divisors D
and D' we have that Hp . p» = Hp + Hpy, that is to say the map D — Hp
is a group homomorphism.

Proof. See Hindry-Silverman [33, p. 99]. U

As an immediate corollary of the previous Proposition and Corollary
1.13 we have:

Corollary 1.17. The Riemann form corresponding to a trivial theta function
is zero.

We now study the homomorphism D — Hp more closely.

Lemma 1.18. Let 0y be a theta function with respect to a lattice A and let
H be its Riemann form. Then there exists a theta function 0 with the same
divisor (hence the same Riemann form) such that the functional equation is

0(z+ \) = exp(TH(z,\) + gH(A, \) + 21K (A)0(z) |

where K : A\— R is a function satisfying

1
e(K(\ + 1)) = e(K(\)e(K (1)e(5 B\ ) .
Proof. See Hindry-Silverman [33, Lemma A.5.2.6]. O

Let L(6) be the vector space of all theta functions with the same func-
tional equation as ¢. Note that £(div(#)) = L(0) via 6 — 6/6, where
0 can be taken to be any fixed element of L(f). Hence choosing a basis
o, ..., 0, for L(0), we get a holomorphic map

¢p:V/A — P"
z — (Oo(z):...:0,(2))
Definition 1.19. A divisor D on a complex torus is said to be very ample if

¢p is an embedding. We say D is ample if some positive multiple of D is
very ample.
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If a complex torus can be embedded into projective space, then one can
apply Chow’s theorem [27, p. 167] which says that a complex submanifold
of projective space is a projective algebraic variety.

Proposition 1.20. The Riemann form associated to a theta function is pos-
itive definite.

Proof. See Hindry-Silverman [33, Proposition A.5.2.5(a)]. U

Theorem 1.21. Let D be an effective divisor on a complex torus. The Rie-
mann form attached to D is nondegenerate if and only if D is ample

Proof. See Hindry-Silverman [33, Theorem A.5.2.7]. OJ

Remark 1.22. If D is degenerate then L(fp) consists of degenerate theta
functions. Such functions give embeddings of subtori of strictly smaller
dimension. See Lang [52].

The dimension of L(6) for a nondegenerate theta function is given by
Frobenius’ Theorem. First, a lemma.

Lemma 1.23. (Frobenius) Let A be a free abelian group of rank 2g. Let E
be a nondegenerate bilinear alternating form on A with values in 7. There
exist positive integers dy, . . ., d, (called the invariants of E) with d; | d; 1
and a basis e1, . .. ,eg, f1, ..., fg of A such that

E(ei,e;) = E(fi, ;) = 0 and E(e;, f;) = didy; .
The product d; - - - d, =: Pf(E) is the square root of the determinant of E
and is called the Pfaffian of E. A basis with the properties above is called a

symplectic (or Frobenius) basis for A. If we set M = diag(dy,...,d,)
then the matrix of E with respect to the symplectic basis has the form

0 M
-M 0 )
Proof. See Hindry-Silverman [33, Lemma A.5.3.1]. O

Theorem 1.24. (Frobenius) Let 0 be a theta function with nondegenerate
Riemann form H for the complex torus V//A. Let {e1, ... ey, f1,..., fy} be
a symplectic basis for the form & = Im H on A and let d,, ..., d, be the
associated invariants. Then
a) The sets{ei,...,e;} and {fi,..., f,} both form C-bases of V,
b) After multiplication by a suitable trivial theta function, the func-
tional equation of 0 takes the form

O(z+ fi) =0(z) and 0(z + ¢;) = 0(2)e(d;z; + ¢;) ,

Such functions are known as classical theta functions.
c) dim L(0) = P{(FE) .
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Proof. See Hindry-Silverman [33, Lemma A.5.3.2, Theorem A.5.3.3]. U

Remark 1.25. There is a similar theorem for degenerate theta functions.
See Lang [52].

1.3. The Appell-Humbert theorem

In the previous section we showed that there was a correspondence
between divisors on complex tori and theta functions of a certain type.
Namely, given a divisor on 7" = V//A we can construct a normalised theta
function with factor of automorphy x(\)-exp(7H (z, A)+ 5 H (A, A)) where
X(A) := e(K(N)) satisfies

XA+ 1) = (=1)FMx (N)x () -

Definition 1.26. Write C, for the complex numbers with absolute value
equal to 1. A function x : A — C; satisfying the above relation is called a
semicharacter for H.

We now set up the notation needed to describe the Appell-Humbert The-
orem. Define P(V/A) to be the set of pairs (H, x) where H is a Riemann
form on V" and  is a semicharacter for /1. The correspondence is simply

D+— "D =div(0) — (H, x) .

From now on write D, to denote the divisor D translated by ¢. Let f
be a meromorphic function on 7. The pullback 7*(f) to V' is A-periodic
hence has trivial factor of automorphy so (H,y) = (0,1). We say two
divisors are linearly equivalent if their difference is in Prin(7"). Define
Div™8(T) c Div(T) to be
{D" € Div(T)| D’ is linearly equivalent to D; — D, D € Div(T),t € V'},
elements of which are said to be algebraically equivalent to 0. It is clear
from the correspondence that such divisors have Riemann form equal to
0. We have Prin(7) C Div™&(T) c Div(T). We say two divisors are

algebraically equivalent if their difference is in Div*'8(T).
Define the following groups:

The Néron-Severi group: NS(T) = Div(T)/Div¥s(T) ,
the Picard group: Pic(T) = Div(T)/Prin(T)
and Pic’(T) = Div™¢(T) /Prin(T) .

It follows immediately that the sequence below is exact:
0 — Pic’(T) — Pic(T) — NS(T) — 0.

The following theorem fully describes the divisor-theta function corre-
spondence.
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Theorem 1.27. (Appell-Humbert) The following diagram is commutative,
where the rows are exact sequences.

1 —— Hom(A,Cy) 2 P(V/A) 2= NS(T) —~0

L

1 —— Pic’(T) Pic(T) —= NS(T) —=0

The map « sends x to (0, x) and the map (3 sends (H, x) to a divisor corre-
sponding to H under the middle vertical isomorphism.

Proof. See Birkenhake-Lange [9, §2.2]. O

1.4. The dual abelian variety

Let 7' = V/A be a complex torus of dimension g. The exponential map
e:R—C, gives rise to an exact sequence

0 — Homgz(A,Z) — Homg(V,R) — Hom(A,C;) — 1,

thus Hom(A, C;) is isomorphic to Homg(V,R)/Homz (A, Z) = R?* /729.
Below we show that Homg (V, R) can be given a complex structure (so that
it becomes a complex vector space) hence Pic’(T) = Hom(A,C,) is a
complex torus called the dual complex torus.

Consider the space Homg(V, C) of antilinear functionals on V/,

Homg(V,C) :={f € Homg(V,C) : f(at) =af(t), a € C, t € V}.
This vector space is isomorphic to Homg (V, R) via the isomorphism
Homg(V,R) —~ Homg(V,C)
9(z) — f(z) = —g(iz) +ig(2)
Im f(z) = g(z) «— [f(2).

Under this map, the complex structure of Homg(V, C) gets transferred to
Homg(V,R), so Hom(A, Cy) = V*/A* where

V* = ¢(Homg(V,R)) = Homg(V,C) and
A" = p(Homz(A, Z)) = {f € V" [ Im f(A) € Z}
is a lattice in V' *. Explicitly we have the following:
Lemma 1.28. The map ¢ : V*/A* — Hom(A, C,) defined by
fr— e(lm f(-))

is an isomorphism.
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Lemma 1.29. Let v be an element of T with representative v. For any
divisor D = L(H, x) in Pic(X) we have

Dy = L(H, x - e(Im H(v,")))
Proof. See Birkenhake-Lange [9, Lemma 3.2]. O
Corollary 1.30. Every element of Hom(A, Cy) is of the form
A= e(Im H (v, \))
for somevinV.
We now construct a map from 7" to Pic®(T).

Proposition 1.31. Given a divisor X on T, define ¢x : T — Pic’(T) by
ox(t) = X — Xy. If X is ample then ¢x is surjective with finite kernel of
order det(E) = Pf(E)?2.

Proof. All that needs to be proved is the kernel claim. Using the isomor-
phism Pic(7") = Hom(A, C;) we have that
ker(px) = {veV:E({t,\) €Zforall A\ € A}/A.

Let {eq,...,eq f1,..., fy} be a symplectic basis so the matrix of E has the
form (_OD lo)> where D = diag(d;, .. .,d,) where g is the dimension of
T. Identifying A with Z?9 we have

ker(¢px) = (D'Z)2)? 2 (Z)d\Z & ... ® Z)d,7)?,
a finite group of the desired order. U

If H is a nondegenerate Riemann form on 7', then ¢y : t — H(t,-) is
an isomorphism of V' with VV* as complex vector spaces. One checks that
¢ (A) C A* so we have a surjective homomorphism V/A — V*/A*.

Proposition 1.32. Suppose X = L(x, H). The map ¢p : V — Homg(V, C)
above is the analytic representation of ¢x : T — Pic’(T).

Proof. The claim follows immediately from the commutative diagram

T L yrAf

éx l = l ¢

Pic’(T) —— Hom(A,C)
where ( is the isomorphism in Lemma 1.28 and the bottom isomorphism is
given by the Appell-Humbert Theorem 1.27. U

Proposition 1.33. If A is a complex abelian variety, then Pic’(A) is a com-
plex abelian variety called the dual abelian variety.
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Proof. Let A = V/A and let H be a nondegenerate Riemann form with
respect to A. Let ¢ denote the isomorphism ¢t — H(¢,-) inducing ¢p.
Define
H*(&,1) = H(og (€), o5 (n)) for &, nin V.

While H* is certainly a Hermitian form on V'*, the imaginary part Im H*
need not be integer valued on A* x A*. Since ker(¢y) is finite (by the
previous two propositions), it follows that ¢ (A*)/A is a finite abelian
group, having exponent k say. Since ku is in A for any u in ¢ (A*), it
follows that kH* is a Riemann form, proving that Pic’(A) is a complex
abelian variety. U

Write A := Pic’(A4) to denote the dual abelian variety of A. We list
some properties of the dual.

Proposition 1.34. Let A, Ay, As and A3 be complex abelian varieties.

a) Ax~A by double anti-duality.

b) If f: Ay — Ay is a homomorphism then the f:zzl\g — A isa
homomorphism induced by pulling back divisors.

) If0 - Ay — Ay — Aj — 0 is an exact sequence of complex
abelian varieties then 0 — Az — Ay — Ay — 0is also exact.

d) If f: Ay — Ay is an isogeny then [ : Ay — A; is an isogeny of the
same degree.

Proof. See Birkenhake-Lange [9, §2.4]. O

1.5. Polarizations

Let A be an abelian variety. Loosely speaking, a polarization on A is
a set of projective embeddings of A, each differing only by a translation
(algebraic equivalence).

Definition 1.35. A polarization is a set C(H) = {rH : r € Q*} where H
is a positive definite nondegenerate Riemann form.

The map ¢y : A — Ais an isogeny with analytic representation ¢ —
H(t,-). Let n be a positive integer. The analytic representation of ¢,y
factors as t +— nt — H(nt,-) = nH(t,-) hence ¢,y factors through an

isogeny ¢x[n].
Remark 1.36. In the algebraic setting, a polarization is an equivalence class

C(X) of divisors in NS(A) where X and Y are equivalent if and only if
there exist positive integers m, n satisfying mX =nY.

Since Riemann forms must take integer values on the lattice, there is a
“smallest” Riemann form H' in C(H) for which all integer multiples of H’
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are Riemann forms. A divisor Y corresponding to H' is called a basic polar
divisor. Tt has the property that C(Y') = {mY : m € Z~-,} and that for any
H in C(H') we have ¢ = ¢ [n] for some positive integer n.

Definition 1.37. A morphism of polarized complex abelian varieties
¢: (A1, C(Hy)) — (A2, C(H2))
is a morphism @ : Ay — Ag such that the pullback p* H, defined by

" Ha(z, w) := Ha(p(2), p(w))
is in C(Hy).

Abusing notation, we shall write Hom(A;, As) for the set of morphisms
of polarized abelian varieties when the polarizations on A;, A5 are known.
Similarly, write End(A) for the endomorphism ring of a polarized abelian
variety when the polarization on A is understood.

Theorem 1.38. The automorphism group of a polarized abelian variety is
finite.

Proof. See Lang [53, p. 70]. U

If (A,C(H)) is a polarized complex abelian variety, then ¢z : A — A
is an isogeny of degree det £ = Pf(E)? where £ = Im H. A principally
polarized abelian variety is a polarized abelian variety (A, C(H)) for which
there exists a (unique) Riemann form H' in C(H ) satisfying Pf(Im H’) = 1.
This induces an isomorphism between A and its dual.

Proposition 1.39. Every polarized complex abelian variety is isogenous to
a principally polarized abelian variety.

Proof. Let (A,C(H)) be a polarized abelian variety of dimension g. As
usual we have A = V/A and E = Im H being integer valued on A x A. Let
{A1, ..., A9y} be a symplectic basis for A. In particular, E(\;, \j1j) = d;
for some positive integers d; | - - - |d,. Define a new lattice

g g
1
A/ - E d—/\JZ + E >\g+jZ’7
j=1 j=1

then F as an alternating form on A’ is integer valued and has determinant 1.
Let A’ = V/A’, then the natural projection A — A’ is an isogeny of degree
dy - --dgy and A’ is principally polarized by E. 0
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1.6. The Rosati involution

Let (A, C) be a polarized abelian variety. Define
End’(A) := End(4) ® Q.

This is known as the the endomorphism algebra of (A,C). Let X be an
ample divisor in C. Then ¢x : A — Aisan isogeny, hence has an inverse
in Hom(A, A) ® Q. Every endomorphism p: A— A has a dual morphism
p:A— A, and the map p — p extends to a map End°(A4) — End(A).
Define the Rosati involution (with respect to C) to be p! := gb;(l opodx.

This formula for pT is independent of the choice of X, since

GuxPbnx =115 pnox = p!
where we use the fact that multiplication by n commutes with all endomor-
phisms.

It is easily seen that (p;ops)t = plop!, and combined with the following
proposition we can prove that p — p' is an involution on EndO(A).

Proposition 1.40. H(pz,w) = H(z, p'w) for all z,w in V. That is, p' is
the adjoint of p with respect to H. Hence p't = p.

Proof. We have a nondegenerate pairing V' x V* — C given by (z,g) =
g(z). If pis in End(A) then its dual satisfies (pz,g) = (z, pg). We have
that (z, ogw) = H(w, z) for all z,w in V, so

H(p'w, 2) = H(¢y' poxw, 2) = (2, pprrw) = (pz, prrw) = H(w, pz).
Taking complex conjugates of both sides produces the desired equality. []

Remark 1.41. If (A, C) is principally polarized, then by taking X to be the
basic polar divisor, the map ¢x : A — Ais an isomorphism in which case
the Rosati involution is an involution of the endomorphism ring End(A) as
well as the endomorphism algebra.

The Rosati involution plays a crucial role in the classification of endo-
morphism algebras of abelian varieties.

Theorem 1.42. Let Tr denote the trace map on the Q-algebra End"(A).
Then Tr(pp') > 0 for all nonzero p in End®(A).

Proof. See Birkenhake-Lange [9, Theorem 5.1.8]. O

It follows that an endomorphism algebra of a polarized abelian variety
must have an involution f +— fT such that f — Tr(fTf) is a positive definite
quadratic form.
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1.7. Endomorphisms of abelian varieties

Let A=V/Aand A" = V'/A’ be abelian varieties. Recall Lemma 1.3
which says that we have an injective homomorphism of abelian groups

pa : Hom(A, A') — Homc(V, V")
fo— 1
called the analytic representation of Hom(A, A"). The restriction of f to the

lattice A is Z-linear. In fact f|, determines f and f completely, thus we get
an injective homomorphism

pr: Hom(A, A") — Homg(A, A)
fo— [la

called the rational representation of Hom(A, A”).

Suppose dim A = g and dim A" = ¢’. Then choosing bases for A and
A’, a homomorphism A — A’ is given by a 2¢g x 2¢ integral matrix and
conversely, so Homy(A, \’) = Z*9'. Therefore, since any subgroup of
Homyz (A, A’) must be isomorphic to Z™, the injectivity of p, implies the
following.

Proposition 1.43. Hom(A, A’) = Z™ for some m < 4qg¢'.

Let A” = V" /A” be a third abelian variety. If f: A— A’and f': A" —
A’ are homomorphisms then the uniqueness of lifts gives us the identity
Pa([)pa(f) = pa(f'f). Tt follows that if A = A’ then p, and p, are repre-
sentations of the ring End(A) and End’(A).

Definition 1.44. Let V/A be a complex torus. Fix a C-basis ey, . .., ey for
V' and fix a Z-basis i, ..., Ny, for A. Let 11 denote the g x 2g matrix
whose column vectors are given by \i, ..., Aoy with repect to the e; basis.
Explicitly, write each \; = > 7_ wj;e;, then II = (w;;). The matrix 11 is
called a period matrix.

Remark 1.45. It is clear that a period matrix is dependent on the bases
chosen for V' and A. Some authors prefer to interchange rows and columns
and their period matrices have dimensions 2g X g. We shall be consistent
according to our definition above.

Proposition 1.46. 11 is a period matrix of a complex torus of dimension g

if and only if the complex 2g x 2g matrix (%) is nonsingular.

Proof. See Birkenhake-Lange [9, Proposition 1.1.2]. U
Suppose A = V/A has a period matrix IT and A’ = V’/A’ has period

matrix 1" with respect to some bases of V; A and V', A’ respectively. Let
f: A— A’ be a homomorphism. Then the linear transformation p,(f) can
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be written as a g X ¢’ complex matrix R, with respect to the chosen bases.
Similarly p,(f) is represented by a 2¢g x 2¢’ integral matrix R,.. In terms of
matrices, the condition p,(f)(A) C A’ corresponds to the relation

(1.47) RJI=1I'R, .
Conversely any complex g X ¢’ matrix R, and integral 2g x 2¢' matrix R,

satisfying the above relation defines a homomorphism A — A’.

Proposition 1.48. The extended rational representation
pr ®C — End’(A) ® C — End¢(A ® C) = Ende(V x V)
is equivalent to p, @ pq.

Proof. Fix bases for V' and A and let II denote the corresponding period
matrix of A = V/A. Let f be an endomorphism of A. If C' and R are
matrices of p, and p, with respect to the chosen bases respectively, then by
the relation (1.47) we have

C 0 II I1
(0 ) ()~ ()=
Since (f) is nonsingular by Proposition 1.46, we are done. O

Let f: A— A’ be an isogeny. Then the degree of f is the cardinality of
ker( f) which equals the index of the subgroup p,.(f)(A) in A. In the special
case where f is an endomorphism of A we have A = A’ and thus

deg(f) = det p, (f).

From this we deduce that deg(f’'f) = deg(f’) deg(f) when f’, f are isoge-
nies and their composition is well defined.

1.8. Classification of endomorphism algebras

For the most part we state the classification theorems of this section
without proof. Proofs can be found in Birkenhake-Lange [9, Ch. 5].

Lemma 1.49. Suppose A and A’ are isogenous abelian varieties, then
End®(A) is isomorphic to End®(A").

Proof. Let f: A — A’ be an isogeny. It follows from Lemma 1.7 that f
has an inverse in Hom’(A4’, A) := Hom(A’, A) ® Q, namely (deg(f))~'f".
The map sending o € End®(A) to foa o f~! € End’(A’) is easily seen to
be an isomorphism. 0

An abelian variety is called simple if it does not contain any abelian
subvarieties other than itself and 0. We can now state Poincaré’s Complete
Reducibility Theorem.
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Theorem 1.50. (Poincaré) Given an abelian variety X there is an isogeny
X — X" x..ox X

where the X; are simple abelian varieties that are pairwise non-isogenous.
Moreover, the n; are uniquely determined up to permutations and the X;
are determined up to isogeny.

Proof. See Birkenhake-Lange [9, Theorem 5.3.7]. ]

Corollary 1.51. End"(X) is a semisimple Q-algebra: if X — X" x...x
X' is an isogeny then

End’(X) 2 M, (F)®... &M, (F,)
where F, = End" (X;) are skew fields of finite dimension over Q.

Proof. By Lemma 1.49 we may assume without loss of generality that X =
X" x ... x X' where the X; are simple and non-isogenous. We have

End’(X) = @Hom XM X,

i,j7=1

= P Hom(X;, X;)*"" & @D M, (End’(X;)).
i#j i=1
If f:X, — Xj is a homomorphism with ¢ # j then the image of f is
an abelian subvariety of X;Lj. Since X; is simple, the connected part of the
kernel of f is either zero (in other words ker( f) is finite) or X;. If the kernel
is finite then f is an isogeny which contradicts the hypothesis, therefore f
is the zero map. We have shown that Hom"(X;, X ;) = 0fori # j. All
that is left to show is that End’(X;) is a skew field. Let f be a nonzero
endomorphism of X;. Since X is simple, the kernel of f must be finite and
the image of f must be X;. That is, f is an isogeny hence has an inverse
in End’(X;). Finally, End"(X;) is finite dimensional by Proposition 1.43,
completing the proof. 0

The classification of endomorphism algebras of abelian varieties re-
duces to that of simple abelian varieties by the corollary above. Let X
be a simple abelian variety of dimension ¢ and let C be a polarization on
X. Then F = End’(X) is a skew field of finite dimension over Q. With
respect to the polarization, the Rosati involution f ~— fT is an involution
such that f ~— Tr,.(fTf) is a positive definite quadratic form.

Lemma 1.52. Any finite dimensional simple R-algebra B is isomorphic to
M where M is either M.(R), M.,.(C) or ML,.(H) where H is the skew field of
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Hamiltonian quaternions. Each of these three matrix algebras has a natural
involution x — x* given by

. {tx for M, (R)
x =
tz  for M,.(C) and M,.(H).

Any isomorphism B = M can be composed with an automorphism of M
to obtain an isomorphism ¢ : B — M satisfying p(x') = p(x)* where
x — ' is some involution on B.

Proof. See Birkenhake-Lange [9, Lemma 5.5.1]. O

For the rest of this section let (F, ') be a skew field F' of finite dimension
over Q equipped with a positive involution ': ' — F. The involution
restricts to an involution on the center K of F', whose fixed field we denote
by K().

Lemma 1.53. K| is a totally real number field.
Proof. See Birkenhake-Lange [9, Lemma 5.5.2]. ]

Definition 1.54. We say that (F, ") is of the firstkind if K = K. Otherwise
we say (F, ") is of the second kind.

A skew field with [K : Q] = 4 is an example of a quaternion algebra
over Q (see Chapter 4 for a definition). Such an algebra has a canonical
involution x — T = Trp/k(x) — .

Theorem 1.55. (F, ') is a skew field of finite dimension over Q with positive
involution of the first kind if and only if K is a totally real number field and
one of the following cases holds:
a) ' = Kandx' = x forall v in F,
b) F' is a quaternion algebra over K and for every embedding o :
K—R
F®, R = M,(R).
Such an algebra is called a totally indefinite quaternion algebra.
Moreover, there is an element a in F with a? totally negative in K
such that the involution is given by x — 1’ = a™'Za.
c) F'is a quaternion algebra over K and for every embedding o :
K —R
F®,R=H.

Such an algebra is called a totally definite quaternion algebra. More-
over the involution is given by x — 1’ = T.

Proof. See Birkenhake-Lange [9, Lemma 5.5.3]. O
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Lemma 1.56. Suppose (F,") is of the second kind. Then the center K is
totally complex and the restriction of the involution to K is complex conju-
gation.

Proof. See Birkenhake-Lange [9, Lemma 5.5.4]. U

For any skew field F, the degree [F' : K] of F' over its center K is
always a square, say d>.

Theorem 1.57. Let (F,') be a skew field of finite dimension over Q with
positive involution x +— ' of the second kind. Then for every embedding
o : K — C we have an isomorphism

v: F®e,C — MyC)
such that © +— ' extends via ¢ to the canonical involution X — ‘X on
M, (C).
Proof. See Birkenhake-Lange [9, Theorem 5.5.6]. U

The following proposition gives restrictions on the possible pairs (£, ).

Proposition 1.58. Ler (X,C) be a simple polarized abelian variety of di-
mension g. Then ' = EndO(X ) is a skew field of finite dimension over Q
with positive involution x +— %, the Rosati involution with respect to C.
Let K denote the center of I' and K the fixed field of the Rosati involution
restricted to K. Denote

[F:K|=d* [K:Q]=e, and [Ky: Q] = ¢ .

Then we have the following restrictions for these values:

F =End’(X) | d | eq | restriction
totally real number field || 1 | e elyg
quaternion algebra 2| e 2e g
(F,") of the second kind || d | 3¢ | eod® | g
Proof. See Birkenhake-Lange [9, Proposition 5.5.7]. O

We now have necessary conditions for a pair (£, ") to be the endomor-
phism algebra of a simple abelian variety. The example below shows that
these conditions are not sufficient. Even so, for fixed g, apart from some
exceptions, one can construct simple abelian varieties for each type of en-
domorphism algebra listed in the table. See Birkenhake-Lange [9, Chapter
9] or Shimura [73] for details.

Example 1.59. (Classification of endomorphism algebras of abelian sur-
faces) Let A be an abelian surface. If A is simple then End’(A) can be
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a) Q

b) areal quadratic field

¢) a purely imaginary extension of a real quadratic field (CM-field)
d) an totally indefinite quaternion algebra over QQ

If A is not simple then it is isogenous to a product of elliptic curves F; X Fj.
If E is not isogenous to F, then End’(A) = Q x Q. If £, is isogenous to
E, then End’(A) = M,(k), where k equals either Q or an imaginary qua-
dratic field, the latter occuring when the E; have complex multiplication.
Note that the endomorphism algebra cannot be a totally definite quaternion
algebra, and that an abelian surface which has CM by an imaginary qua-
dratic field K has an endomorphism ring strictly containing K (either an
indefinite Q-quaternion algebra or M (K)).

In this thesis we shall study abelian varieties of dimension two, the main
focus being on principally polarized abelian surfaces whose endomorphism
algebra is a real quadratic field.

Moduli spaces

For the rest of this chapter we review the theory of moduli spaces of
complex abelian varieties, mainly using Birkenhake-Lange [9] as our refer-
ence.

A (coarse) moduli space for a set of complex abelian varieties with ad-
ditional structure is a complex analytic space whose points are in bijection
with elements of the set. Most commonly the sets used are isomorphism
classes of abelian varieties with a given polarization and level structure.

The original definition of a polarization as an equivalence class, which
we used in the previous chapter and was given by Weil in the 1940’s, is
not well suited for studying moduli problems. When studying isomorphism
classes of abelian varieties it is essential to fix a Riemann form which pro-
duces a projective embedding. From now on, a polarization will refer to a
Riemann form rather than an equivalence class.

1.9. The Riemann relations

We need criteria to determine whether two abelian varieties are isomor-
phic to each other. This can be done by looking at period matrices.

A symmetric matrix A in M, (R) is positive definite if ‘vAv > 0 holds
for all nonzero column vectors v in R™. We use the notation A > 0 to
indicate that A is positive definite.

Let X = V/A be a complex torus of dimension g. By fixing bases of V/
and A, we can write down a period matrix {2 for X. The Riemann relations
provide necessary and sufficient conditions for €2 to be the period matrix of
a polarized abelian variety.
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Theorem 1.60. X = C9/QZ? is an abelian variety if and only if there is a
nondegenerate alternating 2g x 2g matrix A with integer entries such that
a) QA1 ‘=0,
b) i QAT > 0.
These two equations are known as the Riemann relations. The matrix A is
the alternating form defining a polarization on X.

Proof. Suppose that there exists a nondegenerate integer-valued alternating
form F on A. Denote by A the matrix of E with respect to a fixed basis of A.
Extend £ to A®@R = V. We know from Lemma 1.15 that H: V x V —C
defined by

H(z,w) = E(iz,w) +iE(z,w)
is a Hermitian form. The theorem follows immediately from the following
lemma. O

Lemma 1.61.
a) H is a Hermitian form on CY if and only ifQA_1 =0,
b) H is positive definite if and only if i QA1 Q) > 0.

Proof. See Birkenhake-Lange [9, Lemmas 4.2.2 and 4.2.3]. O

In the special case where the basis for A is a Frobenius basis, the matrix

of Ais (_OD 10)) and the Riemann relations are

QDO — D0, =0,
iQe DV — i D0, >0,

where 2 = (€ Qo).

1.10. The Siegel upper half space

In this section, we show how to identify a polarized abelian variety of
dimension g with a point in Siegel’s upper half space H,,.

Suppose X = V/A is an abelian variety of dimension g with a polar-
ization H of type D = diag(dy,...d,). Let A\i,..., Ay, pt1,..., 4, be a
symplectic basis for Im /. Take e; = d% ;. Then by Frobenius’ Theorem
1.24, the e; form a basis of V. With respect to the chosen bases, we have
period matrix (Z, D) where Z is a g X g complex matrix. The Riemann
relations say that

'Z—7=0,
i('Z—-7)>0
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and so Z is a point in the complex analytic space
Hy,={Z e M,(C)|'Z =ZandIm Z > 0},

known as the Siegel upper half space of degree g. Conversely, given a
matrix Z in H,, we can construct a complex torus Xy = C9/(Z D)Z*
which is an abelian variety of polarization type D thanks to the Riemann
relations.

We have shown the following:

Proposition 1.62. Given a polarization type D, the Siegel upper half space
H, is a moduli space for polarized abelian varieties of type D with sym-
plectic basis.

We now find a moduli space for the set of isomorphism classes of abe-
lian varieties with polarization type D. The equivalence classes of isomor-
phic abelian varieties will be orbits of points in H, under the action of a
subgroup of Sp,, (R). To begin we first reacquaint the reader with symplec-
tic groups.

For any ring R the symplectic groups are defined to be the sets

Spay(R) = { M € GLyy(R) |0 (S, )M = (5, %)}
We have the following useful lemma which can be easily verified.
Lemma 1.63.

a) Spy,(R) is closed under transposition.
b) Let M = (: ?) € GLyy(R) where o is a g x g matrix. Then the
following are equivalent:
(i) M € Spy,(R),
(i) *oy and 36 are symmetric and *ad — 'y = I,
(ili) o' and +'6 are symmetric and o'§ — 'y = I,
Proposition 1.64. The group Sp,,(R) acts biholomorphically from the left
on H, by
7 M(Z) = (a7 + B)(1Z + )"
forall M = (‘;‘ ’g) in Spy, (R).
Proof. See Birkenhake-Lange [9, Proposition 8.2.2] U

Proposition 1.65. Let Z, Z' be in H,. Then the following are equivalent:
a) (Xz,Hyz) = (Xz, Hy) are isomorphic abelian varieties of polar-
ization type D.
b) Z' = M(Z) for some M in G p, where

Gp:={M e SpQQ(@)|tMAD C Ap},
and Ap = (% §) z*.
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Proof. Suppose ¢ : (Xz,Hz) — (Xz, Hz) is an isomorphism. Choose
symplectic bases so that the period matrices are (7' D) and (Z D) respec-
tively. Write R,, R, for the transformation matrices of the analytic and ra-
tional representations of ¢ respectively. From (1.47) we have R,(Z' D) =
(Z D)R, where both R, and R, are invertible. Rewrite this equation as

R(Z' 1) = (Z 1) (5 3) R (3 5) -

Write N = (% O)R, (1 0)™" =t (25) (the transpose is an artifact of
our choice of notation for period matrices being g X 2¢ instead of 2g X g).
Then (R,Z' R,) = (Z'a + 0 Z'y + '0). Since R, is invertible, it fol-
lows that Z' = (Z'y + ') (Z'a + !3). Taking transposes of both sides
and remembering that both Z and Z’ are symmetric matrices, we obtain

7' = (aZ + B)(vZ + §)7' = 'N(Z). Since ¢*Hy = H; we have
"B (9 B) Re = (5 R), or equivalendy ‘N (G B)N = (%),
hence NV is a symplectic matrix with rational entries. Moreover we have
NAp C Ap by definition of N. Taking M = *N proves the first implica-

tion. For the converse, if Z' = M (Z) then the matrix (109 10))71 M (109 )
is the rational representation of an isomorphism (X, Hy) — (Xz, Hz)

with respect to the symplectic bases determined by Z and 2. U

Corollary 1.66. The quotient space H,/Gp is a moduli space for isomor-
phism classes of abelian varieties of polarization type D. In particular,
H,y/Spay(Z) is a moduli space for isomorphism classes of principally po-
larized abelian varieties.

Remark 1.67. From the above proof, observe that for any Z € H, and
(: ?) in G'p, the isomorphism p : X; — X, (z) has representation matri-
ces

pa(p) = '(vZ+0)"
o) = (5 2) M (G D)

with respect to the chosen bases.

1.11. Classical theta functions

We now describe the classical Riemann theta functions. These functions
have highly desirable properties. Their explicit presentation makes them
ideal for computations, and the fact that they depend holomorphically on
T € H, means they can be used in constructions of projective embeddings
of moduli spaces.

Let 7 be an element of H,. Suppose ¢’ is a theta function with respect to
the lattice A, = 729 ®Z9 having automorphy factor f(z, A). By Frobenius’
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Theorem 1.24, dim L(#") = 1. That is to say ¢’ is the unique theta function
(up to a scalar factor) for the lattice A, with automorphy factor f.
Define the Riemann theta function to be

1
0(2,7) = e —mTtm+mtz> .
= 3 el
Up to a scalar, it is the unique theta function with respect to A, having
automorphy factor fo(z,7a + b) = e(—iar'a — z'a).
Let c1,co € RYI be row vectors. Define the (classical) theta function
with characteristic (¢, c3) to be

021 or) = X e jn e+ ) + (n+efe+es))

meZ9

It satisfies the functional equation
1
O[] (z+Ta+b,7) = e(—jara —za+ c1b — 02a) 0[] (z,7).

Note that the Riemann theta function is just the theta function with char-
acteristic (0,0). The fact that the imaginary part of 7 is positive definite
ensures that the series converges absolutely and uniformly on every com-
pact subset of CY9 x H,. Hence 6[¢} ] is holomorphic on C? x H, for any
characteristic (see [9, Proposition 8.5.4]).

Proposition 1.68.

a) Let D = diag(dy, ...,d,) be a polarization type. Then 0[] is a
theta function with automorphy factor fo with respect to the lattice
779 ® DZ9 if and only if (1, c3) is in D779 & Z7.

b) The functions 0[] where c; ranges over a set of representatives
of D779 /79, form a basis of the vector space of classical theta
functions for the divisor on C9 /(T7729® DZ9) with automorphy factor

Jo.
Proof. See [9, Remark 8.5.3]. ]

Thus classical theta functions give a constructive proof of Frobenius’ result
in Theorem 1.24 that dim L(#) = d; - - - d,,.

There are numerous identities involving theta functions with character-
istics. Two particular identities of future use to us are

(1.69) o[t (z,7) = 0[&] (2,7)

which holds for all ¢; € RY and all d; € Z9, as well as Igusa’s transforma-
tion formula which is stated in a slightly weaker form below.
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Theorem 1.70. (Igusa’s transformation formula) For all (z,7) in CI x H,,
characteristics ¢ = (x,y) € R and M = (275) € Spy,(Z), we have the
formula

B30 +0)75,M(r)) = o 207 + )72 den(r7 + 9)20[5)(e,7)
where ( = ((c, M) is an eighth root of unity and

(&) = (. 9) M+ 5 ((7'8)o, (0'B)o)

where the notation X is used to denote the row vector determined by the
diagonal entries of X.

Proof. See [42, Chapter V]. O

1.12. Satake compactifications
Let I' be a subgroup of finite index in Sp,,, (Z). The quotient H,,/I" has

a natural compactification called the Satake compactification.

1.12.1. Analytic description. Let
D, = {V €M, (C)|'"V =Vand VV < [n}
This is the image of H,, under the Cayley isomorphism
®, : T (1 —il) (T +dil,)

The action of I' on H,, gives rise to an action on [),, which can be extended
to the closure

D, ={VeM,(C)|'V=VadVV <I,}.

For 0 < r < mnlet D, , be the image of the embedding of D, in D, given
by 7 — (§1.. ). Then

En = U U gDn,r-

0<r<n geSp,,(R)

D= U 90w

0<r<n g€Sp,, (Q)

The Satake compactification of D,,/T" =2 'H,, /T as a setis D /T" = H* /T.
It can be given the structure of a normal analytic space.

Let
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Example 1.71 (Satake compactification of H;/I';(2)). Define I',,(7) to be
the kernel of Sp,,(Z) — Sp,,(Z/rZ). Consider the situation for n = 1.
We have D171 = D1 = {U S C |’U| < 1}, DI,O = {1}, (I);lDl = Hl
and ;' Dy = {ico}. So H} = H; U Sp,(Q){ico} and the Satake com-
pactification of H; /I" consists of the union of H; /I" together with the I'-
orbits of Sp,(Q){icc} = QU {ico} called cusps. The compactification of
X (1) = H1/Spy(Z) has just one cusp since Sp,(Q){ico} = Spy(Z){icco}.
The compactification of X (2) = Hj/I'1(2) has three cusps with represen-
tatives 700, 0 and 1. The natural quotient map X (2) — X (1) is a Galois
cover with Galois group Sp,(Z)/T"1(2) = Spy(Z/27Z) = S3 which acts on
the three cusps of X (2) by permutations.

The following space we shall be studying in further detail later on.

Example 1.72. The Satake compactification of Hy/T'2(2) was studied by
van der Geer [79]. It is is the union of Hy/T'5(2) plus 15 copies of H1 /T (2)
and 15 points. Each one-dimensional boundary component is compactified
by three of the 15 points (i.e. three cusps of X (2)) and each of the 15 points
is a cusp of three copies of H;/I'1(2).

1.12.2. Algebraic description.

Definition 1.73. A Siegel modular form of weight k on I is a holomorphic
function f : 'H,, — C satisfying

f ((aT + B)(yr + 5)_1) = det(yr + 8)* f (1) for all (f;‘ g) el.

The set of such functions form a vector space My (I"). Denote by

M (T) = @) Mi(T)
k>0
the graded ring of Siegel modular forms. A theorem of Baily and Borel
[3] says that for large enough k, a basis of M (I") defines an embedding
of H* /T into projective space. Thus the Satake compactification is the
projective variety given by Proj M*(I") which contains H,/I" as an open
dense subset.

1.13. Hilbert modular surfaces

To end this chapter, we look at an example of a moduli space parametriz-
ing abelian surfaces with real multiplication ' 2 Q. Table 1.58 implies that
F" must be a real quadratic field.

Let O be an order of F'. Write

OV ={z € F|Trpjg(zy) € Z forally € O}
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to denote the dual of O with respect to the trace. Let M = O & a with

a C OV an invertible O-module. This is a Z-module of rank 4 having

an O-module structure. By embedding this lattice into C? we can form a

complex torus with a natural O-multiplication induced from the lattice.
Let us make the notion of O-multiplication more precise.

Definition 1.74. Let (K, ') denote a skew field over Q with positive invo-
lution’ and let p : K — M, (C) be a representation. A polarized abelian
variety with endomorphism structure (K, ', p) is a triplet (X, H, 1) where
a) the pair (X, H) is a polarized abelian variety and v - K — End’(X)
is equivalent to p after identifying EndO(A) with a subalgebra of
M, (C) via the analytic representation of X,
b) the Rosati involution of End’(X) with respect to H extends to the
involution ' on K via .

If R C K is a subring for which «(R) C End(X) we say that X has
multiplication by R.

Note that for real quadratic fields the Rosati involution is trivial so the sec-
ond condition is automatically satisfied.
We now make the notion of isomorphism precise.

Definition 1.75. Suppose (X1, Hy,11) and (X, Ha, 1) are polarized abe-
lian varieties with endomorphism structure (K, ', p). An isomorphism of
polarized abelian varieties with endomorphism structure f : (X1, Hy, 1) —
(Xo, Ha, to) is an isomorphism [ : (X1, Hy) — (X2, Hy) of polarized abe-
lian varieties which preserves the endomorphism structure in the sense that

fouwl(a)=1t1(a)o fforalla € F.

Now we shall construct abelian surfaces with multiplication by O. First
we need some notation. The two real embeddings F' — R give an isomor-
phism ' ® R = R?; identify a — (a"), a®) under this embedding. Write
pairs (a,b) € (F ® R)? as column vectors o = *(a™M b1 a® 5?). For
z = (21, 29) in H? define

J.:(FoR)? — C?

which is an R-linear isomorphism.

Proposition 1.76. J,(M) is a lattice in C* and X, = C*/J,(M) is a com-
plex torus with real multiplication by O where the endomorphism structure
p: F — My(C) is given by p(a) = diag(aV), a'®). The Hermitian form

H,(z,y) = 'vdiag(Im z;, Im 20) 7.
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defines a polarization on X,.

Proof. It is clear that J,(M) is a lattice when z € (C \ R)?. The map
pla) : (v1,v9) — (aWvy,aPvy) is linear and preserves J, (M), hence is
an endomorphism of X,. Thus p is an embedding of F into End’(X,),
identifying O with End(X).

Observe that [, is positive definite if and only if z € H?. Let E, denote
Im H,. The matrix of H,(J.(«), J.(3)) is

tdiag ((z1 1), (22 1)) - diag (Im 21, Im 2,) ™" - diag (21 1), (22 1)).

The imaginary part of this matrix is diag(7,T) where T' = (% }). From
this we deduce that

Ez(‘]z(a)v ‘]z(ﬁ)) = TrF/Q(ta ( —01 (1)) ﬁ) :
Lastly, by construction of M this trace form takes integral values on M
and hence H, is a nondegenerate Riemann form. U

Remark 1.77. Changing M changes the polarization type: O & a has po-
larization type (d1, d) if and only if the elementary divisors of the quotient
OV /a are [dy,ds]. This can be seen from the trace form. In particular,
O @ OV has principal polarization type.

The space H; x H; is a moduli space for abelian surfaces with real
multiplication given by F. We have a componentwise action of Sp,(R) x
Spy(R) on H; x H;. Note that Sp, = SLy so the action on H; is the usual
action on the upper half plane by Mobius transformations. Define

G(M) = {(Ml,MQ) € SLQ(R) X SLQ(R) | diag(tMl,tMg)M C M}

where we consider M C (F ® R)? = R%. We have the following proposi-
tion.

Proposition 1.78. Let z and =’ be points of H1 x H1. The polarized abelian
varieties (X, H,) and (X, H,/) with endomorphism structure (F, p) are
isomorphic if and only if there is an M in G(M) such that 2/ = M (z).

Proof. See Birkenhake-Lange [9, Proposition 9.2.2] U

Corollary 1.79. The space A(M) = H; x H1/G(M) is a moduli space
for isomorphism classes of polarized abelian surfaces with endomorphism
structure (F, p) associated to the F-module M.

The action of G(M) on H; x H; is proper and discontinuous, hence
A(M) is a complex analytic variety of dimension 2 called a Hilbert modu-
lar surface.

Let M = Op & OY. By Remark 1.77 and the corollary above, A(M)
parametrizes principally polarized abelian surfaces with real multiplication



1.13. HILBERT MODULAR SURFACES 27

by the maximal order Or. We already know that Hs/Sp,(Z) parametrizes
all principally polarized abelian surfaces, so there exists a “forgetful map”
Hy xH1/G(Op®O}.) — Ha/Sp,(Z) which maps the Hilbert modular sur-
face into Siegel space. The image of such a map is subvariety of dimension
2 called a Humbert surface, which is the focus of the next chapter.



CHAPTER 2

Humbert Surfaces

2.1. Real multiplication and Humbert surfaces

Let A, be a principally polarized abelian surface determined by 7 =
(7L 72) € Ho. Anelement f € End(A,) is given by a matrix p,(f) € My(C)
such that

pa(f)-7 = Ta+p
pa(f) - Io = 7740 =puf)

for some (27) = p.(f) € My(Z). Substituting the second equation into
the first gives 77+ 07 — 7o — 3 = 0. Subtracting this from the transposed
equation 7'y7 + 710 — fat — '3 gives us

(v =T+ 70+ a)+ (=6 ")+ (B-"8)=0.

This equation is nontrivial if and only if p,(f) & Z- I, that is to say A, has
extra endomorphisms. We obtain a quadratic equation in the matrix entries
of 7 called a Humbert equation. In this section we shall undertake a study
of Humbert equations and their zero sets in the Siegel modular threefold
Ay = Hy/Spy(Z) known as Humbert surfaces. This exposition is largely
based on [10, §4] which details the work of Humbert.

Definition 2.1.
a) An endomorphism f of an abelian variety A is said to be symmetric
if it is fixed under the Rosati involution. Let

End®(A) = {f € End(A) : fI = f}

denote the subgroup of symmetric endomorphisms.
b) An endomorphism f € End(A) is said to be primitive if
Lf ¢ End(A) for all integers n > 1.

Let A, be a principally polarized abelian surface and let f be an endo-
morphism of A,. Recall from Section 1.7 that the analytic and algebraic
representations of f are connected by the relation

(22) pan-(f)(T I2) = (T ]2)pr,r(f)‘

28
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7 ta

a=(3a),8=(%8).v=(2%¢§) € Ma(Z) whose coefficients satisfy
2.4) asm + (ag — ay)m — azms + b(722 —7n73)+c=0.

Lemma 2.3. [ € End(A,) is symmetric if and only if p.(f) = <a p ) with

Proof. The Rosati involution is the adjoint operator for the imaginary part
of the Hermitian form H which has matrix J = (_012 102) In terms of
matrices we have ‘p,.(f)J = Jp.(f7) for any endomorphism f, so f = fT
if and only if ‘p,.(f)J = Jp.(f), in which case p,(f) has the stated form.
Using (2.2) we obtain (p,(f)7, pa(f)) = (T + 7, 70 + ‘). Eliminating
pr(f) produces the equality of skew symmetric matrices
81 +lar —Ta—v =0
from which we obtain (2.4). ]

T1 T2

Conversely, if 7 = (7} 72) € H, satisfies an equation of the form
(2.5) amy + b +em +d(mg — 1im) +e=0

with a,b,¢,d,e € 7Z, then End(A,) contains a symmetric endomorphism
fo with rational representation matrix

0O a O d
—c b —d 0
RO = pr(f()) = 0 e 0 —c
—e 0 a b

Following Humbert, we call an equation of the form (2.5) a singular rela-
tion.

Observe that if ged(a, b, ¢, d, e) = 1 then f is primitive; in this case we
shall call the corresponding singular relation primitive. Also, note that if f
is scalar multiplication by n then p,(f) = nly trivially satisfies (2.4).

Proposition 2.6. The subset of endomorphisms {n + mf, : n,m € Z} C
End®(X) is a ring isomorphic to Z|[t] / (t* — bt + ac+ de), a quadratic order
of discriminant A(fy) = b* — 4ac — 4de.

Proof. From (2.2), the analytic representation matrix of f is seen to be
_ 0 d 0 a\ —dry  dm —c
palfo) =7 (—d 0) * <—c b) - (—drg +a dn +b)
which has trace b and determinant

—d(ami + b7y + cr3 + d(13 — T173)) + ac = ac + de

since (2.5) holds. As fj satisfies its analytic characteristic polynomial fZ —
bfo + ac + de = 0, we have that the map {n + mfy : n,m € Z} —
Z[t]/(t* — bt + ac + de) which sends fy — t is a ring isomorphism. O
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Definition 2.7. The discriminant of a singular relation (2.5) is defined to be
A = b? — dac — 4de.

So far we have studied singular relations on H,. Humbert showed that
under the natural projection Hy — H/Sp,(Z) = As,, all singular relations
with the same discriminant define zero sets in H, which are equivalent un-
der the action of Sp,(Z) and conversely.

Lemma 2.8. Let f be a primitive symmetric endomorphism of discriminant
A = 4k + L with £ € {0,1}. Then there exists a matrix M € Sp,(Z) such

that
_ 0 0 k
M p(fo) ™M = ((g ta) where o = <1 6) .

Proof. The reader is referred to either the article by Birkenhake-Wilhelm
[10] or Runge [71] for a constructive algorithm. ]

Theorem 2.9. (Humbert’s Lemma) Let T = (7} 72 ) € Ho satisfy the singu-
lar relation
amy +bry +em +d(t3 — ) +e=0
of discriminant A = b* — 4ac — 4de. Then there is a matrix M € Sp,(Z)
such that M (1) = (:i 2 ) satisfies a unique normalized singular relation
of the form
kri + 1y — 715 =10
where k and ( are determined uniquely by A = 4k + ( and ¢ € {0, 1}.

Proof. Without loss of generality we can assume ged(a, b, ¢, d, e) = 1. Re-
mark 1.67 implies that the rational representations p, . and p, /() are re-
lated by

Pr.M(r) = tM?lpr,‘rtM-
Thus it suffices to find a matrix M € Sp,(Z) such that

A 0 0 k
ta -1 tAr _
M p,(fo) M = (0 tA) where A = (1 é) .
This is the content of the previous lemma. U
Corollary 2.10. Let A be a principally polarized abelian surface. Then the
following are equivalent:

a) A= A, for some T € Hs satisfying

ar +bry + e +d(t8 —Tim3) +e=0.
b) End*(A) contains a ring isomorphic to a real quadratic order
Z[t]/(t* — bt + ac + de) of discriminant A = b* — 4ac — 4de,

¢) End(A) contains a symmetric endomorphism fa with discriminant
A =b* — dac — 4de.
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For any A = 0 or 1 mod 4, define

T satisfies a primitive singular
Hpn = : . o
A {T €A relation of discriminant A

= {7 €Ay : End*(A;) > f primitive, A(f) = A}.

Proposition 2.11. Let A = 0 or 1 mod 4. We have that Hxn = 0 for A < 0
and Hy = As. If A > 0 then Hp is a surface which we call a Humbert
surface of discriminant A.

Proof. Suppose 7 € Ha corresponds to an abelian surface A, with princi-
pal polarization given by a Hermitian form H. Let f € End®(A,) have
discriminant A. Write I = p,(f) and consider the form H'(z,w) =
H(Fz,w). Clearly H' is linear in z and conjugate linear in w. Since the
Rosati involution is the adjoint operator for H and f is symmetric, we have
H(Fz,w) = H(z, Flw) = H(z, Fw) and so

H'(w,v) = H(Fw,v) = H(w, Fv) = H(Fv,w) = H' (v,w).

Thus H’ is hermitian. If A is an eigenvalue of I’ with eigenvector v then
H'(v,v) = H(Fv,v) = AH (v, v). Therefore the two eigenvalues of F' are
real. If \; and )\, are the eigenvalues of F' then the discriminant of f equals
A = (A —X2)? > 0. Hence Hx = ) when A < 0. If A = 0 then Ay C Ha
since the zero endomorphism has discriminant zero, thus Hy = As. O

Example 2.12. A point (7} 72) in H; can be described by the singular rela-
tion 75 = 0. The corresponding principally polarized abelian surface A, is
isomorphic to the product of two elliptic curves F; X E5 with j-invariants
j(71) and j(72) respectively.

More generally, we will show that abelian surfaces which are isogenous
to products of elliptic curves lie on Humbert surfaces of square discrimi-
nant.

Lemma 2.13. Suppose (X, H) is a non-simple principally polarized abe-
lian surface. Then there exists an integer m and an isogeny

<X7H> - <Y7H|Y) X (Z7H|Z>

of degree m* where Y and Z are elliptic curves and the induced polariza-
tions have degree m.

Proof. The existence of an isogeny is the content of Poincaré’s Complete
Reducibility Theorem 1.50. See [9, Corollary 12.1.2] for a proof that the
induced polarizations have the same degree. U
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Proposition 2.14. Let m be a positive integer. Then the Humbert sur-
face H,,2 is the moduli space for isomorphism classes of principally po-
larized abelian surfaces which split as a product of two elliptic curves via
an isogeny of degree m?>.

Proof. Suppose End(A,) contains a symmetric endomorphism f of dis-
criminant m?. The eigenvalues of its analytic representation are integers A
and p and since m? = (A — p)? > 0 we know that A # p. The endo-
morphism f — p has characteristic equation ¢ — mt = 0 hence the image
im(f — p) = FEj is a one-dimensional abelian subvariety. Then the com-
plementary abelian subvariety im(m — (f — p)) = im(f — \) = E, is one
dimensional and the theory of norm-endomorphisms [9, §5.3] gives us an
isogeny A, — E; x F, of the correct degree. Conversely given a degree m?
isogeny as in the proposition, the theory of norm-endomorphisms produces
a symmetric endomorphism of the desired discriminant. U

The following proposition summarises the moduli interpretation results
of this section.

Proposition 2.15. Let A # A’ be nonsquare discriminants. Then
a) A, is simple if and only if T & | J,,~0 Hpm2.
b) If 7 € Ha then End®(A,) contains Q(v/A).
¢) If T € Hx N Hy then either A, is simple and End®(A,) is a totally

indefinite quaternion algebra over QQ, or A, is isogenous to £ x E
where E is an elliptic curve.

Proof. The first two statements are clear. If 7 € HxNHas then End®(A,)®
Q contains both Q(v/A) and Q(v/A’), hence the dimension of End’(A,)
as a (Q-vector space is at least 3. The possible endomorphism algebras for
A, with this condition are found using the classification in Example 1.59.
If A, is simple then End®(A,) is a skew field of dimension four over Q
(an indefinite Q-quaternion algebra). If A, is not simple then End"(A,)
is isomorphic to M (k) with k equal to either Q or a imaginary quadratic

number field. In the non-simple case, A, is isogenous to F/ X E where E is
an elliptic curve with End’(E) = k. O

2.2. Humbert surface embeddings

In this final section of the chapter, we construct a map H; X H; — Hs
which induces the “forgetful map”, showing that the Humbert surface of
discriminant A can be represented as the embedding of a Hilbert modular

surface for Q(v/A).
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Let F' be areal quadratic field and let O C F' be an order of discriminant
A. Choose a Z-module basis w1, uy of

OV ={zx e F|Tr(zy) € Z forally € O},

ur u)

the dual of O with respect to the trace. Set R = <u2 ) ), where u] is the
Galois conjugate of u;.

Proposition 2.16. Define an embedding
PR : H% — Hy

(21,2’2) g R<Zl O)tR

0 z9

Then the image of H* in Hy is a given by a Humbert singular relation of
discriminant A.

Proof. Firstly observe that R is in GLy(R) since the u; form a basis of a
totally real field. This shows that pp is injective. The image of the map is
contained in the set of symmetric matrices, and since Im z; > 0, the relation

0 22

m (R (3 5)"R) = & ("7 ,0, ) R > 0

shows that the image of pp lies in ‘Hs. It remains to show that the points of
pr(H?) C H, satisfy a singular relation for any matrix R determined by a
choice of basis of OV. Any two such matrices R, S must satisfy S = BR
for some change of basis matrix B € GLy(Z). If B € GLy(Z), the images
pir(21, 22) and pr(z1, 22) are Sp,(Z)-equivalent via the matrix (5, ).
Thus by Humbert’s Lemma (Theorem 2.9) it is sufficient to prove the result

for a single Z-basis of O¥. Let 7 = (71 ) = pr((% 2, ))- Then

0 22
21 0 — R—l TtR_l
0 Z9

= aan (Y (2 (% )
—U2 (51 Ty T3 —Uy (A

It follows that the only restriction on 7 is given by the relation obtained
from an off-diagonal entry:

(det R) ™2 (—uquhym + (wyug + uyub)m — ugu)73) = 0.

Take z; = 1,29 = w as our fixed Z-basis of O where w has discriminant
A = 4k + ( and satisfies w? — fw — k = 0 with £ € {0, 1}. Define the trace
matrix 7' = (Tr(x;z;)). Then a Z-module basis for OV is given by

()= () =" ),
U9 i) —/ 2 i)
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By writing the u;, u in terms of the basis of O, we compute that

(det R)™> = A,
upuy = N(up) =—A"1,
whug +uguly, = Tr(ujuy) = (A,

wu, = N(up)=kA™
Thus we obtain the Humbert equation
7'1—67'2—]{57'3 =0

which has discriminant ¢* + 4k = 4k + ¢ = A since £ € {0,1}. This
completes the proof. U

Denote by SLy (O, OY) C SLy(F) the group

{(f;‘ g) €SLy(F) |a,6 € O, ye OV, B € (OV)‘l}

which acts on H? in the following manner:

a 3 az1+ 0 dz+ [
(21, 22) = )y ;]
Y (5 YZ1 + 5 Y 22 + 5
Under the identification SLy(F) < SLo(F ® R) = SLy(R) x SLy(RR), one
can verify that SLy(O, OV) is the same as the group G(O @ OV) defined at

the end of Section 1.13.
Define a homomorphism

¢r: SLe(0,0Y) — Sp,(Z) -
(- G a6

where T stands for (g 2,), reF.

Proposition 2.17. ([79, p. 328]) The maps pr and @i give rise to a com-
mutative diagram

H? _PR | H,
H2/T UTo LN Hs/Sp4(Z)

where T' = SLy(O, OV), o is the involution (21, 25) — (22, 21) of H?, and
where p is a map generically of degree 1 onto the Humbert surface Ha.
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The analytic quotient space H?/T" U ' is called a symmetric Hilbert
modular surface. The involution o identifies abelian surfaces whose real
multiplication differ by conjugation.

The picture for square discriminants is similar. See [79, p. 328].



CHAPTER 3

Computing Humbert Surfaces

The aim of this chapter is to produce algebraic models for Humbert
surfaces. Igusa [37] showed that the Satake compactification of the Siegel
modular threefold Ay = Hy/Spy(Z) is Proj Cliby, 1s, X10, X12], @ weighted
projective space with weights indicated by subscripts. The Siegel modular
threefold is open and dense in the Satake compactification and has func-
tion field C(jy, j2, j3) where j;(7) are algebraically independent modular
functions of weight zero. It follows from the last chapter that for every
positive discriminant A there is an irreducible polynomial Ha (j1, jo, j3)
whose zero set is the Humbert surface of discriminant A. Unfortunately
working with this model is impractical due to the large degrees and coeffi-
cients of the polynomial. One fares better by working in a finite cover of
As, adding some level structure. In [71], Runge computes Humbert com-
ponents in the cover Hy/T'*(2,4) using theta functions and their Fourier
expansions. We shall apply Runge’s method to various practical models of
A(2) = Hy/T'(2), the Siegel modular threefold with level 2 structure.

3.1. Fourier expansions of theta functions

As we shall be working exclusively with theta functions of half inte-
gral characteristics throughout this chapter, such objects warrant special

notation. Let m = (my,...,my,) € Z*. Set m' = (my,...,m,) and

m” = (Mgq1,...,May). We write 6,,(z,7) to denote the theta function

I/ . .
with half integral characteristics given by 6 [ fm,,] (z,7), having Fourier
2

expansion

O (2, 7) :pezzge(%(w %/)Tt(p+m7/> + <p+m7/) t<z+ %’)) .

Define the theta constant 6,,(T) to be 0,,(0, 7). Igusa [39] shows that the
quotients 6,,,(7)/6,(7) are modular functions for the group I';(4, 8) where

Dy(2k,4k) = {(2]) € Ty(2k) | (a'B)o = (v'6)o = 0 (mod 4k)}

is a normal subgroup of I',(1) having index 229 in I'y(2k) (recall the nota-
tion Xy which is used to denote the row vector determined by the diagonal
entries of X).

36
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Let us describe the Fourier expansion of theta constants restricted to a
Humbert surface of discriminant A = 0 or 1 mod 4, adapted from ideas in
Runge’s paper [71]. Write A = 4k + ¢ where / is either 0 or 1 and hence
the pair (k,¢) is uniquely determined. From Humbert’s Lemma 2.9, the
Humbert surface of discriminant A can be defined by the set

. 1 T2
Hp = {(7—2 kmy —i—ETQ) < 7‘(2}

modulo the usual Sp,(Z) equivalence relation. Let a, b, ¢, d be integers such
that v := ac + bd is even.! To simplify notation we write 0.4 to denote the
theta constant 0, .q). If we restrict 0y.q to Ha we get

Habcd(T) _ Z eﬂ'i(zlc+mzd+%)T(2$1+a)2+k(2x2+b)2q2(2x1+a)(2x2+b)+€(2x2+b)2
(w1,m2)€EZ?
where r = ¢>™/8 and ¢ = ¢?>™2/%, Unfortunately the exponent of ¢ can

be negative. To overcome this difficulty, make the invertible substitution
r = pq to produce the expansion
(_1>% Z (_1)xlc+:p2dp(2x1+a)2+k(212+b)2q(2x1+a+2£2+b)2+(k+€fl)(2x2+b)2
(z1,m2)EZ2
which is computationally more favourable, being an element of Z|[p, ¢|]
which we call the Fourier expansion of 0.q restricted to Ha.
We now describe how to invert elements of Q|[p, ¢]| when possible. It

is well known fact about power series rings that f(p, q) € Q|[p, ¢|] is a unit
if and only if f(0,0) # 0, where the inverse given by the geometric series

)

n>0

An implementation on a computer uses truncated Fourier expansions, where
arithmetic is done in Q[[p, q]]/(p",¢") for some positive N. It is easy
to see that the geometric ratio has zero constant term, in particular (1 —
f/£(0,0)% € (pV,¢") for k > N so the above formula converges to the
truncated expansion of f~! for any chosen precision.

3.2. Degree formula

To compute equations for Humbert surfaces it is desirable to know the
degree of the polynomial relation in advance. Fortunately much arithmetic-
geometric information is known about Humbert surfaces and more gener-
ally Hilbert modular surfaces (see [34], [80]). We begin with a lemma.

I'We shall show in Section 3.4.1 that the ‘odd’ theta constants are all zero.
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Lemma 3.1. The subgroup of Sp,(Z) which fixes points T € Hy satisfying
a singular relation
aT + bTQ + ¢T3 + d(T22 — 7'17'3) +e=0

of discriminant A = b* — 4ac — 4de has order 2 if A = 1 or 4 and is trivial
otherwise.

Proof. Gottschling determined all fixed points and their isotropy subgroups.
From [26, Satz 3] the 2-dimensional families of fixed points are seen to
satisfy singular relations of discriminants 1 and 4, both having nontrivial
isotropy groups of order 2. One can verify that the discriminant 1 points
given by 75 = 0 are fixed by diag(—1,1, —1, 1) and the singular relation
71 = 73 of discriminant 4 is fixed by the matrix (§ &) withU = (9¢). O

This motivates the following:

Definition 3.2. The order of the isotropy subgroup of Hn in Sp,(Z)\Hs is

U(m:{% if A =1or4,

1  otherwise.

Remark 3.3. We have v(H; N Hy) = %. In Section 5.2 we show that
H, N H, is birationally equivalent to the classical modular curve X(1)
with “multiplicity two” (see Remark 5.18).

Remark 3.4. Let I' < Sp,(Z) be a subgroup of finite index. The natural
projection m : I'\Hy — Sp,(Z)\'H: is a finite map and we can define
an isotropy subgroup order vﬁi) (A) for each irreducible component HX) of
71 (Ha) in T\'Hy. When T is a normal subgroup, vr(A) = vg)(A) is
independent of the choice of Humbert surface component.

Example 3.5. The groups I'y(n) are normal subgroups of I's(1) = Sp,(Z).
Using the proof of Lemma 3.1 we find that

if A=1landn € {1,2},

if A=4andn=1,

otherwise.

Ury(n) (A) =

— ol ol

Define I'y(IV) < SLy(Z) by
To(N) ={(375) €SLa(Z) |[y=0 (mod N)}.

As T'g(4) C T'1(4,8), it follows that the genus 1 theta functions of half
integral characteristics 6y, 091, 010, 011 are modular forms of half integral
weight for I'y(4). Define

1

C(T) = 1900(7') (900(7‘)4 — 5910(7’)4).
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(This is misprinted in [71, p. 10]). The Fourier coefficients have arithmetical
significance.

Lemma 3.6. The Fourier expansion of C(7) has the form
1—ZGAC]A, q:e27ri7'
A>0
A=0,1 mod 4
where ap is given by the formula

A —a? 12A =2 ifAi
(3.7 aA:24ZU1< x )+{ if A'is a square,

4 0 otherwise
TEZ

and where o1(n) = > d, the sum of positive divisors function.
din

Proof. The function ﬁC’ (7) is studied in Henri Cohen’s article [14]. There,

the Fourier coefficient of ¢"¥ is denoted H (2, N) and the corresponding for-
mula for these numbers is given in [14, Proposition 4.1]. O

All|4]5 8 9 12 [ 13 | 16 | 17 | 20 | 21 | 24 | 25
aan | 10 | 70 | 48 | 120 | 250 | 240 | 240 | 550 | 480 | 528 | 480 | 720 | 1210

TABLE 1. First few values of an.

Define the Humbert surface divisor

Ga = Z V(A/2*)Ha .
x>1
z2|A
We now state a famous result of van der Geer, from which the degree of any
Humbert surface component in any finite cover can be derived.

Theorem 3.8. ([34, Theorem 8.10]) The Humbert surface divisor G is
the zero divisor of a Siegel modular form of weight deg(Ga) = %aA. In
particular, we have

Z v(A/2?) deg(Hajp2) = %aA.
z>1
z2|A
The Humbert surface H A is the zero divisor of a Siegel modular form;
its weight can be determined computing the degree of Ha recursively using
the theorem above. Computing these modular forms is the ultimate goal of
this chapter.
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3.3. Runge’s method

We describe an algorithm to find an irreducible component of H A in any
finite cover of As.

First we describe Runge’s computations. Define ['*(2,4) < I'(2,4)
to be the largest subgroup of I'(2,4) which does not contain the matrix
diag(—1,1,—1,1) (see [70, Lemma 2.1] and the paragraph after the proof).
It is a normal subgroup of Sp,(Z) of index 23040. Runge [71] showed
that the Satake compactification of Hy/T*(2,4) is isomorphic to P? with
homogeneous coordinate ring generated by four theta constants fo = 6ygo0,
fi = 00100, fo = 61000, f3 = B1100- By writing out Fourier expansions
of the f; restricted to Ha to high enough precision, he was able to find a
polynomial relation between the f;. This is a component of the Humbert
surface in Hy/I'*(2,4) which maps down to Hx in H2/Sp,(Z) under the
quotient map.

Since I'*(2,4) is normal in Sp,(Z), all Humbert components Fjx ; are
hypersurfaces in H,/T*(2,4) of the same degree. The quotient group
Sp4(Z)/T*(2,4) acts on the set of components. By determining the number
of components and the isotropy groups, Theorem 3.8 is used to produce a
degree formula for Humbert components in this model.

Proposition 3.9. ([71, p. 10]) The number of Humbert components in
Ho/T*(2,4) is
10 if A =1mod8,
m(A) = <60 if A=0mod4,
6 if A =5 mod 8.
The degree of any Humbert component Fa ; in Hy/T*(2,4) is given by a
recursive formula

an =D v (Af2h)m(A[2%) deg(Fiassn))

x>0
where
1/2 ifr=1
V() =<1 ifr>2,2=0,1mod4
0 otherwise

and an is the coefficient of Cohen’s modular form calculated using (3.7).

The algorithm is very simple. We have f, fi, fo, f3 represented as trun-
cated power series. We know the degree of the relation we are searching for.
To find an algebraic relation of degree d, compute all homogeneous mono-
mials in the f; of degree d and use linear algebra to find linear dependencies
between the monomials.
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A 1 415 81 9 |12] 13 |16 17 |20 | 21 |24
deg(Fa,) | 2 1 8 2124 |4 ]40 | 8|48 | 8| 80 |12
A 25 (28] 29 |32 33 | 36| 37 (40| 41 |44 | 45 |48
deg(Fa,) | 120 | 16 | 120 | 16 | 144 | 24 | 200 | 28 | 192 | 28 | 240 | 32
A 49 | 52| 53 |56 | 57 | 60| 61 | 64| 65 |68 | 69 |72
deg(Fa ;) | 336 | 40 | 280 | 40 | 336 | 48 | 440 | 64 | 384 | 48 | 480 | 60

TABLE 2. Degrees of Runge Humbert components.

Using this method, Runge computed equations of Humbert components
whose degree was at most 16. By making use of observed symmetries
of I'*(2,4)/Sp4(Z) that fix Humbert components we are able to compute
components whose degrees are at most 48, which includes all the even non-
square discriminants less than 70 (see [28]).

We now generalize this method to any finite cover:

Algorithm 3.10. Let ¢ : A" — A, be a finite cover of A;. Then the preim-
age ¢ '(Ha) is a union of Humbert components HX) . Given functions

{fi(7)}i=1,.. » generating the function field of A’, compute HX) (fi,- s fn)
as follows:
a) Calculate the degree of the Humbert components HX) (given by a
predetermined formula derived from Theorem 3.8).
b) Compute power series representations of the f;(7) restricted to Hy C
Ho.
c) Solve HX) (f1,---, fn) = 0inthe power series ring (truncated series
with large precision) using linear algebra.

In addition, if ¢ is a Galois cover and we understand the action of the Galois
group explicitly, then we can compute all the Hx) from the Galois orbit of

one component.

We shall refer to this algorithm as Runge’s method. Let us now give a
simple analysis of its space requirements and runtime cost.

Proposition 3.11. Let m be the number of monomials to be evaluated and
let N be the precision of the truncated power series used. Assume that the
arithmetic operations in the ring Z[p, q|/(p~, ¢") can be performed using
O(N?) operations in Z. Then Runge’s method takes O(m?N?) ring opera-
tions in Z to run and the space complexity of the algorithm is O(mN?).

Proof. The algorithm decomposes into three parts: computing power series
to precision N, evaluating m monomials and computing the row-kernel of
an m x N matrix. We have the following table:
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Algorithm step | Space | Operations in Z
Compute power series to precision N | N2 N?
Evaluate m monomials | mN? mN?
Computing row-kernel of a m x N? matrix | mN? m?N?
Total complexity | mN? | m?N?

The first two lines are straightforward given our assumptions. The space
complexity for the kernel calulation is simply the number of matrix entries
which is mN?2. From Cohen [15, §2.3.1], we see that the number of ring
operations in Z for computing the row-kernel of an r x ¢ matrix is 72c, so

our table is correct. This completes the proof. U

Remark 3.12. The success of Runge’s method is contingent on having high
enough precision such that the computed kernel has dimension one. In par-
ticular, the number of power series terms must be greater than the number
of monomials, which means that the runtime is o(m?).

Any finite cover of the Siegel modular threefold is 3-dimensional, hence
the number of monomials of degree d is proportional to d*. By using the
defining relations for the covering space, a suitable set of monomials can
be precomputed in O(d?) time, independent of the number of variables n.
It follows from the remark above that the runtime of finding a Humbert
relation of degree d is of order o(d?).

3.4. Satake models of level 2

In [79] van der Geer constructs a model in P* for the Satake compact-
ification of the Siegel modular threefold of level 2 using fourth powers of
even theta functions of half integral characteristics. The symmetric group
Sg acts on these functions. He then states that by changing the action of
S by an outer automorphism, we may obtain a model in P> where Sg acts
by permuting the coordinate functions x1, . . ., zg. In this section we explic-
itly construct this model of the Satake compactification X [2] = Hj/I'2(2)
in P> using theta functions of half integral characteristics. This model is
ideal for computing Humbert surfaces as each level 2 Humbert component
is fixed by a subgroup G of Siz which means that the Humbert equations are
G-invariant polynomials. This reduces the number of monomials one has to
evaluate in Runge’s method and reduces the size of the matrix by a constant
factor.

3.4.1. A model of X [2] in P!, Igusa [38] showed that the space of mod-
ular forms of weight 2 for I'y(2) defines an embedding of H3/I'2(2) into
projective space. A nice model can be constructed by working with theta
functions of half integral characteristics.
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Letm = (my, ..., my4) be an integer row vector. Set m’ = (my, ms) and
m” = (ms, my). Recall the theta function with half integral characteristic

m has Fourier expansion

O (2, 7) :Ze(%(wm?,)ft(w %’) + (p+ %) t(z+m7”>) :

pEZ?

We make note of three theta function identities [39]. Firstly, the substi-
tution p — —p — m’ shows

O (—2,7) = (—=1)™ "™ 0,,(2,7)

which says that 6, is even (or odd) as a function of z if and only if m’-m” =
mims + momy 18 even (or odd). It follows that all the odd theta constants
are zero.

Let n € Z* be another characteristic. Identity (1.69) says that

9m+2n(27 T) = (_1)m " Hm(Z, T)

which shows that it is enough to know the theta functions/constants 6,,, as m
ranges over a set of representatives of Z*/(27)%, for which we take the set
of vectors whose entries are in {0, 1}. There are sixteen theta functions of
half integral characteristics, ten even and six odd. There are ten even theta
constants.

The third identity is a specialisation of Igusa’s transformation formula
(see Theorem 1.70) for theta constants 6,,. Let m € Z* be a characteristic.
For a symplectic matrix T = (2 7) € Sp,(Z) write

T -m:= mTfl + ((")/ té)o, (Oé tﬁ)o)
where X denotes the row vector determined by the diagonal entries of X.
Then
Or.m (T(7)) = (T, m) det(y7 + 6)/%0,,(7)
where (7', m) is a certain eighth root of unity depending only on 7°, m and
the sign ambiguity of the choice of square root.
Lemma 3.13.

a) The characteristic T - m has the same parity as m.

b) If T'= I, mod 2 then T - m = m. Hence I'5(1)/T'5(2) = Sp,(F2)
acts on the characteristics.

¢) The action of Sp,(Fy) on the six odd characteristics is transitive and
gives an isomorphism between Sg and Sp,(IF).

Proof. See Igusa [38, p. 398]. U
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By fixing the ordering of the odd characteristics to be
0101,0111,1011,1010,1110,1101

we can write down this isomorphism R : S¢ — Sp,(F2) explicitly on the
generators:

_ (= 03 _ (0 i
R(IQ) —\0 ]2 ) R(123456) - %? 0 .

The following proposition is obtained by examining (7),m) in Igusa’s
transformation formula more closely.

Proposition 3.14.

a) (T, m) is a fourth root of unity for all T' € T'5(2), hence the fourth
powers 01 (1) are Siegel modular forms for T'y(2).
b) Let T = (3 ?) be in Sp,(Z). We have the identity

O (T()) = (— 1) 550" 0" (7 4 6) - 1, (7)
which holds for characteristics m € 7.

Proof. From [40, p. 226] we have (T, m) = k(T')e(¢n (1)) with ¢,,,(T") =
—1/8 . (m/ tﬁé tm! + m tOz’Y tm 4+ 2m! tﬁ’}/ tim! — 2(m/ s m" t’Y) (a tﬁ)o)-
Since m/, m” € Z? we obtain

€<T’ m)4 — K(T>4(_1)m/ tBStm/+m// ta,ytm// )
Since matrices in ['y(2) are the identity mod 2, we see that £(T,m)? =
k(T)* for all T € T'5(2). The proposition now follows from the fact that
k(T)* = 1forall T € Sp,(Z); see Birkenhake-Lange [9, §8.6, Ex 8.11(9)]
for a proof. 0

Define a right action of 7' = (2 Y) € Sp,(R) on functions f : Hy — C
by writing f o [T](7) = det(er + d)~2f (T(7)). Then by the proposition
above, 0, o [T] = £67_,  forall T € Sp,(Z) with I'y(2) acting trivially.
Thus Sg acts on the vector space M spanned by the ten even theta fourth
powers.

In [38] Igusa computed the representation

(T): 0 — 0 o[T] =067,
It is the five dimensional irreducible representation corresponding to the
partition 6 = 2 + 2 + 2.

Theorem 3.15. ([79, IX 3.2]) The 10 modular forms 0%, span the five di-
mensional vector space Ms(I'5(2)) = M and define an embedding X [2] —
P* C P? of the Satake compactification. The image is the quartic threefold
defined by

uy — duy =0
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where uy, = > 0M sums over all even characteristics.

The Sg-action can be described elegantly using a different notation for
the theta fourth powers as found in van der Geer [34, Ch. 9], motivated by
Thomae’s formula. For each partition (ijk)(¢mn) of {i, 7, k,¢,m,n} =
{1,2,...,6}, define 0(ijk)(k¢m) by first setting

b= 0(124)(356) = Ol 2 1= 0(125)(346) = Oy
t3 := 0(126)(345) = 911111 : ty 1= 0(123)(456) = ‘9%001 )
t5 == 6(135)(246) = 600, to := 0(145)(236) = bgoo: ,
t7 1= 0(156)(234) = 01, ts := B(146)(235) = biono
to = 0(136)(245) = Oagr1,  t10 = 0(134)(256) = G100,
then, for any permutation o € Sg satisfying {o(i),0(j),o(k)} = {i,7,k},

we declare that
0(c(i),0(j),0(k))(o(),a(m),o(n)) = sign(o) O(ijk)(mn).
A representation of Sg on M is given by
o : 0(ijk)(tmn) — 0(0 (i), 0(j), o (k)) (o ((), o(m), o (n)).

Proposition 3.16. The above representation of Sg on described on the
0(ijk)(fmn) is equal to Igusa’s representation (-) via the isomorphism
R : S¢ — Sp,(Z)/Ty(2) defined earlier. That is to say 0 = (R,).

Proof. Simply compute both representations on the generators of Sg and
observe that they are indeed identical. U

All linear relations between the theta fourth powers arise from Rie-
mann’s theta formula [39, p. 232] and have a very nice symmetric form.

Proposition 3.17. The 0(ijk)(¢mn) satisfy the relations
0(ijk)(¢mn) — 0(igl)(kmn) — 0(ijm)(Ckn) — 0(ijn)(fmk) = 0.

We defer the proof until Section 3.5 where we make use of Thomae’s for-
mula.

The ¢; with ¢ = 6,7,...,10 form a basis of M = Span{ty,...%t10}.
The other ¢; can be represented in terms of this basis producing five linear
relations:

ti1 = teg—tg+tio

ty = —tg+1t9+tio
tg - t7 — tg + t9
ty = tet+ir—1tg

t5 — t6+t7—t8+t9+t10.
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The basis determines an explicit embedding X [2] — P* as in Theorem 3.15.

3.4.2. A model of X [2] in P°. The symmetric group Sg is unique in that
it is the only symmetric group which has a nontrivial outer automorphism
[68, Ch. 7 §2]. It is an automorphism of order two which interchanges the
conjugacy classes in Sg corresponding to the partitions 2+ 1+ 14+ 1+ 1
and 2 + 2 4+ 2. A look at the character table for Sg shows that if we twist
the Sg-action on M by an outer automorphism, we get a representation
corresponding to the partition 6 = 5 + 1. This representation has a nice
“symmetric” realization as

{(1’1,...,33'6)6@6 : le:O}gCE)

1<i<6
where Sg acts by permuting the coordinates.

We now change model explicitly. We shall use the outer automorphism
a : Sg — Sg defined by

(12) — (16)(23)(45),
(123456) — (46)(235).

Our task is to find six functions x,...,z¢ in M such that gz; = x40
where the action on the right hand side of the equality is the natural per-
mutation action on {1,2,...,6}. We find these in the following manner.

Observe that a™!(g)zg = x¢ for all g in Ss, the group of permutations fix-
ing the element 6. Write o = o~ *(12345) = (14326) and define

v = t;+ oty + 0ty + oty + olt;
= tr+1lg+1tg—tig+ty.

By construction, v = v and one can easily compute that a1 (12)v = v,
hence v is fixed by all of a~!(S5). Thus we can set x5 = v. To find the
other x;, simply compute ! (i6)x¢. In terms of the basis of M, we obtain

r1 = t6—t7+t9+2t10

Ty = —2t6—t7—|—t9—t10
T3 = tg—tr — 2bg — t1o
T4 = tg+ 2ty — 3tg +tg + 2t1o
Ty = —2g—tr+ 3ty — 2ty — t1g

Tg — t6+2t7+t9—t10.

One can verify that the z; sum to zero. The symmetric relation u3 — 4uy
between the ¢; in Theorem 3.15 gives us a degree 4 relation symmetric in
the Z;.
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Theorem 3.18. ([79, p. 348]) Changing the action of S¢ by an outer auto-
morphism, we can find equations for X[2] embedded in P° given by

51 = 07
53— 45, =0
82 84— 5

where s, = Ele x¥ are the k-th power sums in the coordinates of P°. In

this model, Sg acts by permuting the coordinates x1, . . . , Tg.

Proof. All that remains to be shown is the correctness of the stated degree
four relation. The linear transformation back to the ¢; is given by the equa-
tions

Sthh=x1+a3+ 24, Ba=a1+22+xs, 3l3=—x1 — T3 — Ts,
Bty = =y = Ty — 5, 35 = —Ty — w3 — L5, 3lg = —Ty — T4 = Ts,
Sly = =1 — ¥y — X3, 3lg = —Ty — 3 — Xy, 3lg = —T3 — Ty — Ts,

3t10 =1+ T4+ Ts.

Substituting these expressions for ¢; into the degree 4 relation u3 — 4uy
produces a polynomial r(x1,...,zg). With the help of Grobner basis ma-
chinery we calculate that r = ms; — 5=(s3 — 4s4) where m is a cubic
polynomial. Since both s; and 7 vanish on X[2], it follows that s3 — 4s4
does as well. U

Thus we are able to compute Fourier expansions of the coordinate func-
tions x; explicitly since they are simply linear combinations of theta fourth
powers which we know how to compute from Section 3.1.

We now state some results about the geometry of this model in P5.

Proposition 3.19. ([8, §41,[79, §11) The boundary components of Ha /T'5(2)
in X 2] form the singular locus of the embedding into P°. For each par-
tition of {1,...,6} into three disjoint pairs (ij)(k{)(mn) there is a one-
dimensional boundary component o i;)xe)(mn) &iven by additional equa-
tions

T = Xj, T = Ty, Ty = T, Ti + T+ Ty = 0.

For each pair {i,j} in {1,...,6} there is a zero-dimensional boundary
point ooy, jy whose coordinates satisfy v; = r; = 2 and x, = —1 for all
other k.

Each 0-dimensional boundary component lies on three 1-dimensional
boundary components and each 1-dimensional boundary component lies
on three 0-dimensional boundary components. See [79, p. 324] for a nice
diagram of this configuration.

Besser [7, §7] determined the number of components of H in X [2].
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Proposition 3.20. Let A be a positive integer congruent to 0 or 1 mod 4.
Then

a) If A = 1 (mod 8) then Hx C X|[2] has 10 components labelled
(HA)(iji) each corresponding to a partition of {1,...,6} into two
triples. The component (Hn)ijiy contains the 9 boundary points
00(p,q} Which have p € {i,j,k} and q ¢ {i, j, k}.

b) If A = 5 (mod 8) then Hn C X|2]| has 6 components labelled
(Ha)@)- The component (Ha ) contains the 5 boundary points

¢) If A is an even discriminant then Hn C X|2]| has 15 components
labelled (H ) (i;). The component (Ha) ;) contains the 6 boundary
points oog,y with {k, 1} {1, j} = 0. If A is a square then (HA) ;)
contains an additional boundary point oo j).

Once again, we have a formula for the degree of the polynomial F ;
defining Humbert components which can be derived from Theorem 3.8.
From Proposition 3.20, the number of Humbert components is given by

10 if A=1mod8,
m(A)=<¢15 if A =0mod4,
6 if A=5modS.
The degree of any Humbert component Fj ; in X [2] is given by a recursive

formula
an =4) m(A/2%) deg(Flaje2))

>0
where a is the coefficient of Cohen’s modular form calculated using (3.7).

A 1[4 [5][8[9[12[13[16[17]20]21]24]25
deg(Fas) | 1| 1 [2[2]6|4[10]8[12]8[20[12]30
A 28129 [32[33[3637 40|41 44 [45]48[49]52
deg(Fa,) | 16 |30 | 16 | 36 | 24 | 50 | 28 [ 48 [ 28 | 60 | 32 | 84 | 40

TABLE 3. Degrees of Satake Humbert components in X [2].

3.4.3. Computations. We now have enough information to implement
Runge’s method and produce some Humbert components with level 2 struc-
ture. We know how to compute the Fourier expansions and know the degree
of the equation. The defining equations of X [2] will always be satisfied by
the Humbert component. By removing monomials divisible by x4 or x3,
we can avoid the defining relations in Theorem 3.18 from being detected.
Using this method, we calculated Humbert components for small discrimi-
nants.
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A | computed Humbert equation component label
1 1+ To + T3 (125)
4 T3 — Iy (35)
5 x% — 201%9 — 20103 — 22104 — 221 05—
222 — 2w9w3 — 2m9xy — 2795 — 203— (1)

22314 — 2w375 — 227 — 23475 — 202

8 81’% +8£L’1{E2 +8[L‘1I3 +8Il$4+8[[)1{[’5—
723 — 10x913 + 8T9wy + 8Tox5 — T3+ (23)
8314 + 8w375 + 872 + 81475 + 872

TABLE 4. Satake Humbert components for small discriminants.

Using these equations and Proposition 3.20 we can determine which
Humbert component we are actually computing for each discriminant class
mod 8 by substituting in all the zero-dimensional boundary points and see-
ing which ooy; j; lie on the component. Looking at the constant terms in
the Fourier expansions of the z;, we learn that our Fourier expansions are
power series expansions centred at 0oy ).

Now that we know the exact component for each discriminant class mod
8, we can take advantage of the symmetries. The lemma below follows from
Proposition 3.20.

Lemma 3.21. Write S = {1,...,6} = {i,j,k,{,m,n}. Then

a) If A =1 (mod 8) then (Ha)jw) is fixed by symmetries in Sg which
preserve the partition S = {1, j, k}U{{, m,n}. As an abstract group
it contains Sz X S3 as a subgroup of index 2.

b) If A = 5 (mod 8) then (Ha) ) is fixed by symmetries in Sg which
preserve the partition S = {i} U {j,k,{,m,n}. As an abstract
group it is isomorphic to Ss.

¢) If A is an even discriminant then (H) i) is fixed by symmetries in
S¢ which preserve the partition S = {i,j} U {k,{,m,n}. As an
abstract group it is isomorphic to Sy X S,.

Write Sym(7") for the symmetric group which acts on {z; : i € T'} fix-
ing all other z;. Let I be the set {2, 3}, {1,2,5},{3,5} or {1} according to
whether A is congruent to 0, 1,4 or 5 (mod 8). In all four cases the symme-
try group for Ha contains G = Sym(/) xSym(J) where J = {1,...,6}\/.
So the Humbert equation will be G-invariant and we expect the defining
polynomial to be G-invariant in the x; (the only exception is A = 4: in
this case vp,(2)(A) = 2 - v(A) and the square of the defining polynomial
is G-invariant instead). With this in mind, we look for a nice basis for G-
invariant polynomials.
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Lemma 3.22. Write s, = Z?:1 x¥ for the k-th symmetric power sum and
Write Py = D1 = D ie; 2% for the partial k-th power sum. There are
isomorphisms of graded rings

Clxy,. .. ,xG}G ~ Cl{wx;:i€ [}]Sym(f) ®Cl{z; i e J}]Sym(J)
at (C[{xz = ]}]Sym(l) ® (C[xi, o ’x6]Sym(J)

I

(C[pl, e ,pm][sl, ce ,S‘Jﬂ .
Remark 3.23. It follows that any G-invariant Humbert component is
uniquely represented in the polynomial ring

(C[827 83, 55, 56, D1, - - - 7p|1|] = C[pla <. 7p|1|][517 - 756]/(817 S% - 454) :
By using these (weighted) monomials instead of the x;, the linear alge-
bra computation is reduced by a constant factor whilst the equations have
symmetry which was lacking before.
In the literature, equations have only been calculated up to discriminant
8 (see [8, p. 305-307] and [79, §8]). We have computed equations up to
discriminant 40. Below is a table of Humbert components for discriminants
up to 16. The other equations can be found at the web address [28].

A | Humbert component

4sy — 9pT — 6p2

384p1 5283 + (816p] — T68p3p2)se + 25653

+(864p3 — 768p1pa — 1024p3)s3 — 259p$

—1728p3ps + T68p?p3 + 1024p3

12 | 1653 + (—168p? — 48py) sy — 128pys3

—111p% 4 684p2py + 363

13 | 22553 + 83025p7s5 — 1248000p; 5353 + 7191450p7 53
42867200353 — 8659200p3 5353 + 3133440p1 s3s5
—85855950p¢ 53 — 24576000p3 s253 — 1474560025355
+37728000p3 5253 + 4608000035255 + 320203125p8 52
—11059200p7s2 + 67829760p?s355 + 131155200p] s3
11887436852 — 272609280p7 55 — 388854675p1"

16 | 36864p7s3 + 98304p; 5253 + (165888pT — 552960p7 o
+36864p3)s3 + 655365253 + (221184p3 — 786432p1p2)sas3
+(167040p$ — 1259136p pe + 2294784p?p2 — 152064p3 ) so
+(16384p? — 131072p2)s3 + (46848pT — 531456p3ps
+1170432p1p3)s3 + 27657p — 435528p%po

+1928664pips — 2636064p3p3 + 1568165

TABLE 5. Satake Humbert components up to discriminant 16.

1 |z +a2+ 25
4 Tr3 — XI5

5 | s2 — 3p7

8

9
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3.5. Rosenhain models

In this section we produce families of genus 2 curves whose Jacobians
have real multiplication by applying Runge’s method to find Humbert com-
ponents expressed as equations in terms of Rosenhain invariants.

Let M5 denote the moduli space of genus 2 curves. Torelli’s theorem
[9, Theorem 11.1.7] says that the map sending a curve C to its Jacobian
variety Jac(C') is injective and defines a birational map My — A,. In fact,
the image of the Torelli map is precisely the complement of H; in A, (see
[9, Corollary 11.8.2(a)]).

Given a genus 2 curve y? = Hle(x — u;) over the complex numbers,
we can send three of the u; to 0, 1, oo via a fractional linear transformation
to get an isomorphic curve with a Rosenhain model:

y* = x(x —1)(z — M) (z — A) (2 — A3).
The \; are called Rosenhain invariants. The ordered tuple
(07 17 0, )‘17 )‘27 A3)

determines an ordering of the Weierstrass points and a level 2 structure on
the corresponding Jacobian, that is, determines a point of A5(2).

Let M5(2) denote the moduli space of genus 2 curves together with a
full level 2 structure. The points of M(2) are given by triples (A1, A2, A3)
where the \; € C are all distinct and different from 0 and 1. The forgetful
morphism M5 (2) — M is a Galois covering of degree 720 = |Ss| where
Sg acts on the Weierstrass 6-tuple by permutations, followed by renormal-
ising the first three coordinates to (0, 1, 00).

As functions on M5(2), the Rosenhain invariants generate the coordi-
nate ring of M5(2) and hence generate the function field of A,(2).

3.5.1. Thomae’s formula. To compute with Rosenhain invariants, we
express them in terms of theta functions using Thomae’s result [61].

Let C' be a genus 2 curve with projective model 3%z = Hle (Bix —ayz).
Let B = {1, ...,6} be an indexing set for the six branch points {b; = («; :
B;) € Pl :i=1,..,6}and let U = {1,3,5}. For subsets S, T of B let
SoT :=(SUT)\ (SNT) denote the symmetric difference. Define the
following half integral characteristics

1 1o 0ol
771:[(2)8}7772:[;0]7773:[%8}7
01 00
774:[15] 77752[%%] , m6 = 1[99
2 2

using our original notation for characteristics (see Section 1.11), and set
Ns = Y pes M for S C B, where ny = [§ §] and the sum is matrix addition
mod 1.
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There is a simple relationship between 6[ns] notation and van der Geer’s
notation.

Lemma 3.24. Write B = {i,j,k,{,m,n}. Ifi < j < kandl{ <m <n
then
0(ijk)(lmn) = e[ﬁ{i,j,k}oU]4 = 6[n{€,m,n}OU]4 :
This can easily be verified. This fact together with Thomae’s formula
will allow us to confirm the truth of the linear relations in Proposition 3.17.

Theorem 3.25. (Thomae’s formula) There exists a nonzero constant c such
that for all S C B with |S| even, we have

o |50 U| #3.
O = (=15 T seseny, (sl — a8) ™" if|SoU| =3.
JEB\(SoU)
Proof. See Mumford [61, Ch. 8]. O

Corollary 3.26. The linear relations
0(ijk)(fmn) — 0(ijl)(kmn) — 0(ijm)(Ckn) — 0(ijn)(fmk) = 0.
as stated in Proposition 3.17 are true.

Proof. Use Thomae’s formula to write each theta fourth power term as a
function of the of the roots. The result then follows from algebraic manip-
ulation. U

If one of the branch points is the point at infinity, Thomae’s formula
simplifies somewhat. Order the points so that bs = (1 : 0) and b; = (u; : 1)
for i # 6 where u; = a;/3;. The product then takes the form

(=) T (=)™

i€(SoU),
JEB'\(S°U)

where B = {1, ..., 5}.

Proposition 3.27. ([61, Corollary 8.13]) Suppose we have five finite branch
points (u; : 1) indexed by B' = {k,{, m,wy,ws} C {1,...,6}. Then

(e — wg)® _ Olqu b eyoU] 00 gun kyou]

(we = wm)? Oy kmyor]* 0N fws kmyor ]t

Proof. Let B’ = V; UV, U {k} be a partition of the five branch points with
|Vi| = 2. From Thomae’s formula we obtain the identity

(3.28)

Hiew(uk B u%) _ (_1 k+19[77(vgu{k})oU]4
HiEVQ(uk — ;) 9[77(v1u{k})oU]4
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Apply this to the pair V; = {wq,¢},Va = {wy,m} and then to V; =
{wy,m}, Vo = {wy, }. Taking the quotient of these two equations pro-
duces the result. O

Remark 3.29. If we take square roots of both sides of (3.28) we find that

— 9 w o 29 w o 2
(3.30) Uk — U _ + [77{ 1.k} U]2 [77{ 2,k,0} Ul .
Uk = Um 9[n{w1,k,m}oU] Q[U{wz,k,m}oU]

Using (3.28) and the identity

2 2
() () (o)
Uk — U, U, — U Uk — Um

we can write -*—*£ as a rational function of theta fourth powers. Hence
the sign in (3. 30) can be determined by looking at Fourier expansions or
evaluations.

We now construct a particular set of Rosenhain invariants from theta

functions. Firstly, send w4, us, ug to 1, 0, oo using the fractional linear trans-
2
UgTUG | TUS s u% get

Us—uUs  T—UG

us—Up

formation x +— Then the squared ratios ( =

mapped to squares of roots. The following result is obtained using the above
remark and Proposition 3.27.

Proposition 3.31. Let 7 be a period matrix of a genus 2 curve. There is

a Rosenhain model y* = x(x — 1)(z — uy)(z — uz)(z — u3) for which

ug(7) = 3(1 4 Oy(1)) where

00w e.5300] 0 Mgws e.5300]" — 010w ,64300] 011w, 0.4700]*
e[n{w1,4,5}oU]40[n{w2,4,5}oU]4

and {wy,wq, 0} = {1,2,3}. Explicitly,

@g(T) =

U = 1 (961000064)010 — 03100@%110) — 080009%100

2 0300193011 980119%111 ’

Uy = % (9%1009%410 _949111000‘93110> — Zéowziloo ’
00011111 00011111

Uz = % (0%100830020 _940%000‘93100> — Z(EOOO?(EOIO .
0011¥1111 0011¥0001

3.5.2. Computations. As a function of 7 € A, there are 720 different
Rosenhain invariant triples, any of which may be used. Let

2 p2 2 2 2 p2
_ 0500090010 _ 0501091100 _ 0500091100
- » €2 = » €37 3 g2
0501191111

2 2 2 2
0001190001 0000101111
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be our ordered Rosenhain triple. For each of the six theta functions used
above, consider the Fourier expansion restricted to /4, as seen in Section
3.1. Observe that 8yg00, Goo11, Goo10 and Hgpo1 have constant term 1, hence are
invertible, but 91100 = 2p1+qu+€_1 + ... and 91111 = —2p1+qu+z_1 + ...

have zero constant term. A closer inspection of the expansions reveals that
01100, 01111 are in the ideal (p't*¢*+*~1)Q[[p, ]|, hence by cancelling out
the p'**¢* 41 factors, the quotient 61109/6111; makes sense in Q[[p, q]].
Thus we are able to compute the Rosenhain invariants as Fourier expansions
restricted to a Humbert surface.

Once we have a bound on the degree of the polynomial F (e, €2, €3)
defining a Humbert component, we can apply Runge’s method to find such
equations. The degree of a Humbert component F{(zy,...,25) = 0 in
the Satake compactification gives an upper bound for deg F(eq, ez, €3).
From computational evidence it appears deg ' = deg I’} for nonsquare
discriminants A and that deg Fy,2 = (1 — +) deg F%, for all n.

A [1[4[5[8]9[12[13[16]17[20]21]24
deg(Fa) [ 1288|1616 |40 |24 |48 (328048

TABLE 6. Table of degrees for Rosenhain Humbert components.

Example 3.32. (A = 1). Points of H; are not Jacobians of hyperelliptic
curves so they cannot have a valid Weierstrass model. Applying Runge’s
method we find two components e; = e, and e; = ez and permuting the
roots we obtain nine relations in total

ei—ej:(),'i#j,ei:O,ei—lzo,i,je{l,Q,?)}.

These are the necessary and sufficient conditions for a Rosenhain model to
be degenerate.

The Torelli map M2 (2) — A3(2)\ H; is an isomorphism. In particular,
this means that for any discriminant A > 1, the fixed groups of the Humbert
components in this model can be deduced from that of the level 2 Satake
model.

As we know, Sg acts on the Rosenhain invariants via the natural action
on (0,1, 00, €1, €2, e3). By pulling back the action on the Satake x; coordi-
nates via the outer automorphism « of Subsection 3.4.2 we can determine
the action on the roots.

Lemma 3.33. A subgroup G < Sg fixes a level 2 Satake component if and
only if = (G) fixes a Rosenhain component.

Let h A be the Humbert component computed using the above algorithm.
With the help of Lemma 3.21 we can now find the fixed groups for this



3.6. DESCENT TO LEVEL 1 55

Rosenhain component explicitly. The fixed group of h for even discrimi-
nant splits into two cases,

G if k£ is odd

Fixs, (hat) =
1X56( 4k) {g—ng if k is even

where G C Sg is a group of order 48 generated by three elements
(0,e1,e3,00,€2,1), (e1,e2) and (1, €1, e3,€2);

the conjugating element is g = (1,00)(ey, €2, €3). Excluding discriminant
1 which is a special case, the fixed group of A = 1 (mod 8) is a group of
order 72 generated by

(0,e1)(1,e2)(00,e3), (1,00), (e1,e2) and (e, €3).
For A =5 (mod 8) the fixed group is a group of order 120 generated by
(07 61)(17 62)(00, 63)7 (17 €3, €2, €1, OO) and (007 €1, €3, 62).

By making use of some of the simpler fixed group symmetries, we can
reduce the size of the linear algebra computation. For example, the dis-
criminant 12 component hy, satisfies hi2(eg, €1, €3) = hia(eq, ea, e3) which
means we only need roughly half the number of evaluated power series
since efebes and eeles have the same coefficient.

With the exception of discriminant 21, we have managed to produce
Humbert components for all the discriminants listed in above table (see
[28]). This extends the equations found in the literature ([35], [31]) which

go up to discriminant 8.

3.6. Descent to level 1

We describe two naive algorithms to compute level 1 Humbert surfaces.
The first approach is to symmetrize a level 2 Humbert component in the Sa-
take model in P° to form a giant symmetric polynomial in zy, . .. 25 which
we can express as a polynomial in the symmetric power sum polynomials
S1,...5¢. Eliminating the variables s; and s4 using the relations s; = 0
and 4s, = s3, we obtain a polynomial in sy, s3, S5, S¢ which are modular
forms for Sp,(7Z) of weights 4, 6, 10, 12 respectively. This method works in
theory, but in practice the degree of the polynomial as given by Theorem
3.8 prohibitively large. Indeed, the only example we were able to calculate
using this method was discriminant 5 which has the smallest degree of 24.

An alternative method is to use Runge’s method directly with level 1
modular forms. We managed to find Humbert equations for discriminants
up to 13 before running out of memory. But this method does not take
advantage of knowing the level 2 equation.
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We now describe an algorithm which constructs the Humbert equation
from working over finite fields and lifting the coefficients. As our level 1
model uses the “non-standard” forms s, s3, S5, S¢ , we describe a few of the
common level 1 models which people use and the maps between them.

3.6.1. Igusa’s generators. Igusa [37, §1V] showed that the graded ring
of even weight modular forms for Sp,(Z) is generated by two Eisenstein
series 14, 1g and two cusp forms 19, Y12 With the subscripts denoting the
weights. Since the vector spaces of modular forms of weights 4 and 6 are
both one-dimensional, it follows that ¢/, and 1) are constant multiples of s,
and s3. By comparing the constant terms in their respective Fourier expan-
sions we find that 1o, = 1271s, and 1)s = 127 's3. From [38, §3] the cusp
forms are defined by

Xio = —271 H 02,

m even

Y12 = 2719374117} (2%3 — 22115 + 32 953) .

m even

By developing the Fourier expansions, we can use linear algebra to write
the s; in terms of the four modular form generators:

Sy = 129y,

s3 = 12,

s5 = 0609416 — 214355)(10 )

s¢ = 108¢3 + 2442 + 21937y,

Thus we can produce equations of Humbert surfaces in the Satake compact-
ification A5 = Proj (C[v4, ¥, X10, X12]) using the same set of generators.

3.6.2. Different models. The affine subvariety of A} defined by x109 #
0 is the coarse moduli space for genus 2 curves. Define the Igusa-Clebsch
invariants I, 14, Is, 1o by the following system of equations [41]:

—214)(10 = I,
23x12 = Lo,
222/}4 = 14 )

2% = (Iply — 31¢) .

They arise as invariants of binary sextics when working over a field of char-
acteristic not 2, 3 or 5. In particular, [y, is the discriminant. The absolute
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Igusa-Clebsch invariants are defined to be
iy = I3/ I, iy = I314/Tho, i3 = 131s/Iy.

They generate the function field of M5 and hence A,.

The Igusa-Clebsch invariants reduce to zero mod 2 which renders them
useless in characteristic two. The Igusa invariants Jo, Jy, Jg, Jg, J1o are
defined by the equations [36, p. 621-2]

Jy = 27%1,,

Jio = 2721,

Ji = 27°37Y4J; - 1),

Jo = 27937%(8J5 —160.JyJy — ),
Js = 273 Jods— JI).

and work in all characteristics (note that Jg is extraneous when the charac-
teristic is not two).

The simple nature of the above transformations allow us to transfer be-
tween different models with ease. For the most part we shall be using the
Satake s; power sums.

3.6.3. Equations over finite fields. Let [F, be a field of characteristic p.
From our previous work we can compute equations for all the level 2 Hum-
bert components HX) (x1,...,xs) using the Satake compactification model
X[2] in P°. Whilst it is computationally expensive to form the product al-
gebraically, there is no such difficulty in evaluating the product at random
points of X [2] as we simply evaluate each individual Humbert component
and multiply the evaluations together. We know the product of the level
2 components can be written as a polynomial in the symmetric functions
s1,...,56 where s, = > ¥ Since points on X[2] satisfy s; = 0 and
4s, = s2, we are able to use linear algebra to determine a unique polyno-
mial in s, 53, S5, S¢ defining the level 1 Humbert surface H A of discriminant
A. This method works over any field, although we shall only use it for IF,,.
Here is the basic algorithm.

Algorithm 3.34. Given a level 2 Humbert component of discriminant A in
X 2], we calculate the level 1 Humbert surface of discriminant A over F,
by following the steps below:

a) Compute a set S of random points on X [2](F,,).

b) Evaluate the symmetrized product of the level 2 components by
evaluating each component separately and forming the product.

c) Evaluate all weighted monomials in ss, S3, 55, S¢ of degree equal to
the degree of the symmetrized product.
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d) Use linear algebra to find (linear) relations between the evaluated
monomials and the evaluated symmetrized product.

If S is large enough we will find a unique relation which defines the level 1
Humbert surface over F,,.

Remark 3.35. If p is chosen to be a prime greater than the number of
monomials, then we can make the above algorithm deterministic by tak-
ing S = X[2|(F,).

We construct random points on X [2](F,,) as follows. The Satake com-
pactification is three dimensional so we need three independent parameters
a,b, c € IF,. Consider the projective point

(w:a:b:c:1:—(u+a+b+c+1))ecP

which satisfies s; = 0. The relation s — 4s, = 0 defines a quartic equation
in v with coefficients in I,. The roots of this equation in I, (if there are
some) determine points of X [2](F,).

The degree of Ha(so, s3, S5, S¢) as a weighted homogeneous polyno-
mial equals the degree of the symmetrized product, hence is known.

For each random point, evaluate the symmetrized product and all the
monomials of weighted degree deg(Ha). Since the symmetrized product
can be written as a linear combination of the monomials, the same must
be true for the evaluations. By taking enough random points on X [2](FF,)
we can use linear algebra to determine the coefficient vector uniquely up to
scalar multiplication. Thus we can compute the equation for Hx over IF,,.

Example 3.36. We demonstrate how to compute H; over ;. To begin
with, we construct a set S of 20 random points of X |[2](F;;) using the
method described above. The Satake level 2 components of discriminant
5 are s, — x7 (see the table on page 50) and the symmetrized product
P = T[°,(sy — 2?) has weighted degree 12. We know that P can be
written as a linear combination of the eight monomials of weighted degree
12:

i J. kb
Z Qijke - S45358 8¢ = P(x1,. .., %6).
2i4+3j+5k+60=12

For each point of § we then evaluate the s; and P. This gives us a system of
20 linear equations in the 8 unknown variables a;;;, which we then solve.
We find a unique solution, giving us the following level 1 Humbert equation
defining H5 over [Fq;:

Sz 4 35356 + Ts9s2 + s55355 + Hsg + 25553 = 0.
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3.6.4. CRT method. The following useful result is due to Wang, Guy
and Davenport (see [59] for the background). It allows us to reconstruct
rational numbers from their reduction mod m provided m is large enough.

Let ) : Q — Z>( be the exponential height function defined by

H(n/d) = max(|nl, |d]).

Write Sy = {r € Q| $H(r) < M} for the set of rationals whose height is
bounded by M. We have the following:

Theorem 3.37. Let n and d be coprime integers. Let m be a positive integer
satisfying gcd(m, d) = 1. Let u = n/d (mod m) and write M = $(n/d).
Then
a) If m > 2M? the reduction map 7 : Sy — Z/mZ is injective. That
is to say, for any 0 < u < m there is at most one rational number
n/d which satisfies n/d = u (mod m).
b) (Rational reconstruction). The extended Euclidean algorithm ap-
plied to the pair (m, u) determines an inverse to .

The asymtotic time complexity for rational reconstruction is O(log2 m).
Proof. See the article by Wang, Guy and Davenport [83]. U

Thus if we know the coefficients of a level 1 Humbert equation for a
large enough residue class ring 7Z/mZ we can rationally reconstruct the
coefficients. This can be done by either choosing a very large prime field
or more efficiently, compute the equations modulo a set of smaller primes
{p;} and use the Chinese Remainder Theorem (CRT) to obtain the equation
modulo [] p;.

Algorithm 3.38. Given a level 2 Humbert component of discriminant A
in X[2], we can compute the level 1 Humbert surface Hx by doing the
following:

a) Find a set of primes P = {p;} for which the coefficients of Hx can
be rationally reconstructed from the coefficients mod [ p;.

b) Use Algorithm 3.34 to compute [/ mod p; for each p; € P.

¢) Use the Chinese Remainder Theorem to compute Hx mod [ ] p;.

d) Rationally reconstruct the coefficients.

Using this algorithm we were able to compute level 1 Humbert poly-
nomials Ha($s, 3, S5, Sg) for discriminants up to 21 before running out of
memory (see [28]). To give an idea of the complexity of these polynomi-
als we describe the discriminant 21 calculation in more detail. The whole
computation took 3 hours and 23 minutes on a 3.2 GHz 32-bit Pentium 4
machine with 1 gigabyte of RAM. We calculated H5; mod p for the first
40 primes p in the randomly chosen interval [223 — 500, 223 + 500], each
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equation taking roughly five minutes. The CRT and rational reconstruction
was fast (under a second). The polynomial Ho (s, S3, S5, S¢) has degree
120; equivalently it is a modular form of weight 240. The largest integer
occuring as a numerator or denominator of a coefficient is 380 binary digits
long (a denominator which factorizes as 247 - 332 . 1124 . 2312 . 5912 . 7112),
By Theorem 3.37 we need a modulus of at least 761 binary digits to suc-
cessfully perform rational reconstruction, so in hindsight we only needed to
compute reductions for 34 primes.



CHAPTER 4

Shimura Curves

4.1. Quaternion algebras and orders

In this section we give a short exposition of the arithmetic of quaternion
algebras based on Chapter 1 of [1]. The main reference for this subject is
[81] and proofs of all the results we describe can be found there.

An algebra B over a field K is central if B has center K, and B is
simple if B has no nontrivial two-sided ideals.

Definition 4.1. A quaternion algebra B over a field K is a central simple
algebra of dimension 4 over K.

We shall always assume K is a number field. In this situation, a quater-
nion algebra over K has a K-basis {1,i,7,ij} satisfying i* = a, j? =
b, 17 = —ji for some units a, b in K. We write B = (%’) for this algebra.

Example 4.2. The R-algebra (
quaternions denoted H.

—1,-1
R

) is the usual division ring of Hamilton

Example 4.3. The ring M (K) is isomorphic to (=:1). More generally, if
bis in K*? then we have an isomorphism (‘%’) =~ M, (K) given by

ar— 01 and b+— Vb0
a 0 0 —vb)"~
a,b

Remark 4.4. Note that up to isomorphism the presentation (—) is far from
unique. For example, we have

() () (57) - (F)

where u is a unit of K.

Each o € B satisfies a monic quadratic equation
P(X)=(X—-a)(X —q)
with coefficients in K. Define the reduced trace and reduced norm of o by
Tr(a) = a+@and N(a) = aa.
The conjugation map w +— @ = Tr(w) — w fixes K and is a K-linear
anti-involution, that is, @ = « and o5 = fa.

61
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Theorem 4.5. The K-automorphisms of a K-quaternion algebra B are the
inner automorphisms, that is, those of the form w +— bwb~' where b € B*.

Proof. This is a direct consequence of the Skolem—Noether theorem [69,
Corollary 9.121]. O

By Wedderburn’s Theorem [65, Ch. 1, Theorem 7.4], a quaternion al-
gebra over K is either a central division K -algebra or is isomorphic to the
matrix algebra My (K).

Let B be a quaternion algebra over K. For each place v of K, B, :=
B ®k K, i1s a quaternion algebra over K.

Definition 4.6. We say that B is ramified at v if B, is a division algebra,
otherwise we say B is split at v.

In M, (K'), each matrix satisfies its characteristic polynomial which is
of degree 2, so the reduced trace and norm are just the matrix trace and

determinant respectively. The conjugation map sends w = (3 ’g) tow =
Tr(w)lz—w = (°, ) whichis just the adjoint. This is true of the reduced

trace and norm of elements of 5, for any split place v.
The following theorem can be shown using class field theory.

Theorem 4.7. ([81, Ch. 3, Théoreme 3.1])

a) A quaternion K-algebra B is ramified at a finite even number of
places.

b) Two quaternion algebras are isomorphic as K -algebras if and only
if they are ramified at the same places.

¢) Given an even number of places of K, there exists a quaternion
algebra over K which ramifies exactly at those places.

Definition 4.8. The reduced discriminant D g of a quaternion K-algebra B
is the product of prime ideals in Oy which ramify in B.

Remark 4.9. If K has class number 1, we may identify the discriminant
D with a generator in Og, up to units.

A quaternion algebra over QQ is called definite if it ramifies at the infinite
prime and called indefinite otherwise. It follows from the above theorem
that the discriminants of indefinite quaternion algebras have an even number
of prime factors whereas for definite quaternion algebras the number of
primes factors in the discriminant is odd.

4.1.1. Orders. Let K be either Q or Q, for some prime p. Let 12 be the
ring of integers of K. Let B be a quaternion algebra over /. We introduce
some new terminology in order to talk about orders.
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An R-lattice in B is finitely generated R-submodule of B which satis-
fies ] ®r K = B. The inverse of an R-lattice I is defined by
I ={be B|IbI CI}.

An element v of B is said to be integral over K if Tr(«) and N(«) are in
R. An R-lattice is said to be integral if all its elements are integral.

Definition 4.10. An R-order of B is an R-lattice O C B which is also a
ring.

Equivalently, an R-order of B is a ring of integral elements generating B
over K.

Given an R-lattice /, the left and right orders associated to [ are defined
by

O.(I)={beB|IbCI}, OI)={beB|bICI}.

The reduced norm of an R-lattice I is defined to be the fractional ideal in
R generated by the reduced norms of elements of /.
From now on, O shall denote an R-order.

Definition 4.11. The different Dy of O is the two-sided ideal of O given
by {b € B | Tr(bO) C R}~'. The reduced discriminant Do of O is the
reduced norm of Dop.

Proposition 4.12. The reduced discriminant has the following properties:
a) D2 is the ideal of R generated by
{det(Tr(w;w;); j=1...4) : wi € OF.
b) If {v1,...,v4} is an R-basis for O then D% is generated by
det(Tr(v;v;)).

c) If O' C O is another R-order then Dy divides Deor. As a special
case, Do = Do if and only if O' = O.

Proof. See Lemme 4.7 and Corollaire 4.8 in [81, Ch. I]. ]

A maximal order is an order which is not properly contained in any
other order. Each R-order is contained in a maximal R-order. Unlike the
number field case, maximal RR-orders are not unique in general.

Definition 4.13. An Eichler R-order in a quaternion algebra B is the inter-
section of two maximal R-orders of B.

Lemma 4.14. Two R-orders O and O’ are isomorphic if and only they are
conjugate R-orders: O' = bOb~! for some b € B*.

Proof. This immediately follows from Theorem 4.5. 0
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The lemma below is easily verified.

Lemma 4.15. Let V : B — B’ be an isomorphism of K -quaternion alge-
bras. Then

a) « € B isintegral if and only if V(«) is integral.

b) O C B is an R-order if and only if V(O) is an R-order. Thus O
is maximal (resp. Eichler) if and only if V(O) is maximal (resp.
Eichler).

¢) If O C B is an R-order then Dyoy = Do. In particular, conjugate
orders have the same discriminant.

Let B be a quaternion algebra over Q. Fix a prime p. Recall that B, =
B ®q Q, is either a division algebra or a matrix algebra.

Lemma 4.16. Let B, be a division Q,-algebra. Then B, contains a unique
maximal Z,-order O, = {b € B, | n(b) € Z,}. Hence O, is the unique
Eichler order in B,

Proof. See [65, Theorem 12.8]. O
When B, is a matrix algebra there are many maximal orders.

Lemma 4.17. Let B, = My(Q,). Then the maximal Z,-orders in B, are
the GL2(Q,)-conjugate orders of O, = My(Z,).

Proof. See [65, Theorem 17.3]. O

Proposition 4.18. Let O, C My(Q,) be a Z,-order. The following are
equivalent characterizations of an Eichler order:

a) There exists a unique pair {O, O’} of maximal orders of M(Q),)
such that O, = 0N O/,
b) There exists a unique integer n > 0 such that O, is conjugate to

Ly Zy\ _ Ly p "Ly
Op,n — (anp Zp) - M2<ZP) N <anp Zp

which is called the canonical Eichler order of level p"Z, =: No,.
Proof. See [1, Proposition 1.53]. ]

Definition 4.19. Let O, be an Eichler Z,-order in a quaternion Q,-algebra
B,,. The level of O, is defined to be the ideal in Z,, given by

{Zp if B, is a division algebra,

N» =
© Ny, where p: B, — My(Q,) is an isomorphism.

P

For the rest of the section let B be a quaternion algebra over Q and let
O be a Z-order in B. Write O, = O ®z Z,.
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Proposition 4.20. ([1, Propositions 1.50, 1.51])

a) O is a maximal order if and only if O, is a maximal order for all
primes p.

b) O is a maximal order if and only if Do = Dpg. In particular, all
maximal orders have the same discriminant.

c) O is an Eichler order if and only if O, is an Eichler order for all
primes p.

Definition 4.21. The level Ny of an Eichler Z-order O is the unique ideal
N in Z such that N, is the level of each O, for all primes p.

Proposition 4.22. ([1, Proposition 1.54])

a) If O is an Eichler order then Do = DgNp and ged(Dpg, No) = 1.

b) If Do = DgN is a squarefree integer then O is an Eichler order of
level N.

¢) If O and O’ are conjugate Eichler orders then O and O have the
same level.

Conversely, for each integer N coprime to the discriminant Dpg there
exists an Eichler order of level N in B (see [1, Corollary 1.58] which uses
Proposition 5.1 in [81, Ch. III]).

Theorem 4.23. Let B be an indefinite Q-quaternion algebra. There is only
one conjugacy class of Eichler orders for any given level.

Proof. See [81, Ch. 3 §5]. A more general statement is given in [81, Ch. 3
Ex. 5.5]. O

4.2. Shimura curves

Let B be an indefinite quaternion algebra of discriminant D and fix an
embedding ® : B — B ®g R — Mj(R). Let O(D, N) be an Eichler
order in B of level N. Write O(D, N) C O(D, N) to denote the sub-
group of units in O(D, N) having norm equal to 1. Define I'(D, N) =
®(OYD, N)). The group I'(D, N) is a discrete subgroup of SLy(R) hence
acts on the upper half plane H by the usual fractional linear transforma-
tions. Up to complex analytic isomorphisms, the quotient I'(D, N)\'H
is independent of the choice of level-N Eichler order by Theorem 4.23.
It is a Riemann surface called a Shimura curve. Shimura showed that
it has a canonical model XP(N) as a projective curve defined over Q
(see [74, Main Theorem I (3.2)]). Thus, there is a uniformizing func-
tion jpy : H — XP(N)(C) which factors through an isomorphism of
['(D, N)\'H with a Zariski open subset of the complex points X (N)(C).
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Example 4.24. Take B = M, (Q) which has discriminant 1. Consider the
Eichler order of level N: O(1,N) = {( % %) : a,b,c,d € Z} C My(Z).
Using the canonical embedding ¢ : M (Q) — My (R) we have ['(D, N) =
{(&7%) € SLy(Z) : a,b,c,d € Z} =: T'y(N), the usual congruence sub-
group of level V. The quotient I'y(/N)\H is not compact. By adding finitely
many cusps we can compactify to get the classical modular curve X,(V).
A uniformizing function which can be used in this case is the classical j-
invariant.

Remark 4.25. When D > 1 the quotient ['(D, N)\'H is compact.

4.2.1. The moduli interpretation. Recall from Example 1.59 that in-
definite quaternion algebras arise as endomorphism rings of abelian sur-
faces. We now show that the curves X (N) defined above are moduli
spaces parametrizing isomorphism classes of principally polarized abelian
surfaces with quaternionic multiplication (QM).

Fix a maximal order O of an indefinite Q-quaternion algebra B of dis-
criminant D. By Theorem 1.55(b) there exists ;u € B with u? < 0 such that
the map b — b* := p~'by defines a positive involution of B, where b — b
is the canonical involution.

Definition 4.26. Consider triplets (A, v, L) where A is an abelian surface,
t: O — End(A) is an embedding and L is a polarization on A such that
the Rosati involution 1 : End’(A) — End"(A) with respect to L stabilizes
B C End’(A) and induces a positive involution on B. That is, i(z)! =
(x*) for all x in O. We call such a triplet a polarized abelian surface with
QM by O.

An isomorphism ¢ : (Ay,t1,L1) — (A, e, Ls) is an isomorphism
¢ : Ay — A, which induces an isomorphism of polarizations ¢* Lo = £
and respects the QM endomorphism structure: ¢ o ¢1(z) = t2() o ¢ for all
xin O.

Proposition 4.27. Any principally polarized abelian surface with QM by O
is isomorphic to one where the induced positive involution on B is given by
b* = ptbu with u € O satisfying p? = —D.

Proof. See [67, Proposition 4.4.1]. For a constructive proof that such a
€ O exists, see [30, p. 535]. OJ

For 7 € H define A, = C?/O(]) where we view O as a subset of
M, (C) via the inclusions O C B C B ®g R = My(R) C My(C). This
determines a natural QM-structure ¢, : O — End(A) where O acts on
the lattice by left multiplication. The bilinear function E,(z(7),y(1)) :=
Tr(~'27y) is a Riemann form defining a principal polarization £,. Thus
(A, tr, L) is a principally polarized abelian surface with QM by O.
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Theorem 4.28. The map 7 +— (A, i, L;) induces an isomorphism be-
tween O'\'H and the moduli space of isomorphism classes of principally
polarized complex abelian surfaces with QM by O.

Proof. See [52, Ch. IX] or [9, Ch. 9]. ]

4.3. Shimura curve embeddings

Throughout this section, let (A, ¢, £) be a principally polarized abelian
surface with QM by a maximal order O in a Q-quaternion algebra B having
discriminant D = pyps - - - po,.. Write E for the Riemann form attached to
L. By forgetting the QM-endomorphism structure, we have a map

™ (A L)) = [(A, L))

which sends Shimura curves into the Siegel modular threefold A,. Simi-
larly to the real multiplication (RM) case where the Hilbert modular surface
factors through a degree 2 quotient, the map 7 factors through a quotient by
a group of Atkin-Lehner involutions. The situation is more complicated
than for RM because the QM structure is dependent on a choice of © € O
(up to conjugation by O) satisfying y? = — D which means the factor group
depends on the pair (O, ). In his thesis, Rotger [67] studied these mor-
phisms and found a criterion for determining the factor group, which we
now describe.

Write Nor(O) = Norg:(0) := {¢ € B* : 00c~! = O} to denote
the normalizer of O in B* and write B, C B for the subgroup of positive
norm elements.

Definition 4.29. The Atkin-Lehner group is defined to be
W = Aut(O') = Norg+(0)/(Q*-O").

It is a subgroup of the automorphism group of the Shimura curve O'\'H. As
an abstract group it is isomorphic to (7./27)*" where 2r equals the number
of prime divisors of D. Each element of W has a distinct norm dividing D
S0 we can write

W = {w, : n(wy) = d divides D}.
These automorphisms have a moduli interpretation:

Proposition 4.30. For a nonzero w € End’(A) define L,, to be the polar-
ization with Riemann form

Ey(u,v) :=F (Lu,wv) :

n(w)

Then an Atkin-Lehner element w € W sends the isomorphism class
(A, 1, L)] to [(A, tw, Lo)] where 1y, 2 51— w™ i(B)w.
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Proof. See Rotger’s thesis [67, Proposition 4.3.3]. U

Let (O, i) be a principally polarized maximal order, meaning that y €
O satisfies > = —D. Write X, for the moduli space of abelian surfaces
with QM by O and polarization given by p. From Theorem 4.28 and Propo-
sition 4.27 we know that X, = O'\'H which is independent of . Write
7 X, — A; for the forgetful map [(A,¢, L)] — [(A, £)]. To determine
the image we need Rotger’s notion of a twisting order.

Definition 4.31. A twist of (O, u1) is an element x € Norpg«(O) N O such
that x* + N(x) = 0 (ie. has zero trace) and xj = —py. We say (O, u) is
twisting if it admits a twist x € O. We say that B is twisting if there exists
a twisting maximal order.

Remark 4.32. If y is a twist of (O, u) then we can write B = (%W)

There is a simple criterion for determining whether a Q-quaternion al-
gebra is twisting or not.

Lemma 4.33. B is twisting if and only if B = <_D—m> for some positive

Q
m which divides D.

Proof. Let y € O be a twisting element. Then Tr(y) = 0 and x is in
Norg«(O). Consider the coset [x] in W’ := Norg-(O)/(Q*O*). By results
of Eichler (cf. [67, p. 70]), any element of W’ can be represented by an

element ' € O whose norm divides D. Thus we have B = (?Tm) where
m = —N(x’) divides D. Since B is an indefinite quaternion algebra, m is
a positive integer. O

Example 4.34. The quaternion algebra of discriminant 15 can be repre-

—15,3

sented by (T) , hence it is twisting.

Definition 4.35. The stable subgroup of (O, 1) is defined as

S (wp) if (O, p) is non-twisting,
0 (W, wp)  if (O, p) admits a twist x, x> =m, m|D.

Remark 4.36. Let V = {m : x? = m for some twist y, m divides D}. In
Rotger’s thesis [67, §4.3.2], the stable subgroup is defined to be generated
by wp and {w,, : m € V} which looks to be different to our definition
in the twisting case. In fact they are equivalent: in [67, Lemma 4.4.7] it is
proven that |IVy| = 4 in the twisting case, so Definition 4.35 is correct and
the stable subgroup does not depend on the choice of twist.
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Example 4.37. The quaternion algebra of discriminant D = 2-3-5-13
can be represented by both (%) and (%), hence is twisting. The non-

twisting polarized orders have stable subgroup Wy = (wp). For the twisting
polarized orders there are two possibilities: Wy = (wq, wp) or (ws, wp).

We can now state Rotger’s theorem.

Theorem 4.38. The map 7 : X,, — As factors through the quotient X,, /W,
by the stable subgroup, followed by a map

Xu/WO — AQ
which is generically of degree one onto the image 7(X,,).
Proof. See [67, Ch. 4]. O

When working in the Siegel modular threefold, we shall abuse notation
and call the image curve 7(.X,,) a Shimura curve, with the understanding
that the image is really a Shimura curve factored out by an Atkin-Lehner
subgroup of order 2 or 4.



CHAPTER 5

Computing Shimura Curves

Since Kurihara’s 1979 article [S1], the study of determining equations
of Shimura curves has become a substantial focus of research. Approaches
range from p-adic uniformizations using local Diophantine properties ([S1],
[43], [24]), complex uniformizations using hypergeometric series ([18],
[82, Chapter 5], [4]), to embeddings in Hilbert modular surfaces [2, Ap-
pendix] and most recently, using moduli spaces of /'3 surfaces [19].

In this chapter we compute equations of Shimura curves by taking in-
tersections of Humbert surfaces. This was first done by Hashimoto and
Murabayashi [31] who computed level 2 Shimura components associated
to maximal orders of discriminants 6 and 10 in the intersection Hs N Hy.

5.1. Discriminant matrices

Let R = End(A) be the endomorphism ring of a principally polar-
ized abelian surface A with QM. Then R is an order in an indefinite Q-
quaternion algebra B equipped with a polarization i € R, > = —D which
determines a Rosati involution on End®(A). Call such a polarized order a
OM-order.

We know that any = € B satisfies 22 —tz+n = 0 where t = Tr(z), n =
N(z) are the reduced trace, norm respectively. Its discriminant A(z) :=
Tr(z)? — 4N(x) defines a quadratic form

Ary) = LA +y) — M) — Aly)
on B called the discriminant form.

Suppose R is a QM-order. The set of symmetric endomorphisms (recall
Definition 2.1)

R ={a€R|ptauy=a}
forms a submodule of rank 3 over Z, generated by elements {1, «v, 3} say.

The discriminant restricts to a binary quadratic form on R*/Z = Za + 73
and the associated matrix
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is called the discriminant matrix of R with respect to («, 3). Note that «
and ( are determined modulo Z, up to a change of basis in GLy(Z).

Proposition 5.1. ([71, Theorem 7]) Let R be a QM-order with polariza-
tion p. Then

a) We can write R = 7. + Za + 7.0 + ZaS where o, 3 are primitive
symmetric endmorphisms of positive discriminant and satisfy p =
af — Ba.

b) The discriminant matrix

su— (200, 4e0)
Ala, B)  A(B)
is positive definite. Moreover, disc(R) = det(Sg)/4 € Z.
¢) If R is a maximal order then the polarization is principal.

A change of basis corresponds to changing the discriminant matrix to
‘gSrg for some g € GL(Z). Thus there is a unique basis for which the dis-
criminant matrix is GLy(Z)-reduced in the sense of binary quadratic forms.
By definition, a GLy(Z)-reduced matrix (¢ °) satisfies 0 < 2b < a < c.

A discriminant matrix is said to be primitive if the gcd of its entries is 1.
We say that an integer A is primitively represented by a quadratic form S’ if
there exists integers « and y which satisfy S(z,y) = A and ged(z,y) = 1.

It is clear that two QM-orders are isomorphic as Z-algebras if and only
if they have the same discriminant matrix.

Theorem 5.2. ([71, Theorem 10]) If two QM-orders have the same primi-
tive reduced discriminant matrix then the corresponding Shimura curves in
A, are isomorphic.

Thus every primitive reduced discriminant matrix can be identified with a
unique Shimura curve up to isomorphism.

Remark 5.3. Note that the primitivity condition is necessary. See [71, Ex-
ample 13] for an example of two QM-orders which have the same discrim-
inant matrix but produce nonisomorphic Shimura curves.

From Proposition 2.15 we know that moduli points in .45 which are in
the intersection of two distinct Humbert surfaces contain a quaternion alge-
bra in their endomorphism algebra (strict inclusion for CM-points). Thus
the irreducible components of such intersections are Shimura curves.

Conversely, Hashimoto [30] showed that a Shimura curve is contained
in a Humbert surface of discriminant A if and only if A can be primitively
represented by a certain quadratic form.

Theorem 5.4. ([30, Theorem 5.2], [71, Corollary 9]) Let O = Z|w] be a
quadratic order of discriminant A. Let Sg be a discriminant matrix of a
OM-order R. The following are equivalent:
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a) A is primitively represented by Sg.
b) There exists an embedding O — R such that RN Q(w) = O.
¢) A Shimura curve C with QM-order R is contained in H.

Moreover if we work in Ay or a finite cover, a Shimura curve component
C™ is contained in the intersection H(Azza) N H(AJ() 5) of two distinct Humbert
components if and only if we can write

¢ _ (Ale)  x
s = (%7 a)
for some g € GLy(Z).

Remark 5.5. This includes the case A(a) = A(S) for different compo-
nents of the same discriminant.

Remark 5.6. If we weaken statement (a) by allowing non-primitive repre-
sentations by Sk, we obtain embeddings O — R which need not satisfy
the “optimal embedding” criterion stated in (b).

Example 5.7. H5; N Hg contains four Shimura curves corresponding to the
GLy(Z)-equivalence classes of discriminant matrices:

09626 a)~0s) = (e~ )

having order discriminants 10,9,6 and 4 respectively. This intersection was
first computed by Hashimoto and Murabayashi [31].

Corollary 5.8. Let S be a discriminant matrix of a QM-order R. Then Sg
represents a square if and only if R is an Eichler order of level det(Sg)/4
in a quaternion algebra of discriminant 1.

Proof. From Proposition 2.14 we know that abelian surfaces on Hs2 are
non-simple and the endomorphism algebras of non-simple QM abelian sur-
faces are matrix algebras. U

This leads to a natural definition: a Shimura curve is said to be non-
simple if the associated quaternion algebra has discriminant 1.

To conclude this section, we provide a method of determining whether
a maximal order is twisting or non-twisting from its discriminant matrix.

Proposition 5.9. Let R = 7 + Za + 725 + Zaf be a maximal QM-order
in a quaternion algebra of discriminant D, where as usual o and 3 are
Rosati-invariant. Let Sg be the discriminant matrix of R with respect to the
basis above. Then R is a twisting order if and only Sg represents 4m > 0
for some m dividing D.
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Proof. By definition, R is twisting when there exists a y € Nor(R) N R
satisfying x> = m > 0 for some integer m dividing D. Equivalently, the
real quadratic order Z[x| of discriminant 4m embeds in R. By Theorem 5.4
this occurs if and only if Sy represents 4m. U

Remark 5.10. The above proposition can be made constructive: suppose R
is a twisting order and we have found a pair v = (§) such that ‘v Sgv = 4m,
then it follows from A(ac + b3) = 4m that 1 Tr(ac + b3) € Z and hence
X = ac+ b3 — 3 Tr(ac + b) is a twist in R satisfying x* = m.

Example 5.11. Consider the quaternion algebra B of discriminant D =
2-3-5-13. We have that B = (_D’m> = (_D’D/m) form = 2, 5. There are

Q Q
two maximal QM-orders of discriminant D corresponding to discriminant

matrices (59, ) and (§ ;3,). As we can represent 5z + 312y* = 4 - 5 by
(y) = (3), the first order is twisting with stable subgroup (ws, wp). For the
second order, since ‘v (§ &) v =4 -2 forv = ({), it is twisting with stable
subgroup (ws, wp).

5.2. Shimura curves contained in H;

From Example 2.12 we know that H; is a moduli space for principally
polarized abelian surfaces which are isomorphic to the product of two el-
liptic curves. To have a Shimura curve contained in /;, the reduced dis-
criminant matrix must be of the form (} ,4 ) for some positive N. Since
ged(1,4N) = 1, the discriminant matrix is primitive and hence describes a
unique Shimura curve up to isomorphism. By Example 4.24 the Shimura
curve is isomorphic to the classical modular curve Xo(/N). We shall de-
scribe the birational map Hy; — Xo(1) x Xo(1) givenby (7 2 ) — (71, 72)
in terms of modular functions which will allow us to use equations known
for X (V) to produce Shimura curves in H;.

First let us recall some facts about modular curves and their functions.
The graded ring of classical modular forms is generated by two Eisenstein
series Fy(7), Eg(T) of weights 4 and 6, normalized so that their Fourier
expansion has constant term 1. Define the Ramanujan cusp form of weight
twelve to be A(7) = 1273(E} — EZ). Then the classical j-invariant can be
expressed as

B} ER s

= K = K + 12°.
As is well known, the modular curve Xy(1) = SLo(Z)\H* is a moduli
space for isomorphism classes of generalized elliptic curves over C. It is
isomorphic to P! with coordinate ring C[j]. The modular curve X,(N) =
['o(N)\'H* is a moduli space for isomorphism classes of pairs (E, C') where

E is a generalized elliptic curve and C' = Z/NZ is a cyclic subgroup of the
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N-torsion E[N] = (Z/NZ)?. Such a pair determines a cyclic N-isogeny
E — E' = E/C. There is a model for X,(/N) which has coordinate ring

Clj(r),j(NT)]
where j(NT) is a root of the polynomial
en(i(n). V)= [[ (v —i(EB/C) e CU(n)Y].

CCE[N]
C~Z/NZ

We see that X,(/NV) has a plane affine model (singular when N > 1) given
by ®n(X,Y) = 0 which we call the modular equation of level N.

Lemma 5.12. For N > 1 we have &y (X,Y) = Oy (Y, X).

Proof. Suppose f : E — E’isacyclic N-isogeny. Then by Lemma 1.7 the
dual isogeny [V : E' — F is also a cyclic N-isogeny. Thus interchanging
X and Y leaves the polynomial ® y invariant. 0

Now we describe the birational map H; — Xj(1) x X(1) explicitly
as an isomorphism of their function fields. In the Satake compactification
A% = Proj (Clipg, ¥, X10, X12]), the Humbert surface of discriminant 1 is
given by the hypersurface x190 = 0. Consider the restriction of the other
three modular form generators to H;:

Lemma 5.13. We have

¢i (Tl O) = Ei(Tl)Ei(TQ) s fori =4 and6,

0 T2

w7 0) = AmAm)

0 T2
Proof. See Klingen [47, §9]. ]

Using these relations we obtain

@”—( 0) — (j(m) — 12 (i) — 129,

X12 0 T2
3 0 . .
(5.14) %(8 72) = j(n)i(m),
3 _ .2 0 ] )
(5.15) ¢1423xi6 (7(')1 72) +12° = j(n) +j(n).

Therefore j(71), j(72) are the roots of a quadratic polynomial with coeffi-
cients given by Siegel modular functions, so we can transfer between H;
and Xo(1) x Xo(1) algebraically using these relations.
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Example 5.16. The Shimura curve H; N H, consists of points on the diag-
onal {(7 2 )} so j(m1) = j(72). This means that the quadratic polynomial

07
with roots j(7), j(72) has discriminant zero. Explicitly,

3 2 2 3
(%3 % +123) Y
129x12 X12

Multiplying through by x?%, we obtain a polynomial relation in Y12, 16, V4.
This equation together with y;¢9 = 0 define the Shimura curve of discrimi-
nant 1.

The proposition below shows that for NV > 1, determining the Shimura
curve in A} corresponding to the discriminant matrix (} % ) is equivalent
to calculating the modular equation ¢ (X,Y) = 0.

Proposition 5.17. We have

D (j1,j2) = X153 F(X12, V6, )

where F' is an irreducible polynomial of weighted homogenous degree 12d
and d is uniquely determined by N. The two equations F' = 0,x19 = 0
define the Shimura curve Hy N Hyy.

Proof. Since the Shimura curve with discriminant matrix (} ,% ) lives in
H, we have x10 = 0 as one of the defining relations. By Lemma 5.12,
the modular polynomial ®x(X,Y’) is symmetric for N > 1 so we can
rewrite ®y(j1,J2) as a polynomial in the elementary symmetric functions
u = j1 + jo and v = j1J2. But we know from (5.14) and (5.15) that u
and v can be expressed as Siegel modular functions. Hence we can write
On(j1,j2) = X715 F (X12, 16, ¥4 for some weighted homogeneous polyno-
mial /' of degree 12d. The rest of the proposition now follows. U

Remark 5.18. For N = 1 the modular polynomial ®;(X,Y) = X — Y is
not symmetric. If we take the computed Shimura curve H; N H, in Example
5.16 and map the Siegel modular functions to j-invariants using (5.14) and
(5.15) we obtain the “modular equation” (X — Y)? = 0. The multiplic-
ity two is due to the fact that in H,/Sp,(Z), the Humbert surface H, has
nontrivial isotropy group of order 2 in Sp,(Z) (see Lemma 3.1).

5.3. Level 2 Shimura components

From Theorem 5.4 we can determine the discriminant matrices of the
Shimura components contained in the intersection of two level 2 Humbert
surfaces. With the symmetric Satake model in P>, Besser [8] computed
simple Shimura components of discriminants 6, 10 and 15 by hand using
Humbert equations of discriminants 5 and 8. This can be automated by
computing the primary decomposition of the (radical of the) ideal defining
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the Humbert intersection with a computer. Unfortunately the high degree
of the components’ equations combined with the high codimension of the
variety in P° makes the Grobner calculations expensive. Also the output
can be quite messy. For instance, when we decomposed H5 N Hg in the
Satake model, the defining ideal for the discriminant 9 component had 16
Grobner basis elements! For this reason we shall work rather with ambient
varieties of dimension 3. In this section we show how to compute level 2
Shimura components in terms of Rosenhain invariants.

Recall from Chapter 3 that the Rosenhain invariants ey, e5, e3 generate
the coordinate ring of My(2) = A5(2) — H; and hence the function field
of A5 (2). Using these functions we computed level 2 Humbert components
ha(e1, es, e3) for a handful of small discriminants. As we are working with
coordinates in My(2) = A5(2) — Hi, we will not be able to compute any
Shimura components in H; using this model. The nine components of H;
are given by degree 1 polynomials

e—e;=0,i#j,e=0,e—1=0,4;j€{1,23}

which are hence invertible in the coordinate ring.

Let f(e1,e2,e3) = 0and g(eq, ez, e3) = 0 be equations of two Humbert
components. The obvious way to find components in the intersection would
be to compute the primary decomposition of the (radical of the) ideal gener-
ated by f and g. The problem with this method in practice is the necessary
use of Grobner basis algorithms which have exponential complexity in the
input size. Luckily when working with hypersurfaces there is an easier way
which we outline below.

Take the resultant R(f, g) of f and g with respect to one of the variables,
e; say. By definition this is a polynomial in e; and e3 which generates the
elimination ideal Cley, eq, e3](f, ) NCles, e3]. Factorize the resultant. Each
nontrivial factor (not an H; component) together with f and g defines an
ideal corresponding to a Shimura component contained in the intersection.

Since Sg acts on the Rosenhain Humbert components in Ms(2), it acts
on their intersections producing isomorphic curves. For each Rosenhain
orbit of Humbert intersections, choose a representative. Compute the non-
trivial resultant factors for every representative. Each factor r corresponds
to a Shimura curve with discriminant matrix S. The map r +— S always
surjects onto the nontrivial discriminant matrices (not contained in ;) but
is not always injective. This is because the fixed group Fix(H, N H,) of
a Rosenhain Humbert intersection will act nontrivially on the irreducible
components X, C H, N H, for which Fix(X}) is strictly contained in
Fix(H, N Hy). This allows the possibility of having isomorphic Shimura
curves contained in the list.
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To match up each discriminant matrix S with a resultant factor we use a
third Humbert surface. Write D(a, b) for the set of discriminant matrices of
Shimura curves in H, N H,. If the Shimura curve (component) is contained
in (a component above) H, N H, N H, then S is in D(a,b) N D(b, c). If we
have identified all the nontrivial discriminant matrices apart from S (most
conveniently when S is the sole element) then we should be able to find a
match for S by studying unmatched resultants appearing in both intersec-
tions.

We generalize this to multiple Humbert intersections.

Lemma 5.19. Let {Héik) .k =0,...,m} be a set of distinct Humbert
components with defining polynomials {f,, } respectively. The resultant

factors in (], HC(LZ‘ ) are precisely the factors of
gcd({R(fay, fa,) = K=0,...,m}).

The utility of the above lemma is twofold. Not only does it aid in factoring
the resultant, it also allows us to compute Shimura curve components by
choosing suitable Humbert discriminants.

Algorithm 5.20. To calculate a level 2 Shimura component C with reduced
discriminant matrix S = (¢ ;) do the following:
a) Find a set of discriminants M = {c,..., ¢, } representing S such
that H, N H,N( H,, = C.
b) Find a set of non-equivalent Humbert component intersections H. 9
H é] N N H C(fe ) and compute the list of nontrivial resultant factors us-
ing Lemma 5.19.
When combined with the defining polynomials of the two associated Hum-

bert components HY and H b(j ), any one of these resultant factors define the
Shimura component in the Rosenhain model up to isomorphism.

Proof. The only part that requires proof is that M is a finite set, the rest
is clear from the previous discussion. Let S’ be a discriminant matrix in
D(a,b) different from S. As S and S’ are not GLy(Z)-equivalent, there
exists a discriminant c represented by .S but not represented by S’. Thus by
intersecting with H¥) we can excise at least one discriminant matrix. This
shows that the set M/ has cardinality at most |D(a, b)| — 1. O

Remark 5.21. If we are only interested in the abstract curve, project down
to the affine plane with coordinate functions e; and e3. The resultant factor
gives a singular affine plane model for the Shimura component.

Remark 5.22. Now that we can compute Shimura curves associated to dis-
criminant matrices, the question arises as to what extent we can identify an
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Eichler order R = O(D, N) from its discriminant matrix Sg. Corollary 5.8
determines the cases where D = 1. In general we know that disc(R) = DN
where ged(D, N) = 1 and D is the product of a even number of distinct
primes. For examples where disc(R) is the product of fewer than 4 distinct
primes this is enough to deduce D and N.

5.3.1. Examples. First we shall compute level 2 Shimura components
above the Shimura curves in H, N Hs. We have

20940 5) G 3Ll D)

where we list nontrivial matrices first. There are two (non-simple since 4
1s a square) Shimura curves with discriminants 5 and 4 to be identified. Up
to the Rosenhain Sg-action there are two different ways to intersect compo-
nents of 1, and H5. We discover that each intersection contains a single
nontrivial resultant factor making two in total:

ry = 6263 4e3es + 4e3 + 2e0e3 — degel + deges — dey + 3 — de3 + 4l
ry = — 46263 — 262 + 46263 + 106263 + 362 — 126263 — 16e5e3 — 2¢5 +
276265 + 8ejes + €5 — 12e3el — 166265 2e3e3 + 4edes +
10e3e3 + 3edes — 46263 — 2eqe3 + 63

To settle the question of which r; matches up to which discriminant matrix,
we introduce a new Humbert component of discriminant 5. Following the
same procedure, we have discriminant matrices

o -{(1 1)-( D{( O}

when intersecting different components of H5. Up to the Rosenhain action
there is only one intersection. It produces two nontrivial resultant factors,
one of them r5 and a new polynomial 3. Again there is a bijection between
resultant factors and discriminant matrices. Since D (4, 5)ND(5, 5) has only
one nontrivial discriminant matrix, namely (3 2 ), we can match 7, with this
matrix. It follows that r; corresponds to discriminant matrix (& 2) and that
13 corresponds to (3 1). So we have computed our first simple Shimura
component of discriminant 6.

By carefully choosing components and discriminants we can build up
a collection of Shimura component equations. The main bottleneck in
computing Humbert intersections is working with the resultant polynomi-
als, whose degree increases quadratically with the Humbert polynomial de-
grees. Nonetheless we are able to compute 30 such intersections [28], which
include 15 pairs {A1, Ao} of discriminants with A; < 12.
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The largest intersection for which we identified the Shimura compo-
nents was Hs M H;3 which has discriminant matrices

- {(2 5).G 2.6 .6 )

corresponding to QM-orders of discriminants 16, 14, 10 and 4 respectively.
Up to the Rosenhain action there are two different ways to intersect com-
ponents of H5 and H;3 which we denote by /; and /5. We find that I; pro-
duces four nontrivial resultant factors and /5 has five, giving a total of nine
Shimura components. Interestingly, the list of resultants has a duplicate,
one copy in each intersection. As all the discriminant matrices are prim-
itive, there are only 4 isomorphism classes of Shimura curves so we have
some redundancy. After sucessfully matching, we found that /; consists of
four isomorphic components of discriminant 4 and that /, contains all four
non-isomorphic Shimura components as well as an additional discriminant
4 component.

5.4. Level 1 calculations

To compute equations of (level 1) Shimura curves we can use the same
basic method as in the previous section using discriminant matrices.

Algorithm 5.23. To calculate a Shimura curve C with reduced discriminant
matrix S = (¢ ;) do the following:

a) Find a set of discriminants M = {cy,..., ¢, } representing S such
that H, N H, N H,, =C.
b) Use Lemma 5.19 to compute the nontrivial resultant factor.

This resultant factor together with the defining polynomials of the two as-
sociated Humbert surfaces defines a model for the Shimura curve.

For coprime Humbert discriminants we expect to find one resultant fac-
tor for each discriminant matrix appearing in D(a, b), but occasionally there
is an extra factor which defines a subvariety of H;. This accounts for pos-
sible intersection points on the boundary of the Satake compactification as
well as split CM-points in the intersection of two Shimura curves.

The combinatorial matching is far simpler for level 1 than for level 2
since the discriminant matrices are in bijection with candidate resultant fac-
tors. But since level 1 Humbert polynomials have larger degrees than their
level 2 counterparts, the resultants have higher degrees and become more
difficult to factorize. Another disadvantage of working in level 1 is that to
find Shimura curves corresponding to (£ % ) we cannot intersect two com-
ponents of the same discriminant. This means we have to consider inter-

sections involving larger discriminants. Nonetheless we have been able to
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compute a few small examples [28] arising from intersections of Humbert
surfaces of discriminants bounded by 13.

We conclude this chapter by listing below the resultant factors for some
simple Shimura curves X (D, N)/W, and compare the genus of each with
that of the covering Shimura curve X (D, N).

The Shimura curve of discriminant 6 corresponding to (51 ):

1885 - 53382 .
The Shimura curve of discriminant 10 corresponding to (5 2):
5625000085 41250000s55359 + 75625008382 — 720355 .

The Shimura curve of discriminant 14 corresponding to (5 32 ):

199604524888621311356299901184s¢ — 1553654006186890047596510860805 5352
+8057006191307951003736792000s 35352 — 139678509104374511048148000s3 55
+4117443582789992448000000000s5 53 + 11337574611410079340255920000s3 5355
+161118164342947138371702000s3 5355 — 1059755208562262016000000000052 5557
+205136470611585502049655000052 5355 — 11866388456774472825865500052 5255
+12069811765297234928306255%53° + 6340309142869094400000000000s5 5553
—1519400499994005228422550000355352+5297585770623099734471250055sgs2
—957921568674383724468750s5s355" + 2123366400000000000000000053°
—1105887431609856000000000000s5 53 + 12129732195227727478256250055 55
—8945683625858963313750000s3 55 + 19006380330840946914062553 552 .

Shimura curve of discriminant 15 corresponding to (5 % ):
256289062500000000s; — 2796398437500000000s3 5355
1+9209367773437500000s2 5355 — 158518615140000000053 55
—9725853339843750000s55555 + 73592501886000000055535
—187500000000000000s5s5 + 2734234324462890625s§s;1
—43813346998500000s355 + 53139249101030455°

The genus of the four curves X (D, N) and the quotients we calculated
are listed in the table below, where we write W = {w, : d|N} for the
Atkin-Lehner group.

Shimura curve X (D, N) | X(6,1) | X(10,1) | X(14,1) | X(15,1)

Genus [1, Table A.8] 0 0 1 1
Discriminant marix | (11) | (30 | (34) | (35

Quotient group W, W W (wi4) W

Genus of X (D, N)/W, 0 0 0 0

If we know the genus of X (D, N), the genus of X (D, N)/Wj can be
calculated from the Riemann-Hurwitz formula by determining the number
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of points fixed by the nontrivial Atkin-Lehner involutions. Fixed point for-
mulae are known for these involutions (see Ogg [62]) and we have verified
that our computed curves have the correct genus.



CHAPTER 6

Parametrizing Humbert Surfaces

In this chapter we search for rational points on Humbert surfaces, and
where possible find rational parametrizations.

Of the various models of Humbert surfaces we have at our disposal, the
Satake level 2 components appear to be the simplest. Our main approach
will be to find level 2 points which map down to rational points on the level
1 Humbert surface via the map (x; : ... : zg) — (S2 : S3 : S5 : Sg) where
sp =Y.k sy =0and s3 = 4s,.

In Section 6.3 we look for modular abelian surfaces occuring as points
on our Humbert surface models. We then determine the ‘congruence primes’
p for which a modular Jacobian surface splits over I,,, using Humbert sur-
face equations.

6.1. The Satake sextic

Recall the symmetric Satake coordinate functions x4, . . ., z¢ of van der
Geer’s model of X [2] in P as defined in §3.4.2. In this section we determine
the field of definition of the Satake coordinate functions x; and make note
of other useful properties related to its defining polynomial.

Lemma 6.1. The x; are roots of the Satake sextic polynomial

1 1 1 1 1 1 1 1
X6 — 582)(4 — gSgXS + 1—65§X2 + (68253 — 585)X+ (%S% + ES? — 656) .
In other words, the field of definition Q(x1, ..., xg) for the sextuple (x1 :
.1 xg) is a splitting field of the above sextic polynomial over the field of

definition Q(sa, s3, S5, S¢) for the s;.

Proof. First of all, [[(X — ;) = X® — 01 X®° + 02 X* — ... + 06 where 0;
are the elementary symmetric functions in the z;. These can be expressed
in terms of symmetric power sums using the Newton-Girard relations:

m

Z(-l)ZUiSm_Z‘ =0.

i=0
Eliminating s; and s, using the Satake relations s; = 0 and s, = is%
produces the desired coefficients. 0

82
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Using our knowledge of the symmetry groups of the level 2 Humbert
components (Lemma 3.21), we are able to determine the Galois group of
the Satake sextic polynomial given a point on a Humbert surface.

Proposition 6.2. Suppose (s2, s3, S5, Se) is a rational point on the Humbert
surface with discriminant A. Let S(X) € Q[X] be the Satake sextic poly-
nomial having roots x; in a splitting field, indexed by {1,...,6}. We have
the following:

a) If A = 0 (mod 4) then S(X) has a quadratic factor in Q[X] and
has Galois group contained in Sy X Sy which preserves the partition
of roots {1,2} U {3,4,5,6}.

b) If A =5 (mod 8) then S(X) has a linear factor in Q| X| and has
Galois group contained in Sy preserving {1} U {2,3,4,5,6}.

¢) If A =1 (mod 8) then S(X) is irreducible over Q and has Galois
group contained in (S5 x S3) x Cy which preserves the partition
{1,2,3} U {4,5,6} (the Cy interchanges the two subsets). There is
a quadratic extension K = Q(x1 4+ x9 + x3) of Q for which S(X)
decomposes as the product of two cubics in K| X]|.

Proof. The Galois groups are precisely the fixed groups of the level 2 sym-
metric Satake components of Hx mentioned in Lemma 3.21. Suppose
A # 1 (mod 8), then the Galois group of splitting field Q(xy, ..., xg) is
Sm X Sg_m for m = 1 or 2. In each case, the subfield fixed by the normal
subgroup S,,, x {1} corresponds to Q(x,,1,...,zs) and is Galois over Q.
It follows that [[(X — zpy1) -+ (X — zg) is in Q[X] which shows that
S(X) decomposes into the product of two polynomials of degrees 6 — m
and m. For the case A = 1 (mod 8), the Galois group of Q(z1,...,xg)
contains S3 x S3 as a normal subgroup of index 2. Thus the fixed field
K = Q(x1,...,76)%*% is a quadratic extension of Q. It is easily seen
from the relation s; = O that p; = z; + 22 + 23 € K \ Q and p? € Q,
hence K = Q(p;). The factorization argument from the previous case can

be applied to S(X) using K instead of Q and with m = 3. O
Recall Thomae’s formula (Theorem 3.25) which we can rewrite as
0 if | S| # 3,
(6.3)  Olnsev]' = (—1)SIT es. (i — a;8)~"  if S| =3,
JEB\S

using the facts that (So U)o U = Sand [(SoU)NU| =3 —-|SNU|.
By permuting the six roots, we have an Sg-action 7 on the ten even theta
fourth powers given explicitly by

T, : Onsov)* — Ono(s)ov]*
where 0(5) = {o(z) : = € S}.
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Proposition 6.4. The representation T obtained from the Sg action on the
six roots equals the representation

o ¢ 0(ijk)(mn) — 0(0(i), 0(j), o (k))(0(£), o), o (n)
defined in §3.4.1.

Proof. Write B = {4, j,k,{,m,n}. Recall from Lemma 3.24 that if i <
Jj < kand ¢ < m < n then we have the identity

0(ijk)(lmn) = e[n{i,j,k}oU]4 = e[ﬁ{é,m,n}oU]4 :
It immediately follows that the representations are identical. U

Proposition 6.5. Suppose y> = f(z) is a genus 2 curve over Q. Let Gy and
G's be the Galois groups of f and the Satake sextic polynomial respectively.
Then there is an isomorphism G ¢ = G g induced via an outer automorphism

0f56.

Proof. We need only consider the generic case Gy = Sg. By Proposition
6.4 the Galois action on the roots of f(x) is equivalent to the Sg-action on
the ¢;,. From Theorem 3.18, a change of basis to the Satake x; coordinates
twists the action by an outer automorphism of Sg. U

6.2. Rational parametrizations

In this section we find rational parametrizations of A%(2)/T'a for A # 1
(mod 8) where I'A is the fixed group of a level 2 Humbert component. In
the cases where the Humbert surfaces are rational, these aid in the construc-
tion of a rational parametrization. The Rosenhain model M5(2) is rational
and we shall parametrize Rosenhain Humbert components for small dis-
criminants A = 1 (mod 8) in My(2)/S3 where S; acts the Rosenhain
invariants by permutations.

Definition 6.6. A variety is rational if it is birationally equivalent to P"
(equivalently A") for some n.

In §3.4.3 we found the fixed groups for the Humbert components in
the symmetric Satake model X [2]. Let I'a be the fixed group for a Hum-
bert component of discriminant A. Then all the Humbert components of
discriminant A project onto a single component H} via the quotient map
X[2] — X]2]/Ta. Note that X[2]/I'a consists of points invariant under
the Galois action of I'A hence the sextic polynomials have the factorization
patterns as in Proposition 6.2.

For A # 1 (mod 8) we determined the I"x-invariant polynomial rings.
We now show that these varieties are rational.
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Proposition 6.7. Let A # 1 (mod 8) be a discriminant of a Humbert sur-
face. The weighted homogeneous coordinate ring of X[2] /T a is isomorphic

to Clp, $2, 3, 55 if A = 5 (mod 8), or Clpy, pa, s2, s3] if A =0 (mod 4).
Proof. See Lemma 3.22 and Remark 3.23. O

The dense open subset given by p; # 0 is isomorphic to A®, hence we
deduce the following.

Corollary 6.8. The spaces X [2]/T"a are rational when A # 1 (mod 8).

Remark 6.9. For A = 1 (mod 8) the fixed group ' is isomorphic to
(S5 x S3) x Cs. From Lemma 3.22, the ring of (S5 x S3)-invariants is
Clp1, p2, p3, S2, 3, and on the affine piece p; = 1 we find that p3 can be
eliminated, hence X [2]/(S3 x S3) is rational. By contrast, the ring of I'a-
invariants is far more complicated, having seven generators and six rela-
tions. With some effort, one can show that the coordinate ring of X[2]/T'a
is rational. We shall not make use of this model here.

Now that we know the coordinate rings explicitly, the map down to
Al = Proj (Clsa, s3, 5, Sg|) can be realized. In particular a parametrization
of Hy C X|[2]/T'a gives rise to a two dimensional family of points on the
level 1 Humbert surface Hy. We now look at the cases A = 5 (mod 8)
and A =0 (mod 4) in more detail.

6.2.1. A =5 (mod 8). The projection map X [2]/I'a — A} is defined
by
(p1:82:83:85) — (S9:83:85: 86),
hence sg can be written as a polynomial f(p, sq, S3, 55) of weighted degree
six. It follows from Proposition 6.2 that the Galois group of the Satake
sextic S(X) = [J(X — x;) is contained in a copy of S5 which fixes p; =
x1 € Q. By writing S(p;) = 0 as a function of sg we determine f:

f(p1, 52,83, 85) = 6P?—332P11—233P?+%5317%4—(3233—235)P1+(11—63%+%3:23) :
We shall work with the affine patch p; = 1.

Example 6.10. (A = 5). The Humbert surface equation H} in X[2]/T;5 is
given by s, = 3p?. On the affine patch p; = 1 we have s, = 3 and we
obtain the two-variable parametrization

6 1 33

=3 = =0 = f(1,3,a,b) = —=b+ —a® —.

So , 53 a, Ss y 56 f(? , ) 5 +3a +a+16
Example 6.11. (A = 13). We use the Humbert equation for discriminant

13 from the table on page 50. Set p; = 1 and consider s, as a coefficient.
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Then H{,(s9,s3,55) € Q(s2)[s3, s5] defines a conic over Q(sy) which can
be parametrized by

_ f3(82,u) - f5(s2,u)
83 = ;S5 =
d(sg,u) d(sg,u)
where u is a free parameter and
f3(s2,u) = 4608u* + (—204s3 — 30005, + 17748)u
+ 5h=(s2 — 3)(s3 + 1865, — 759)?,
f5(s2,u) = 240 (Tsy + 3) u® — 325 (s5 + 9)(s2 — ) (52 + 2)u
+ 5055 (52 — 9) (52 — 3)(s3 + 18652 — 759)?,
d(s2,u) = (55 — 75) (64u — s5 + 5dsy — 267) .

The same approach works for A = 21: on the affine patch p; = 1, the
Humbert component is a singular genus 0 curve over Q(sz).

6.2.2. A =0 (mod 4). The projection map X [2]/I'n — Aj is defined

by
(pr:p2:so:s3) — (820831851 86),

hence s5, s¢ can be written as polynomials in py, ps, s2, S3. By Proposition
6.2, the Satake sextic factorizes as S(X) = (X2 + X + ¢)T(X) where
T is a monic quartic in Q[X] and ¢; = —p; and ¢y = (p? — p2)/2. By using
Lemma 6.1 and comparing coefficients, we find the following expressions
for s5 and sg:

S5 = —%(1229? - 24]9?]?2 + 8]7?33 - 36171]73 + 24p1pass — 3]0183
+ 8p2ss — 85253),
S6 = 2= (36p — 180pips + 36pysa + 48p;s3 + 108p7p; — 9piss
— 48p1pass + 36p3 — 36p3sy + Ipass + 355 + 16s3).
These equations determine the projection map X [2]/I'a — Aj explicitly.
Example 6.12. (A = 8). The Humbert equation for H} is
4s9 — 9p; — 6py = 0.

To parametrize Hg, fix a value for p; and let p, be free. This determines s,.
Let s3 be the second free variable. Then we can compute s5 and sg from the
formulae above.

Example 6.13. (A = 12). The Humbert equation for H}, is
1652 + (—168p> — 48ps)ss — 128p1s5 — 111p* + 684p2ps + 36p2 = 0.
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As a polynomial in sj it has degree 1. Thus if we fix p; and let p, be free
we can determine s3. Take s to be the second free variable, then the values
for s5 and sg follow from the formulae above.

6.2.3. Rosenhain parametrizations. We shall parametrize the Rosen-
hain models for Humbert surfaces of discriminant A = 1 (mod 8). Recall
that a genus 2 curve has a model of the form y? = z(zx — 1)(z — ey)(x —
es)(x — e3) called a Rosenhain model.

Lemma 6.14. There is a level 2 Rosenhain component Ha (e, es,e3) = 0
having symmetry group (S3 x S3) x Cy < Sg which preserves the partition
of roots R = {0,1,00} U{ey, eq,€3}.

Proof. We know from Propositions 6.2 and 6.5 that the Galois action on
the six roots R = {u;} is isomorphic to (S3 x S3) x Cy acting on the
Satake z; preserving the partition {z1, z9, 23} U {x4, x5, 26} via an outer
automorphism of Sg. Since Sg has only one subgroup of order 72 up to
conjugation, the representations are conjugate. Thus the Galois action on
R preserves the partition {u, us, us3} U {uy, us, ug} for some ordering of
roots. There are ten Humbert components which are in bijection with the
ten partitions of this type; exactly one of them satisfies the conditions of the
lemma. U

For our parametrizations we shall use the Rosenhain component appearing
in the lemma above.

We now compute a Humbert component in Mo(2)/S3 where Ss is the
permutation group for the Rosenhain invariants. Let vy, v9, v3 be the ele-
mentary symmetric functions in eq, €5, e3. Then we can write Ha (e, €2, €3)
more simply as Ha (v1, v, v3) and the Rosenhain model becomes

y? = x(x — 1)(2® — v12° + vox — v3).

One of the advantages of this model is that it has good reduction properties
(see [29]) and consequently the heights of the coefficients, the Rosenhain
invariants and the v; are small in comparison to other models. The obvious
disadvantage is that the rational points produced give rise to hyperelliptic
polynomials with a rather small Galois group, namely the Galois group of
the cubic factor whereas we know that generically the Galois group has
order |(S3 x S3) x Cy| = 72.

Now for an example. We have Rosenhain models for discriminants 9
and 17 at our disposal. In terms of the v;, the Rosenhain component for
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discriminant 9 is
161)1113 Svivavg — 1281}11)3 + vivs + 32vivivs + 1121}11)2113 - 1281)17)3
+ 3840103 + dvivdvg — 96vSvIvs — 3203v3us + 12803 vevs — 6403 vgvs
- 2961111)3 51203 1)3 Svivs + 32viviuz — 3207 v21)3 96vvivs
— 37000303 + 211203003 — 1088vivyvs — 17920305 4 2208viv3 4 2560303
+ 1121111)21)3 — 641)11)21)3 + 1281)11)21)3 — 10881}11121)3 + 21121}11;21)3 + 2048v1v21)§
— 6412010905 + 2048v1v2v5 — 10240105 + 42560105 — 3232005 + 1605
— 128v5v3 + 384v5v3 — 128v5v3 — 5120503 — 296v3v3 + 256v5v5 + 2208v5v5
— 17920303 — 32320504 + 42560503 — 1024v9v2 + 153605 — 234305 + 153605 .

As an affine curve over Q(vy), the equation defines a (singular) genus 0
curve, thus geometrically the surface is rationally parametrizable.

The equation for discriminant 17 is too big to display here (see [28]),
not to mention too large for us to complete a similar genus calculation. But
given a height bound we are able to compute a large number points which
suggests that it is rational.

6.3. Modular abelian surfaces

Modular abelian surfaces provide examples of rational points on Hum-
bert surfaces. In this section we attempt to find such points on our Humbert
surface models.

For the remainder of of this chapter, RM will refer to real multiplication
by an order in a real quadratic field, that is to say that the discriminant A is
nonsquare.

Let A be an abelian surface defined over a number field £ C C. An
endomorphism « € End(A) is said to be defined over k when its analytic
representation p, : C? — C? is k-linear. Write Endy(A) for the set of such
endomorphisms.

We are interested in finding abelian surfaces A defined over (Q with RM
where End(A) = Endg(A). These objects are modular in the following
sense.

Theorem 6.15. (Generalized Shimura-Taniyama Conjecture) Any abelian

surface over Q with RM defined over Q is modular, that is, isogenous to a
factor of Jo(N) = Jac(Xo(N)) for some N.

The result follows from Serre’s conjecture [72], the proof of which was only
recently completed by Khare and Wintenberger ([45], [46]).
We make use of a fact about the Galois representation on the 2-torsion.

Proposition 6.16. ([85, Corollary 4.3.4]) Let k be a number field. Let F
be a real quadratic field with ring of integers O, and let A be an abelian
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surface over k with principal polarization defined over k and an embed-
ding v : O — Endj(A) into the subring of symmetric endomorphisms
defined over k. Let ps be the Galois representation on A[2], and write
G = po(Gal(k/k)). Then

a) if 2 is inert in F then G — As,

b) if 2 is split in F then G — S3 X S3,

c) if 2 is ramified in F then there is an exact sequence 1 — H — G —

K — 1with H — (Z/27)? and K — Ss.

If 2 is ramified in F', Bending [6] has shown that G <— S5 x Sj.

Corollary 6.17. Suppose A is a principally polarized abelian surface over
Q with RM by an order of discrimimant A, also defined over Q. Let G
denote the Galois group of the Satake sextic. Then

a) if A =5 (mod 8) then G — A5 < S5,

b) if A =1 (mod 8) then G — S35 x S3 < (S3 x S3) x Cs,

¢) if A=0 (mod 4) then G — Sy X Sy
where the groups act on the Satake x; as detailed in Proposition 6.2.

Proof. The splitting behaviour of 2 is governed by quadratic reciprocity.
The rest follows the previous result and Proposition 6.2. U

The corollary gives us a necessary condition for an RM abelian surface
to be modular. In his thesis John Wilson [85, Theorem 4.4.3] showed that
this condition is sufficient in the case A = 5. We conjecture that it is also
sufficient for odd discriminants:

Conjecture 6.18. Let (A, G, A) be as in the corollary above with A being
odd. If we have

As when A =5 (mod 8),
G —
S3xS3 when A=1 (mod 8)

then A has its RM defined over Q.

For discriminants A = 0 (mod 4) the analogous statement is false:

Example 6.19. The point (A, A2, A\3) = (—1/3,—1/6,7/6) lies on the
Rosenhain model of Hg. Using van Wamelen’s Magma code we can com-
pute the analytic Jacobian of y? = x(x —1)(z — \;)(x — X2)(z — \3) as well
as generators of its endomorphism ring to arbitrary precision. By examin-
ing the complex entries of the 2 x 2 matrices we are able to detect when the
entries are rational numbers using continued fractions. In this example we
find the v/2 endomorphism is defined over Q(+/2). Another example is the
point (A, A, A3) = (2,49/22,25/11) on H)y; the /3 endomorphism can
only be defined over fields containing Q(\/ﬁ) Both these moduli points
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have rational 2-torsion hence the Galois group of the Satake sextic is trivial,
yet neither has endomorphism ring defined over Q.

In his PhD thesis [85], John Wilson constructed a model for Hs in
M5(2) and rationally parametrized the modular points. We now attempt
to find (conjecturally) modular parametrizations of Humbert surfaces using
our models.

6.3.1. A =5 (mod 8). In this case there is a particularly simple crite-
rion for a moduli point (sz, s3, S5, S) to be modular (conjecturally modular
if A # 5) in terms of the Satake sextic polynomial. We know S(X) =
(X — x;)T(X) where z; € Q and the Galois group of 7'(X) is contained
in As. Thus the discriminant of 7" is a square in Q. We will consider the
situation where x; # 0. Without loss of generality we take 1 = 1 be the
rational root of S(X).

Example 6.20. (A = 5). As before, we work in the affine patch x; =
1. When we substitute (Hj)1): so = 3z7 = 3 into the discriminant of
S(X)/(X — 1) we get a polynomial in the two remaining variables

5 3 27 306 .2 3 177.2 |, 63 27
(85 — 7s3) (535 + (5583 — §52)85 + (=285 — 55555 + 2553 + 155)55
594 | 8113 4 212 9
+ 53+30 3t 3093+ %5 +803)

which we want to be a nonzero square 3. This defines an elliptic curve over
Q(s3) with distinguished rational point y = 0, s5 = 233. Rational points on
this elliptic surface produce the desired moduli points.

Example 6.21. (A = 13). We use the parametrization from Section 6.2.1.
The discriminant of 7°(X') is a polynomial in Q[s, u|. Finding modular
points reduces to finding values for so, v such that the squarefree part of the
discriminant polonynomial is a rational square. We discover that modular
points must satisfy
= —3(s2 — 3)Q(s2,u)

where () is an irreducible quartic polynomial in u with coefficients in Q[s,].
This is a genus 1 curve over Q[s,]. Finding points from scratch is near im-
possible as they have extremely large height. But if we are given a rational
point, we can restrict to the genus 1 curve over QQ which is now an ellip-
tic curve and then we have elliptic curve machinery at our disposal to find
further points.

6.3.2. A =1 (mod 8). In this case we only have Rosenhain parame-
trizations from §6.2.3 to work with. The Galois group of the hyperelliptic
polynomial x(x — 1)(2® — v12? + vz — v3) is contained in S3 which acts by
preserving the set of Rosenhain invariants {e;, e, €3} and fixing the other
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roots. It follows from Conjecture 6.18 that all such points should have RM
defined over Q and hence be modular.

Example 6.22. The point (v, vs,v3) = (15/2,0,3/2) lies on Hy and de-
fines a hyperelliptic curve over () whose Jacobian has real multiplication
defined over Q. But because the endomorphism algebra is not a real qua-
dratic field, the Jacobian does not satisfy the hypotheses of the generalised
Shimura-Taniyama conjecture. Using Qing Liu’s genus2reduction
program [56] we find that the odd part of the conductor is 243 = 3% which
confirms that the curve is not modular over Q since otherwise the conductor
would have to be square.

6.4. Congruence primes

In this section we use Humbert surfaces to classify the primes p for
which a modular Jacobian surface splits as a product of elliptic curves. This
allows us to ‘predict’ which coefficients of the associated modular form are
in Z. To begin we give the reader a brief account of Eichler-Shimura theory.

6.4.1. Eichler-Shimura theory. Let N > 2 be an integer and Sy(V)
the set of cusp forms of weight 2 for the Hecke subgroup I'o(V). Let f =
> anq™ € Sy(N) be a newform, that is, an eigenfunction for all the Hecke
operators 7T,,, normalized so that f|7,, = a,, f. Then the L-function of f has
an Euler product

L(s, f) = Z a,n = H(l —app® +pi=2e) H(l B app_s)_l

n>1 PIN pIN

Shimura’s construction associates an abelian variety to such a newform.

Theorem 6.23. ([76, Theorem 7.14]) Let f = > a,q™ be a newform of
weight 2 for I'y(N). Let Ky be the subfield of C generated by all the a,,.
Then there exists an abelian subvariety Ay of Jo(N) = Jac(Xo(N)) and
an embedding 6 : K; — End(Ay) @ Q with the following properties:

a) dim(Ay) = [Ky : Q),

b) 0(an) = Tu|a,, the restriction of the Hecke operator T), to Ay,

c) Ay is defined over Q.
The pair (Ay,0) is determined by the first two properties. Moreover, for
every embedding o : Ky — C, the function f7 = aZq" is a normalized
eigenform.

The abelian variety A need not be principally polarizable. It has good
reduction at primes p { N. Eichler-Shimura theory relates the reduction of
Ay over finite fields to Hecke operators.
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Theorem 6.24. ([76, Theorem 7.15]) The L-function of Ay over Q coin-
cides up to a finite number of Euler factors (corresponding to primes of bad
reduction, i.e. p | N) with the product

[Ja=agp—+p=>)~"
For a prime of good reduction p t NN, the local Euler factors determine

the numerator of the zeta function for the reduction A ¢ mod p. The charac-
teristic polynomial of Frobenius is the (Weil) polynomial

[[(x? = agx +p),

o

thus the trace of Frobenius equals the trace of the Hecke operator.

6.4.2. Modular Jacobian surfaces. Let C' be a genus 2 curve over (Q
whose Jacobian is modular of conductor N. This means Jac(C') is isoge-
nous to an Ay where f = ) a,q¢" € S2(IN) is a newform. Also we have
End(A;) ® Q = Ky, a real quadratic field and the a,, € K are algebraic
integers. Let o denote the nontrivial Q-automorphism of K. For good
primes p 1 N, the reduction A ¢ over I, is an abelian surface and has Weil
polynomial

(X? = a,X +p)(X* — a7 X +p) € Z[X].
Question. For which primes is a, € Z?
If a, € Z, the Weil polynomial is (X2 — a,X + p)? which shows that A,
is isogenous over [F,, to &/ x F, where £ is a (CM) elliptic curve over IF,,.

Thus Ay is a point on H,,,2 mod p for some m. This motivates the following
definition.

Definition 6.25. Let Ay be a principally polarizable modular abelian sur-
face over Q with level 1 invariants ss, S3, S5, s¢ € Q. Note that HA(Kf) (s;) =
0. Let B be the set of primes p for which H(s3, s3, S5, 5¢) = 0 (mod p). A
congruence prime for Ay is a prime p ¢ B satisfying

Hyp2(s2, 83,85, 56) =0 (mod p)
for some m > 1.

Remark 6.26. The set 5 consists of the primes dividing N (primes of bad
reduction for Ay) together with {2,3, 5} which are the bad primes for level
1 Humbert models.

Proposition 6.27. (Weil’s Theorem) Let (A, L) be a principally polarized
abelian surface defined over a field k. Then (A, L) is one and only one of
three possibilities:
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a) the polarized Jacobian of a genus 2 curve over k,

b) the product of two polarized elliptic curves over k,

) the restriction of scalars of a polarized elliptic curve E over a qua-
dratic extension K of k. In other words (A, L) is simple over k, but
over K is isomorphic to £ X E? where o is the nontrivial automor-
phism of K over k.

Proof. See [23, Theorem 3.1]. O

Theorem 6.28. Suppose p is a congruence prime for A;. Then the Weil
polynomial of Ay over F, is either (X? — a,X + p)? or X* — a,2 X? + p*.
In the second case, the Weil polynomial over F 2 is (X* — a,2 X + p?)%

Proof. Without loss of generality we can assume A/ is principally polar-
ized. Since p is a prime of good reduction, A 7/, is principally polarized.
By definition, A 7 lies on H,,» for some m, hence splits over Fp. Proposition
6.27 tells us that A ¢ will split over I, or IF 2. The rest follows easily. U

A congruence prime p must satisfy a, € Z or Tr(a,) = 0. When
a, ¢ Z we call p an exceptional prime. They are exceptional in the sense
that amongst the primes dividing H,,,2(s;) the exceptional ones are scarce.

Lemma 6.29. Let A be a QM abelian surface defined over Q and p a prime
of good reduction. Then the reduction AJF, is geometrically isogenous to
the square of elliptic curve.

Proof. Let ¢ = p” be a finite field such that End(A) = Endp, (ﬁ) The

Frobenius endomorphism 7 with respect to I, lies in the center of End(A).
Since A is a QM abelian surface, the center of Endg(Z) equals Z. If 7 € Z

then A is supersingular. If 7 ¢ Z then the center of Enqu(Z) strictly

contains Z, in which case we have Endy, (A) = My (/) by the classification
of endomorphism algebras for abelian surfaces (Example 1.59). We see that
in both cases A is isogenous to the square of an elliptic curve. U

Remark 6.30. From the lemma, it follows that primes p ¢ B dividing any
Hn(s;) are congruence primes.

This helps us to understand why exceptional primes are the exception: con-
gruence primes are points on mod p Humbert intersections A M H,,2 which
are unions of Shimura curves (dimension 1). The exceptional primes corre-
spond to CM-points (dimension 0) on Shimura curves.



CHAPTER 7

Explicit CM-theory in Dimension 2

For a principally polarized abelian surface A with endomorphism ring iso-
morphic to the maximal order Ok in a quartic CM-field K, the Igusa invari-
ants ji(A), ja(A), j3(A) generate an abelian extension of its reflex field. In
this chapter ! we give an explicit description of the Galois action of the class
group of the reflex field on these Igusa values. The description we give is
geometric and it can be expressed by maps between various Siegel modular
varieties. We can explicitly compute this action for ideals of small norm,
allowing us to compute various Igusa class polynomials modulo primes.
Furthermore, we give a theoretical obstruction to a generalization of the
‘isogeny volcano’ algorithm to compute endomorphism rings of abelian
surfaces over finite fields. While seemingly unconnected to CM-theory,
we show that Humbert surfaces can be used to improve the running time of
the CRT-method.

7.1. Introduction

Class field theory describes the abelian extensions of a given number
field K. For K = Q, the Kronecker-Weber theorem tells us that every abe-
lian extension of K is contained in a cyclotomic extension. In 1900, Hilbert
asked for a similar ‘explicit description’ for higher degree number fields.
This not-entirely well-posed problem, known as Hilbert’s 12th problem, is
still largely unsolved.

Besides K = (Q, the answer is only completely known for imaginary
quadratic fields K. In this case, the solution is provided by complex multi-
plication theory [78, Ch. 2]. The techniques used can be generalized to CM-
fields K, i.e., imaginary quadratic extensions of totally real fields. However,
for general CM-fields we do not always get an explicit description of the full
maximal abelian extension. From a computational perspective, the case of
general CM-fields is far less developed than the imaginary quadratic case.

We will focus solely on degree 4 primitive CM-fields K. For such fields,
invariants of principally polarized abelian surfaces (p.p.a.s.) with endomor-
phism ring isomorphic to the maximal order O of K generate a subfield of

1Excluding the final section, this chapter is joint work with Reinier Broker and Kristin
Lauter, undertaken as part of a summer internship at Microsoft Research in 2008.
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the Hilbert class field of the reflex field K¢ of K. The reflex field K¢ of K
is a degree 4 subfield of the normal closure of K and equals K in the case
K is Galois. To explicitly compute the resulting extension, we can compute
an Igusa class polynomial

Py = 11 (X —j1(A)) € QX].

{A p.p.a.s.|End(A)=0k }/=

Here, j; is one of the three Igusa invariants of A. A contrast with the case
of imaginary quadratic fields — where we compute the Hilbert class polyno-
mial — is that the polynomial Pk need not be irreducible over QQ, and it will
typically not have integer coefficients.

There are various methods to explicitly compute the polynomial Px. We
can use complex arithmetic [84], p-adic arithmetic ([22], [12]) for p = 2,3
or finite field arithmetic. However, none of these approaches exploit the
action of Gal(K4(j1(A))/Ke) on the set of principally polarized abelian
surfaces with endomorphism ring Q. The goal of this chapter is to make
this Galois action explicit and give a method to compute it. Our algorithm
to compute the Galois action significantly speeds up the ‘CRT-approach’
[17] to compute an Igusa class polynomial.

Besides speeding up the computation of Igusa class polynomials, our
algorithm gives a method of computing isogenies between abelian surfaces
over finite fields. Computing an isogeny is a basic computational problem
in arithmetic geometry, and we expect that our algorithm can be used in a
variety of contexts, ranging from point counting on Jacobians of curves to
cryptographic protocols.

Our computations naturally lead to the study of the ([, [)-isogeny graph
for abelian surfaces over finite fields. For elliptic curves, the [-isogeny graph
looks like a ‘volcano’ and this observation forms the heart of the algorithm
[50] to compute the endomorphism ring of an elliptic curve over a finite
field. We show that for abelian surfaces, the (I,!)-isogeny graph does not
have a volcano shape. This shows that a straightforward generalization of
the elliptic curve algorithm to abelian surfaces is impossible.

The structure of this chapter is as follows. In Section 7.2 we recall the
basic facts of complex multiplication theory, and in Section 7.3 we give a
‘geometric description’ of the Galois action. Our algorithm to compute this
action is intrinsically linked to Siegel modular functions of higher level.
Section 7.4 gives the definitions and properties of the four Siegel modular
functions that we use. The algorithm to compute the Galois action is de-
tailed in Section 7.5 and we apply it in Section 7.6 where we give a method
to comptute an Igusa class polynomial modulo a prime p. This ‘mod p com-
putation’ is the main improvement to the CRT-algorithm. We illustrate our
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approach with various detailed examples in Section 7.7. Section 7.8 con-
tains the obstruction to the volcano picture for abelian surfaces. The final
Section 7.9 points out some additional improvements to the CRT-algorithm
that rely on knowing equations of Humbert surfaces.

7.2. CM-theory

In this section we recall the basic facts of CM-theory for higher dimen-
sional abelian varieties. Most of the material presented in this section is an
adaptation to our needs of the definitions and proofs of Shimura’s textbook
[77].

7.2.1. CM-fields. A CM-field is a totally imaginary quadratic exten-
sion of a totally real number field. Throughout this chapter, we denote by
K™ the real subfield of a CM-field K. In the simplest case K+ = Q, the
CM-fields are imaginary quadratic fields. We will solely focus on degree 4
fields K in this chapter.

Let K be a fixed quartic CM-field, and let {1, ..., @4} be the embed-
dings of K into the complex numbers C. A CM-type P is a choice of two
embeddings such that we have ® N ® = (). We interpret ® in the natural
way as a map K — C2.

We say that a principally polarized abelian surface A/C has CM by the
maximal order Of if there exists an isomorphism O — End(A). The
CM-type distinguishes these surfaces. More precisely, a surface A has type
& = {1, o} if the analytic representation p, of the endomorphism algebra
End(A) ®z Q satisfies

Pa = P1 ¥ 2.
If @ has the additional property that it is primitive, i.e. it does not equal the
lift of a CM-type of an imaginary quadratic subfield of K, then an abelian
surface that has CM by O of type ® is simple [54, Th. 1.3.6].

An automorphism o of K induces an isomorphism (A4, ®) — (A%, ®7)
of CM abelian surfaces where 7 = {10, p20}. This shows that conjugate
CM-types produce the same sets of isomorphism classes of abelian surfaces.

If L denotes the normal closure of K, then we have

Gal(L/Q) = 7,/27 x 7./27., 7./AZ or Dy

where D, denotes the dihedral group of order 8. The only case where we
have non-primitive CM-types is the biquadratic case. We will restrict our-
selves to the primitive case in this chapter. In the Galois cases there is only
one CM-type up to conjugacy and in the dihedral case there are two distinct
CM-types.

Let (K, ®) be a primitive quartic CM-field where ® is a CM-type for K.
For an O-ideal I, the abelian surface A; = C?/®(I7') is a 2-dimensional
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torus with type ® by [54, Th. 4.1]. This surface need not admit a principal
polarization. The dual variety of A; is given by A; = C2/®(ID}'), where

@;(1 = {SL’ e K | TI'K/Q<£ZIOK) - Z}

is the inverse different and I denotes the complex conjugate of I. If 7 € K
satisfies ®(7) € (iRs¢)? and 7D = I, then the map A; — A; given by

(21, 22) = (p1(T) 21, a(m)22)

is an isomorphism ([77, p. 102—-104]) and A; is principally polarizable. All
principally polarized abelian surfaces with CM by Ok of type ® arise via
this construction.

Let L be the normal closure of K. We extend ® to a CM-type ¢’ of L,
and we define the reflex field

Ko = Q({ZM, o) |z € K})

The CM-type on K induces a CM-type fo = {07 Yk, : o € @'} on the
reflex field K. The field K¢ is a subfield of L of degree 4. In particular,
it equals K in the case K is Galois. If L/Q is dihedral, then K¢ and K
are not isomorphic. However, the two different CM-types yield isomorphic
reflex fields in this case. Furthermore, we have

(K<I>>fq> =K
and the induced CM-type on (K4 ), equals ®.

7.2.2. Igusa invariants. Recall from Section 1.10 that any principally
polarized abelian surface over C is of the form C?/(Z? + Z*7) where 7 is
an element of the Siegel upper half plane

Ho = {7 € M5(C) | 7 symmetric, Im(7) positive definite}.

The moduli space of principally polarized abelian surfaces is 3-dimensional.
Let 71, j2, 73 be coordinates for this space. More precisely, two surfaces
A=A, and A’ = A, are isomorphic if and only if
(71(7), 72(7), 73(7)) = (1 (7), Jo(7"), J3(7"))
holds.
There are various choices that one can make for 71, jo, j3 and there are
different conventions about which choice is the ‘right’ one. We define the

functions as follows (cf. absolute Igusa-Clebsch invariants in Subsection
3.6.2). Let w > 1 be a positive integer and let F»,, be the Siegel Eisenstein

series
Byu(r) = (T +d)™",

c,d
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where the sum ranges over all pairs of symmetric 2 X 2-integer matrices c, d
for which there does not exist m € GLy(Z) satistying ¢ = md. With

—43867

=53 5.7 53 1B~ Euo)

X10

and

B 131 - 593 (
©213.37.53.72.337

we define the Igusa functions 31, jo, j3 as

X12 3% T°E} +2-5°E) — 691E},),

5 E 3 E 2 E 3
:2.35X_(152 i, = 273.33 431(12’ js=270.3 6?12+273_32 431(12'

jl )
10 X10 X10 X10

Alternatively, one can express the Igusa functions in terms of theta null
values, defined in Section 7.4. The (rather unwieldy) formulas for passing
between two descriptions are given by Igusa, see [41, p. 848].

A ‘weak version’ of the main theorem of complex multiplication theory
is that, for a primitive quartic CM-field K, the Igusa invariants of an abelian
variety with CM by O generate an unramified abelian extension of a reflex

field of K. More precisely, we have the following result.

Theorem 7.1. Let K be a primitive quartic CM-field and let ® be a CM-
type for K. Let I be an Ok ideal such that there exists a principal polar-
ization on Ay = C?/®(I7"). Then the field Ks(j1(Ar), ja(Ar), j3(A1)) is
a subfield of the Hilbert class field of K. The polynomial

PK: H (X_]l(A))

{A/Cp.p.a.s| End(A)=Ok } /=

has rational coefficients. The same is true for the minimal polynomials
QK , Rx of the js and js-invariants.

Proof. It is proved in [77, Main Theorem 1, p. 112] that the composite of
Ko with the field of moduli of A; is contained in the Hilbert class field of
Kg. It follows from [75, p. 525] that for primitive quartic CM-fields K,
the field of definition of A; is contained in the field of moduli, thus proving
the first statement. The fact that the polynomials have rational coefficients
follows from the fact that A7 has CM by Ok, for o an automorphism of C.
OJ

We will see in Corollary 7.3 that, for any CM-type ®, there always exists
an Og-ideal I as in the Theorem.
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7.2.3. Galois action of the class group. We define a group €(K) as

{0

where (a, @) = (b, ) if and only if there exists a unit u € K* with b = ua
and § = wua. The multiplication is defined componentwise, and (Ok, 1)
is the neutral element of €(X).

The group €(K') naturally acts on the finite set S( X, ®) of isomorphism
classes of principally polarized abelian surfaces that have CM by Ok of a
given type ®. Indeed, any such surface is given by an ideal / determining
the variety and a ‘®-positive’ element 7 € K giving the principal polariza-
tion. We now put

a a fractional Og-ideal with aa = («) /o
and o € K totally positive =

(a,a) - (I,m) = (al,am)
for (a,a) € €(K). By [77, §14.6], the action of €(K) on S(K,®) is
transitive and free. In particular, we have |€(K)| = |S(K, D)|.
The structure of the group €(K) is best described by the following the-
orem. Denote by CI7(Og+) the narrow class group of O+ and write
(O34 )7 for the group of totally positive units of Of+.

Theorem 7.2. Let K be a primitive quartic CM-field. Then the sequence
L— (Ojcs)* /Nigsics (Of) "5

Is exact.

(a,a)—a N+

C(K) =5 Cl(0kg) =5 ClMH(0Og+) — 1

Proof. The exactness at €(K) and Cl(Ok) is the contents of [77, Prop.
14.5]. It remains to show that the sequence is exact at CIT (O ). To prove
this, we first prove ? that there is a finite prime that is ramified in K/K ™.

Suppose that K/ K™ is unramified at all finite primes. By genus theory,
we then have K = K*(y/n) with n € Z. However, K then has Q(\/n)
as quadratic subfield and K is a biquadratic field. This contradicts our as-
sumption that K is primitive.

As there is a finite prime of K that ramifies in K, the extensions
K/K* and HY(K")/K™ are linearly disjoint. Here, H* denotes the nar-
row Hilbert class field. By Galois theory, we then have

Gal(H(K)/K) - Gal(KH"(K")/K) — Gal(H"(KT)/K™)
which proves the theorem. U

Corollary 7.3. Let K be a primitive quartic CM-field. For any CM-type ®,
there are exactly
IC1(Ox)|

[CIF (O] (O3 )" /Ng i+ (Of)] > 1

2We thank Everett Howe for suggesting this argument.
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isomorphism classes of principally polarized abelian surfaces that have CM

by Ok of type .

Corollary 7.4. Let K be a primitive quartic CM-field. The set S(K) of
isomorphism classes of principally polarized abelian surfaces with CM by
Ok has cardinality

[l if Gal(K/Q) = 7/4Z.
IS = {2|¢<K>| if Gal(K/Q) = D,

Proof. We have that |S(K, ®)| = |€(K)| which is independent of the choice
of CM-type ®. Let n be the number of CM-types (up to conjugacy). The
theorem follows immediately from the equality |S(K)| = n|S(K,®)|. O

Let A be a principally polarized abelian surface that has CM by Ok of
type ®. The Galois group Gal(Kq(j1(A))/Ks) acts in the following way
on the set S(K, ®). With fg the CM-type on K¢ induced by @, we define
Ng : Ko — K by

No(w) = [T el).
pEfD
For an Ok, -ideal I, the Og-ideal Ny (1) is called the typenorm of 1. We
get a natural map m : Cl(Og, ) — €(K) defined by

m(p) = (Nao(p), Niy/0(p))

for degree 1 primes representatives p. The Galois group of K¢ (j1(A))/Ke
is a quotient of Gal(H (K¢)/Ke) = Cl(Ok,), and by [77, §15.2] the in-
duced map

m: Gal(Ka(jn(A))/ Ka) — €(K)

is injective. This describes the Galois action. In Example 7.16 we will see
that the map Cl(Ok, ) — €(K) need not be injective.

We conclude Section 7.2 with the observation that the typenorm can be
defined in a slightly different way as well. If K/Q is Galois with
Gal(K/Q) = (o), then we have Ng(p) = p'+°". If K is not Galois, then
we have Nq;(p) = NL/K(]JOL)

7.3. Computing the CM-action

We maintain our notation from the previous section. Let K be a fixed
primitive quartic CM-field and fix a CM-type ® : K — C2. Let A/C be a
principally polarized abelian surface that has complex multiplication by Oy
of CM-type ®. The condition that K is primitive ensures that A is simple,
i.e., not isogenous to a product of elliptic curves. By Theorem 7.1 the field
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Ke(j1(A), 72(A), j3(A)) that we get by adjoining the Igusa invariants of A
to the reflex field K¢ is a subfield of the Hilbert class field H(Ks) of Kg.
The Artin map induces an isomorphism

Gal(H(Ks)/Ks) — Cl(Ok,)

between the Galois group of the extension H(Kg)/Kge and the class group
of the maximal order of K. The resulting action of Cl(Og, ) on the set of
all principally polarized abelian surfaces that have CM by Ok of type ® is
given by the typenorm map m introduced in Section 7.2.

Let I be a O, -ideal of norm /. We assume for simplicity that [ is prime.
We have m(I) = (No(I),l) = (J,1) € €(K), where J is an Ok-ideal of
norm /2.

Lemma 7.5. Let I be an O -ideal of prime norm [ with typenorm Ng(I) =
J. Then the O-ideal J divides (1) C Ok.

Proof. This is clear if K/Q is Galois. Indeed, in this case / and all its
Galois conjugates divide (1) as Of-ideal.

If the normal closure L/K has Galois group Dy, then the ideal J is
given by

J - NL/K(IOL)

Since the splitting of [ in K¢ determines the splitting of [ in /, a case-by-
case check gives the lemma. We refer to [25, p. 38] for a list of all possible
decompositions. O

For an Ok-ideal M, we define the ‘M -torsion’ of the abelian surface A by
AM]={P € A(C) |Ya € M : a(P) = 0}.

We assume here that we have fixed an isomorphism End(A4) — O, mean-
ing that M is an End(A)-ideal as well. If M is generated by an integer n,
then A[M] equals the n-torsion A[n].

Lemma 7.5 tells us that group A[J] is a 2-dimensional subspace of the
[-torsion A[l] of A. The polarization of A induces a symplectic form called
the Weil pairing on All], and A[l] is a symplectic vector space of dimension
4 over the finite field F,.

Lemma 7.6. Let A be a p.p.a.s. and let R be a proper subgroup of All].
Then R is the kernel of an isogeny of principally polarized abelian surfaces
0 : A — Bifand only if R = (Z/IZ)? is a maximal isotropic subgroup
with respect to the Weil pairing. Such a ¢ is called an (1, 1)-isogeny.

Proof. See Milne [S8, Proposition 16.8]. O

By CM-theory, A[J] is isotropic with respect to the Weil pairing and hence
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the map
A — AJALJ]
is an (I, 1)-isogeny.
The moduli space of all pairs (S, G), with S a principally polarized

abelian surface over C and G a 2-dimensional isotropic subspace of S[l] can
be described by an ideal V' (I) C Q[X4, Y1, Z1, X2, Ys, Z5]. More precisely,

the variety corresponding to V(1) equals the Siegel modular variety YO(Q) (1)
introduced e.g. in [64]. As a complex Riemann surface, we have

Vo2 (1) = T (1) \ He,

r@() = {(i 2) € Spu(Z) | ¢ = 0, mod z}.

If we specialize V'(I) at a point (X1,Y3,Z1) = (ji(A), j2(A), j3(A))
then the resulting ideal V’([) is O-dimensional. The corresponding variety
is a union of points corresponding to the ‘([,[)-isogenous surfaces’. As

with

there are [H : FSQ)(Z)} = (I*—1)/(I — 1) isotropic subspaces of dimension
2 in A[l] by [64, Lemma 6.1], there are exactly (I* —1)/(I — 1) solutions to
the system of equations given by V. By construction, the triple

(1(A/T), 52(A) ), js(A[T))

is one of the solutions. There are [? + [? + [ other solutions, and we will see
in Section 7.6 that for CM-computations it is relatively easy to determine
which of the solutions come from the typenorm of an O -ideal.

Unfortunately, the ideal V' (/) can only be computed for very small .
Indeed, the only case that has been done is [ = 2 (see [16, §10.4.2]) and it
takes roughly 50 Megabytes to store the three generators of V'(1). By [64],
knowing the ideal V(1) for some prime [ implies that we have an equation
for the Humbert surface of discriminant [?>. As we have seen, computing
level 1 Humbert surfaces is a hard problem and we do not expect that much
progress can be made in computing V' ({) for primes [ > 2.

7.4. Smaller functions

The Igusa functions introduced in Section 7.2 are ‘too large’ to be prac-
tical in our computation of the CM-action: we cannot compute an ideal
describing the variety Y?(1) for primes [ > 2. In this section we introduce

smaller functions fi, ..., f; that are more convenient from a computational
perspective.

For z,y € {0,1}?, define the functions 6, ,, : Hy — C by
(7.7) Ory(T) = Z expmi ("(n+)7T(n+ %)+ (n+ L)y).

nez?
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The functions ¢, , are known as the ‘theta null values’ and arise naturally
from the construction of theta functions [39]. The equality

Oy (1) = (=1) ™82, (7)
shows that of the sixteen theta nullvalues only ten of them are non-zero,
namely those for which the integer v := ‘zy is even.

The fourth powers of the functions 60, , are Siegel modular forms of
weight 2 for the congruence subgroup I'(2) C Sp,(Z). The Satake com-
pactification X (2) of the quotient I'(2)\ H> has a natural structure of a pro-
jective variety, and the fourth powers 9;1;,1, define an embedding of X (2) into
projective space. ‘

Theorem 7.8. Let Ms(I'(2)) denote the C-vector space of all Siegel mod-
ular forms of weight 2 for the group I'(2). Then the following holds: the
space Ms(T'(2)) is 5-dimensional and is spanned by the ten modular forms
Qi,y. Furthermore, the map X (2) — P? defined by the functions 9§’y is an
embedding. The image is the quartic threefold in P* defined by

uy —4uy =0

with uy, = Z Qif“y.

w?y

Proof. See [79, Theorem 5.2]. ]

It is well known that we have an inclusion

C(jlaj27j3) C (C(efc,y/e;l’,y’)
where we use the convention that we consider all quotients of theta fourth
powers. Indeed, the formulas that many people use to evaluate Igusa func-
tions [41, p. 848] readily express 71, j2,J3 in terms of 9;1@. The func-
tions 0, , /67, . are rational Siegel modular functions of level 2. Whereas a
value (j1(7), j2(7), j3(7)) depends only on the Sp,(Z)-equivalence class of
T € Hy, avalue (0 ,(7)/07 ,,(T))a 4y depends on the I'(2)-equivalence
class of 7. Since the affine points of I'(2)\'Hy C X (2) correspond to iso-
morphism classes of triples (A, (P, ())) consisting of a principally polarized
2-dimensional abelian variety A together with a basis P, () of the 2-torsion,
the functions 9;{@/ / 9;‘;,’y, not only depend on the abelian variety in ques-
tion but also on an ordering of its 2-torsion. For every isomorphism class
Sp,(Z)T of abelian varieties, there are [Sp,(Z) : I'(2)] = 720 values for the
tuple (6, ,(7)/03 ,/(T))z.ar .- The functions 6, /67, , are ‘smaller” than
the Igusa functions in the sense that their Fourier coefficients are smaller.
A natural idea is to get even smaller functions by considering the quotients
0..4/0. ,» themselves instead of their fourth powers.
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We define the four functions f1, fo, f3, f1 : Ha — C by

J1="000,00 Jfo="000,010 J[3="000),010 Ja=00,0),0,1)-

We stress that the particular choice of the ‘theta constants’ is rather arbitrary,
our only requirement is that we define four different functions. The three
quotients f1/f4, f2/ fa, f3/ fa are rational Siegel modular functions.

Theorem 7.9. We have an inclusion C(jy, j2, j3) € C(f1, fo, f3, f1). Fur-
thermore, the quotients fi/f, f2/ f1, f3/ fa are invariant under the sub-
group T'(8).

Proof. Five linear relations between the 9;‘;@ can be found explicitly us-
ing Proposition 3.17. The vector space M,(I'(2)) can be spanned by the
set { fi,... fi,g*} where g = 691),(0,0)- The degree four relation in Theo-
rem 7.8, together with the five linear relations yield that ¢g* satisfies a degree
four polynomial P over L = C(fi, fa, f3, f4). The polynomial P factors

over L as a product of the two irreducible quadratic polynomials

P P =T = (fi = fy+ fs = fOT + (fL f3 £ 510"

By looking at the Fourier expansions of fi, ..., f; and g, we see that g* only
satisfies the polynomial P_. Hence, the extension L(g*)/L is quadratic and
generated by a root of P_.

For each of the two choices of a root of P_, the other five fourth powers
of theta functions will be uniquely determined. Indeed, the fourth powers
are functions on the space M5(I'(2)) and this space is 5-dimensional by
Theorem 7.8. This means that we get a priori two Igusa triples (j1, jo, J3)
for every tuple (f1, fo, f3, f1). However, a close inspection of the formulas
expressing the Igusa functions in terms of theta fourth powers yields that
these Igusa triples coincide. Hence, the triple (ji, jo, j3) does not depend
on a choice of P_. This proves the first statement in the theorem.

The second statement follows immediately from a result of Igusa. In
[39, p. 242], he proves that the field M generated by all theta quotients is in-
variant under a group that contains I'(8). As the field C(f1/ fu, f2/ fa, f3/ f1)
1s a subfield of M, Theorem 7.9 follows. O

As the functions f1/f4, fo/ f4, f3/ f1 are invariant under I'(8), the moduli
interpretation is that they depend on an abelian variety together with a level
8-structure. We let Stab(f) be the stabilizer of f1/f4, fa/f4, f3/fs inside
the symplectic group Sp,(Z). We have inclusions

['(8) C Stab(f) C Sp,(Z)
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and the quotient Y'(f) = Stab(f)\H> has a natural structure of a quasi-
projective variety by the Baily-Borel theorem [3]. However, this variety is
not smooth.

We let

H5 = {7 € H, | 7 is not Sp,(Z)-equivalent to a diagonal matrix }

be the subset of Hy of those 7’s that do not correspond to a product of
elliptic curves. The argument in [70, §5] shows that G = I'(8)/Stab(f)
acts freely on Y'(8). By [60, p. 66], the quotient Y (f)* = Stab(f)\H; is a
smooth variety.

Lemma 7.10. The map Y (f)* — Y (1) induced by the inclusion Stab( f) —
Sp,(Z) has degree 46080.

Proof. We know that Stab(f) has index 43 = 64 in T'(2). The group I'(2)
in turn has index 720 in Sp,(Z) and the lemma follows. O

The proof of Theorem 7.9 readily gives a means of computing an Igusa
triple (j1(7), j2(7), j3(7)) from a tuple (fi(7), ..., fa(7)). Conversely, it is
‘classical’ to compute an element (f(7), ..., fs(7)) given a (finite) Igusa
triple. Our computation follows the formulas for theta functions from the
19th century. We first compute the corresponding Igusa Clebsch invariants
I, 1y, Ig, I1o. After applying the transformation (c.f. Subsection 3.6.2)

So= 314

ss= 3/2(Io Ly — 315)

s5= 5/12s953 + 3% - 511
s6=27/1613 +1/652 + 36 /22, 11,

we compute the roots x1, . . ., x4 of the Satake sextic polynomial
1 1 1 1 1 1 1 1
XG — §SQX4 — 583X3 + 1_653)(2 + (68283 - 585>X+ (%Sg + 1—85?2) - 686)

with coefficients in Q(so, 53, S5, 56). One choice for f}!, fo, f4, fi is given
by (c.f. formulae for the ¢5, ¢4, ts, t9 in the proof of Theorem 3.18):

Finally, we extract fourth roots to find values for (fi(7), ..., fs(7)). There
are 720 - 64 = 46080 possible values for this tuple.
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7.5. The CM-action and level structure

We let Stab( f) be the stabilizer of the three quotients f1/ fy, fo/ fa, f3/ fa
defined in Section 7.4. By Theorem 7.9, we have I'(8) C Stab(f). For a
prime [ > 2, we now define

Y (f;1)" = (Stab(f) N TS5 (1))\H3

which we view as an equality of Riemann surfaces. By the Baily-Borel
theorem, the space Y (f;[)* has a natural structure of a variety. Since we
restricted to HI;, the variety is now affine. Just like in the case [ = 1 from
the previous section, Y (f;1)* is smooth.

The moduli interpretation of Y (f;)* is the following. Points are iso-
morphism classes of triples (S, G, L), where S is a Jacobian of a genus
2 curve over the complex numbers, GG is a 2-dimensional isotropic sub-
space of S[l] and L is a level 8-structure. The notion of isomorphism is that
(S,G, L) and (S’,G', L") are isomorphic if and only if there is an isomor-
phism of principally polarized abelian surfaces ¢ : S — S’ that satisfies
¢(G) =G and p(L) = L'

Lemma 7.11. The map Y (f;1)* — Y (f)* induced by the inclusion map
(Stab( f) ﬂF(()Q)(l)) — Stab(f) has degree (I* —1)/(l — 1) for primes | > 2.

Proof. This is clear: the choice of a level 8-structure L is independent of
the choice of a subspace of the [-torsion for [ > 2. U

Besides the map Y (f;1)* — Y(f)* from the lemma, we also have a map
Y(f;1)* — Y(f)* given by (S,G, L) — (S/G,L). Indeed, the isogeny
¢ : S — S/G induces an isomorphism S[8] — (S/G)[8] and we have
L' = ¢(L). Itit not hard to see that this map also has degree (I*—1)/(I—1).
Putting all the varieties together, the picture is as follows.

Y(f;0)*
A\
Y(f) Y(f)*
| /|
Y (1) Y(1)
T
A3 A3

The map s sends (S,G, L) € Y(f;1)*to (S,L) € Y(f)* and ¢ is the
map induced by the isogeny S — S/G. This diagram allows us to find all
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the abelian surfaces that are ([, [)-isogenous to a given surface A. Indeed,
we first map the Igusa invariants (j;(A), j2(A), j3(A)) to a point in Y (1),
say given by the Igusa-Clebsch invariants. We then choose (A, L) on Y (f)*
lying over this point. Although there are 46080 choices for L, it does not
matter which one we choose. Above (A, L), there are (I*—1) /(I — 1) points
inY(f;l)"andviathemap ¢ : Y (f;0)* — Y (f)* we map all of those down
to Y'(f)*. Forgetting the level 8-structure now yields (I* —1)/(I — 1) points
in Y(1). If A is simple, i.e., not isogenous to a product of elliptic curves
with the product polarization, we then can transform these into absolute
Igusa invariants.
Assuming we can compute an ideal

V(f? l) C Q[Wth?}/la Z17 W27X27}/27 ZQ]

defining the quasi-projective variety Y (f;[)*, we derive the following algo-
rithm to compute all (I, [)-isogenous abelian surfaces.

Algorithm 7.12. Let F' be an algebraically closed field.

Input. A Jacobian A/F of a genus 2 curve given by its Igusa invariants,
and the ideal V' (f; 1) defining Y (f;1)*.

Output. The Igusa invariants of all principally polarized abelian surfaces
that are (/, [)-isogenous to A.

a) Compute Igusa-Clebsch invariants (I, Iy, Is, I,0) € F'* correspond-
ing to A.

b) Choose an element (fi, fo, f3, f1) € Y (f)* that maps to the point
(1o, 14, Ig, I1p) using the method described at the end of Section 7.4.

¢) Specialize the ideal V' (f;1) in (Wi, X1,Y1,2Zy) = (f1, f2, f3, f4)
and solve the remaining system of equations.

d) For each solution found in the previous step, compute the corre-
sponding point in Y'(1) using the method given in the proof of The-
orem 7.9.

7.5.1. Computing V' (f;[). In this subsection, we give an algorithm to
compute the ideal V'(f;!) needed in Algorithm 7.12. Our approach only
terminates in a reasonable amount of time in the simplest case | = 3.

The Fourier expansion from Section 7.4 can be written in terms of the
individual matrix entries, and with some minor modifications we can repre-
sent it as a power series with integer coefficients. Write 7 = (7} 72 ) € Ha,
then

9(a,b),(c,d)<7-> _ (_1)% Z (_1)mlc+m2dp(2m1+a)2q(2x1+a+2$2+b)2r(2m2+b)2

(w1,22)€Z?
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where p = e2™(m=7)/8 ¢ = 2mim2/8 p — 2m(=T2)/8 and v = ac + bd
which is an even integer for all ten non-zero theta nullvalues. We see that it
is easy to compute Fourier expansions for the Siegel modular forms f;.

One of the (I,)-isogenous surfaces to C?/(Z* + Z* - 7) is the surface
C?/(Z* + Z? - I7), and we want to find a relation between the f;’s and the
functions f;(I7). The expansion for f;(I7) can be constructed easily from
the Fourier expansion of f;(7) by replacing p, ¢, 7 with p', ¢, .

For increasing positive integers d = 2, 3, ..., we do the following. We
compute all homogeneous monomials of degree d in { f;(7), fi(I7)} repre-
sented as truncated power series and then use exact linear algebra to find
linear dependencies between them. The basis of relations will ‘stabilize’ as
the power series precision increases. There are two ways to check experi-
mentally whether we have enough relations: V' (f; ) has the correct dimen-
sion and the projection maps have the correct degrees. Starting with d = 2,
we search for homogeneous relations relations of degree d, then d + 1 and
so on, increasing the degree until we have enough relations.

Using this method we computed the ideal V' (f;3). The (3, 3)-isogeny
relations in V'(f; 3) are given by 85 homogeneous polynomials of degree
six. The whole ideal takes 35 kilobytes to store in a text file. The individual
relations are fairly small, having at most 40 terms. Furthermore, the coef-
ficients are 8-smooth and bounded by 200 in absolute value, which makes
them amenable for computations.

We stress however that we cannot rigorously prove that the ideal V' ( f; 3)
we found is correct. We only have ‘emperical evidence’ that it is correct.

The search for [ = 5 is currently being undertaken using the above
method. The degrees of the relations is at least 8; the number of homoge-
neous monomials is at the limits of computing resources using this method.
This approach is rather simple-minded, and we expect that we need inter-
polation techniques to find the ideal V'(f;5).

Using a 3-dimensional subvariety of P, Carls, Kohel and Lubicz [12]
have found much smaller (3, 3)-isogeny relations using theta constants with
characteristics in 17Z/Z. To our knowledge, this is the only other (3, 3)-
isogeny relation ideal to have been computed up to now.

7.6. The CM-action over finite fields

The theory developed in Sections 7.3—7.6 uses the complex analytic def-
inition of abelian surfaces and the Riemann surfaces YO(Q)(Z) and Y (f;1)*.
We now explain why we can use the results in positive characteristic as
well. Firstly, if we take a prime p that splits completely in K, then by [25,
Theorems 1 and 2] the reduction modulo p of an abelian surface A/ H(Kg)
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with endomorphism ring Oy is ordinary. The reduced surface again has
endomorphism ring Ok.
Furthermore, one can naturally associate an algebraic stack 2lp,(,) to

YO(Q) (1) and prove that the structural morphism 2,y — Spec(Z) is smooth
outside /, see [13, Corollary 6.1.1.]. In a more down-to-earth computa-
tional terminology, this means the moduli interpretation of the ideal V' C
Q[X4, ..., Z,] remains valid when we reduce the elements of V' modulo a
prime p # .

The reduction of Y (f;l)* is slightly more complicated. The map
Y (8]) — Y (f;1)* is finite étale by [44, Theorem A.7.1.1.], where we now
view the affine varieties Y'(f;[)* and Y (8[) as schemes. It is well known
that the Y (V) is smooth over Spec(Z[1/N]) for N > 3, so in particular, the
scheme Y'(f;1)* is smooth over Spec(Z[1/(2l)]). Again, this means that the
moduli interpretation for the ideal V' (f;1) C Q[W4,..., Z5] remains valid
when we reduce the elements of V' ( f; 1) modulo a prime p # 21.

Lemma 7.13. Let | be prime, and let p # 2l be a prime that splits com-
pletely in a primitive CM-field K. Then, on input of the Igusa invariants
of a principally polarized abelian surface A/F, with End(A) = Ok and
the ideal V (f;1) C F,[Wh,..., 2], Algorithm 7.12 computes the Igusa
invariants of all (1,1)-isogenous surfaces.

Proof. Clear from the preceding discussion. U

Fix a primitive quartic CM-field K, and let p # 2 be a prime that splits
completely in the Hilbert class field of the reflex field Kg. In particular, p
splits in K¢ and as it splits in its normal closure L it will split completely
in K as well. Hence, Lemma 7.13 applies. Because p splits completely in
H(Ksy), the Igusa invariants of an abelian surface A/F, with End(A) =
Ok are defined over the prime field F,,.

If we apply Algorithm 7.12 to the point (j;(A), j2(A), j3(A)) and the
ideal V'(f;1), then we get (I* — 1)/(l — 1) triples of Igusa invariants. All
these triples are Igusa invariants of principally polarized abelian surfaces
that have endomorphism algebra K. Some of these triples are defined over
the prime field IF,, and some are not. However, since p splits completely in
the Hilbert class field of K, the Igusa invariants of the surfaces that have
endomorphism ring O are defined over the field IF,,.

Algorithm 7.14.

Input. The Igusa invariants of a simple principally polarized abelian sur-
face A/F, with End(A) = Ok, and the ideal V'(f;]) C F,[W1,..., Zs].
Here, [ is a prime such that there exists a prime ideal in K¢ of norm /.
Furthermore, we assume p # 2I.
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Output. The Igusa invariants of all principally polarized abelian surfaces
A'/F, with End(A’) = Ok that are (I, [)-isogenous to A.
a) Apply Algorithm 7.12to A and V' (f;1). Let S be the set of all Igusa
invariants that are defined over [F,,.
b) For each (j1(A’), ja(A’), j3(A’)) € S, construct a genus 2 curve C'
having these invariants using Mestre’s algorithm ([$7], [11]).
c) Apply the Freeman-Lauter algorithm [21] to test whether Jac(C)
has endomorphism ring Og. Return the Igusa invariants of all the
curves that pass this test.

We can predict beforehand how many triples will be returned by Algo-
rithm 7.14. We compute the prime factorization

(D) =pi - Py’
of (1) in K. Say that we have n < 4 prime ideals p, ..., p, of norm [ in

this factorization, disregarding multiplicity. For each of these ideals p; we
compute the typenorm map m(p;) € €(K). The size of

{m(p1), ..., m(pn)} C C(K).
equals the number of triples computed by Algorithm 7.14.

7.6.1. Igusa class polynomials modulo p. The ‘CRT-algorithm’ to
compute the Igusa class polynomials Pk, Q, Rx € Q[X] of a primitive
quartic CM-field K computes the reductions of these three polynomials
modulo various primes p. For a given prime p that splits completely in the
Hilbert class field of Ky, the method suggested in [17] is to loop over all p?
possible Igusa invariants. For each of the invariants (j;(A’), j2(A’), j3(A’)),
we have to run an ‘endomorphism ring test’ to see if A’ has endomorphism
ring Ok-.

Algorithm 7.14 can be used to dramatically improve this algorithm of
computing Igusa class polynomials modulo p. We compute the class group

Cl(Ok,) = (p1,---,Px)

of the reflex field. Here, we take the generators p; to be of odd prime norm.
For each of the norms N, o(p;) = I;, we compute the ideal V' (f;1;) de-
scribing the Siegel modular variety Y (f;1;)*.

Next, we try random triples of Igusa invariants over I, until we find a
triple (71(A), j2(A), js(A)) corresponding to a surface A with End(A) =
Ok . Analogous to [5], we now apply Algorithm 7.14 to this surface A for
all primes /;. To all new surfaces, we again apply Algorithm 7.14 for all
primes /;. We continue this until we find no new surfaces.

In contrast to the analogous genus 1 algorithm in [5], it is unlikely that
we have found all surfaces with endomorphism ring Of. This is because
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Algorithm 7.14 finds surfaces having the same CM-type as the initial sur-
face A, so in the dihedral case we are missing surfaces which use the sec-
ond CM-type. Even in the cyclic case where there are |€(K')| isomorphism
classes, it is possible that the map

m : Cl(Og,) — €(K)

is not surjective, meaning that we cannot find all surfaces of a given CM-
type. The solution is simple: we compute the cardinality of S(K) using
Corollary 7.4 and if the number of surfaces that we found is less than
|S(K)|, we do a new random search and apply Algorithm 7.14 as before.
Once we have found all surfaces with endomorphism ring O, we simply
expand

P = I1 (X = ji(4)) € F,[X]
{A p.p.a.s.|End(A)=0k }/=
and likewise for () and Ry. The difference with the method from [17]
is that the search space is reduced from O(p?) to O(p*/|m(Cl(Ok,))|), an
improvement by a factor of |m(Cl(Ok,))|-

The main bottleneck in our algorithm is that we have to compute the
ideals V'(f;!) for various primes [. At the moment, we can only do this
empirically in the simplest case [ = 3. If we only use the primes ideal in
Ok, of norm 3 then we typically get small factors of the Igusa class poly-
nomials. We are forced to do more random searches to find the complete
class polynomials.

7.7. Examples and applications

In this section we illustrate our algorithm by computing the Igusa class
polynomials modulo primes p for various CM-fields. We point out the dif-
ferences with the analogous genus 1 computations.

Example 7.15. In the first example we let K = Q[X]/(X*+185X%+8325)
be a cyclic CM-field of degree 4. All CM-types are equivalent in this case,
and the reflex field of K is K itself. The discriminant of /K equals 52 . 373,
and the real quadratic subfield of K is K= = Q(v/37). An easy compu-
tation shows that the narrow class group of K is trivial. In particular, all
ideal classes of K are principally polarizable, and we have

¢(K) = Cl(Ox).

We compute C1(Of) = Z/10Z = (p3), where p3 is a prime lying over
3. The prime ideal p3 has norm 3, and its typenorm Ng(p3) generates a
subgroup of order 5 in Cl(Ok).

The smallest prime that splits in the Hilbert class field of K is p = 271.
We illustrate our algorithm by computing the Igusa class polynomials for
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K modulo this prime. First we do a ‘random search’ to find a principally
polarized abelian surface over [F, with endomorphism ring O in the fol-
lowing way. We factor (p) C Ok into primes B1, B, Lo, B, and compute
a generator 7 of the principal Og-ideal 3,°B,. The element 7 has minimal
polynomial

f=X"4+9X"+331X? 4 2439X + 73441 € Z[X].

If the Jacobian Jac(C') of a hyperelliptic curve C' has endomorphism ring
Ok, then the Frobenius morphism of Jac(C') is a root of either f(X) or
f(—=X). With the factorization

f=X—m)(X —n)(X —n)(X —n) € K[X],
a necessary condition for Jac(C') to have endomorphism ring Ok is
#C(F,) =p+ 1% (11 + 7+ 75+ 7) € {261,283}

and

#Jac(C)(F,) € {f(1), f(—1)} = {71325, 76221}.
We try random values (71, j2, j3) € IE‘I‘E and write down a hyperelliptic curve
C with those Igusa invariants using Mestre’s algorithm ([57], [11]). If C
satisfies the 2 conditions above, then we check whether Jac(C') has endo-
morphism ring O using the algorithm explained in [21]. If it passes this
test, we are done. Otherwise, we select a new random value (j1, J2, J3)-

We find that wy = (133,141,89) is a set of invariants for a surface
A/F, with endomorphism ring Of. We apply Algorithm 7.14 to wy. The
Igusa Clebsch invariants corresponding to wy are [133, 54, 82, 56]. With the
notation from Section 7.4, we have s; = 162, s3 = 106, s5 = 128, s = 30.
The corresponding Satake sextic polynomial

g=X%+190X"+55X°% + 82X” + 18X + 63 € F,[X]

factors over s and we write F 5 = F,(«) where « satisfies a®+2a+265 =
0. We express the six roots of g in terms of o and pick

[ = 147a* + 1470° + 25902 4 34a + 110,
fi = 176a* 4+ 211a° + 14a® + 134a + 190,
f4 =163a* 4+ 930® 4 134a® + 196 + 115,
fi = 226a" + 261a® + 990 + 9o + 27

as values for the fourth powers of our Siegel modular functions. The fourth
roots of (f1, f5, f4, fi) are all defined over FF,10, but not every choice corre-
sponds to the Igusa invariants of A however. We pick fourth roots
(r1, 79,73, 74) such that the polynomial P_ from Section 7.4 vanishes when

evaluated at (7', f1, fo, f3, fa) = (fé; r1,72,73,74). Here, fél = 9?071),(070)
is computed from the Igusa Clebsch invariants. For an arbitrary choice of
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fourth roots for rq, 19, r3 there are two solutions +r, for P_ = 0 which we
can easily identify. Take Fi0 = F,(3) where 30 4+ 36 + 1333° + 103" +
2563 + 743% + 1263 + 6 = 0. We find that the tuple (71, 7,73, 74) given
by

r = 1798° + 6955 + 20357+ 15035+ 298° + 2583* + 18333 + 24052 + 2550 + 226,
ro = 1423 + 10538 + 22737 + 24465 + 723° 4+ 1553* + 2633 + 12962 + 1376 + 23,
r3 = 6367 + 1123% + 13267 4 2446° + 945° + 404* 4 1916% + 26332 + 853 + 70,
rq = 1908° + 4188 + 6267 + 1708° + 1518° + 2405* + 2703° + 5632 + 163 + 257
is a set of invariants for A together with some level 8-structure.

Next we specialize our ideal V(f;3)at (Wl,Xl, v, Z1)=(r1,72,73,T4)
and we solve the remaining system of 85 equations in four unknowns. Let
(ry,rh, r5, ) be the solution where

) =184 4 484°% + 9937 + 833° + 204° 4 2326 + 164> + 22332 + 856 + 108,

The quadruple (7, ry, r4, r}) are invariants of an abelian surface A’ together
with level 8-structure that is (3, 3)-isogenous to A. To map this quadruple
to the Igusa invariants of A" we compute a root of the quadratic polynomial

/ ! ! /
P_(T,ry,ry,r5,1)).

This root is a value for the theta fourth power f£. Since we now know all
theta fourth powers, we can apply the formulas relating theta functions and
Igusa functions from Section 3.6 to find the Igusa triple (238, 10, 158).

In total, we find 16 Igusa triples defined over [F,,. All these triples are
Igusa invariants of surfaces that have endomorphism algebra K. To check
which ones have endomorphism ring Ok, we apply the algorithm from [21].
We find that only the four triples

(253,138, 96), (257,248, 58), (238,10, 158), (140, 159, 219)

are invariants of surfaces with endomorphism ring Ok. The fact that we
find four new sets of invariants should come as no surprise. Indeed, there
are four ideals of norm 3 lying over 3 in Ok and each ideal gives us an
isogenous variety.

As the typenorm map m : Cl(Of) — €(K) is not surjective, we have
to do a second random search to find a ‘new’ abelian surface with endomor-
phism ring Q. We apply our isogeny algorithm to wy, = (74,125, 180) as
before, and we again find four new sets of invariants:

(174,240, 246), (193,85, 15), (268, 256, 143), (75, 263, 182).
In the end we expand the Igusa polynomials
Pr = X0 4+92X% +72X8 +217X7 +98X% 4+ 195X5 + 233X* + 140X3 + 45X2 + 123X + 171,

Qr = X' +232X°% +195X8 +45X7 4+ 7X6 4 195X5 + 173X + 16 X3 + 33X 2 4 247X + 237,
Rr = X104+ 240X° + 57X8 +213X7 + 145X + 130X°+ 243X 4+ 249X3+ 181 X2 4+ 134X + 81
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modulo p = 271.

Example 7.16. In the previous example, all the prime ideals of K lying
over 3 gave rise to an isogenous abelian surface. This phenomenon does
not always occur. Indeed, let K be a primitive quartic CM-field and let
p1,...,p, be the prime ideals of norm 3. If we have a principally polar-
ized abelian surface A/FF, with endomorphism ring Ok, then the number of
(3, 3)-isogenous abelian surfaces with the same endomorphism ring equals
the cardinality of

{m(p1), ..., m(pn)}.
There are examples where this set has less than n elements.

Take the cyclic field K = Q[X]/(X* + 219X? + 10512). The class
group of K is isomorphic to Z/27Z x 7 /27. The prime 3 ramifies in /X, and
we have (3) = p?p2. The primes p;, p, in fact generate Cl(Ox). It is easy
to see that for this field we have

m(p1) = m(p2) € €(K),
so we only find one isogenous surface.

Example 7.17. Our algorithm is not restricted to cyclic CM-fields. In this
example we let K = Q[X]/(X* + 22X? + 73) be a CM-field with Galois
group Dy4. There are two equivalence classes of CM-types. We fix a CM-
type ® : K — C? and let Ky be the reflex field for . We have Ky =
Q[X]/(X*+11X? +12), and K and K¢ have the same Galois closure L.

As the real quadratic subfield K+ = Q(+/3) has narrow class group
Z/2Z, the group €(K) fits in an exact sequence

1 — 2,)27 — ¢(K) — ZJA7 — 7.)27 — 1
and a close inspection yields €(K') = Z/47Z. The prime 3 factors as

(3) = p1pap3

in the reflex field, and we have Cl(Ok,) = Z/4Z = ([p1]). The element
m(p1) € €(K) has order 4, and under the map f : €(K) — Cl(Ok) =
7./AZ the element f(m(p;)) has order 2. We see that even though the ideal
N1k (p1Or) has order 2 in the class group, the typenorm of p; has order 4.

Of the four ideal classes of K, only two ideal classes are principally
polarizable for ®. The other two ideal classes are principally polarizable
for ‘the other’ CM-type. Furthermore, the two principally polarizable ideal
classes each have fwo principal polarizations.

The prime p = 1609 splits completely in the Hilbert class field of Kg.
As in Example 7.15, we do a random search to find that a surface A/F, with
Igusa invariants wy = (1563,789,704) € F} has endomorphism ring Ok
We apply Algorithm 7.14 to this point. As output, we get w, again and two
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new points wy = (1396, 1200, 1520) and wy, = (1350, 1316, 1483). The
fact that we find w, again should come as no surprise since m(p3) € €(K)
is the trivial element. The points w; and w, correspond to p; and po.

As expected we compute that the cycle

= (1563, 789, 704) — (1396, 1200, 1520) % (1276, 1484, 7)

1, (1350, 1316, 1483) 5 wy

has length 4. To find the full Igusa class polynomial modulo p, we have to
do a second random search. The remaining 4 points are (782, 1220, 257),
(1101,490, 1321), (577, 35,471), (1154, 723, 1456).

7.8. Obstruction to isogeny volcanos

For an ordinary elliptic curve E/F, over a finite field, it is nowadays
relatively straightforward to compute the endomorphism ring End(FE) (e.g.
[50]). One first computes the endormorphism algebra K by computing
the trace of the Frobenius morphism 7 of E. If the index [Ox : Z[r]] is
only divisible by ‘small primes’ [, then we can use the [-isogeny graph to
determine the endomorphism ring. We refer to [50] for the details of this
algorithm. The algorithm depends on the fact that the graph of [-isogenies
looks like an ‘volcano’. More precisely, we have the following result.

Lemma 7.18. Let E, £’ /F, be two ordinary elliptic curves whose endomor-
phism rings are isomorphic to the same order O in an imaginary quadratic
field K. Suppose that | # p is a prime such that the index [Of : O] is
divisible by l. Then there are no isogenies of degree | between E and E'.

Proof. This result is well known, but we give the proof for convenience.
Define the norm of an integral O-ideal a to be |O/al, which agrees with the
definition of norm for ideals in maximal orders. Suppose that there does
exist an isogeny ¢ : ' — FE’ of degree [. By the Deuring lifting theorem
[55, Theorem 13.14], we can lift ¢ to an isogeny ¢ : E — E' defined over
the ring class field for ©. By CM-theory, we can write £(C) = C/A where
A is a lattice, and write E'(C) = C/a~'A where a is an invertible O-ideal
of norm [. But since [ divides the index [Of : O], there are no invertible
ideals of norm /. U

Unlike the elliptic curve case, there are a greater number of possibilities
for the endomorphism ring of an ([, [)-isogenous abelian surface over F,,.
Necessarily, the order must contain Z |, 7] where 7 is the Frobenius endo-
morphism. Let ¢ : A — A’ be an (I, 1)-isogeny of principally polarized
abelian surfaces where O = End(A) contains @' = End(A’). Since ¢
splits multiplication by [, it follows that Z + [O C O" C O and hence O’
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has index dividing 3 in . In addition, since the Z-rank is greater than two,
it is possible to have several nonisomorphic suborders of O having the same
index.

A natural question is whether we can compute the endomorphism ring
of an ordinary principally polarized abelian surface A/F, in a similar vein
using (/,1)-isogenies. The extension of Schoof’s algorithm [63] enables
us to compute the endomorphism algebra of A. However, the analogue
of Lemma 7.18 concerning (I, 1)-isogenies between abelian surfaces does
not hold in general. This is a theoretical obstruction to the heart of the
‘straightforward generalization’ of the algorithm for elliptic curves.

We first give an example where the analogue of Lemma 7.18 for abelian
surfaces fails.

Example 7.19. Take the point (782,1220,257) € Fj4,, which we found
in Example 7.17. Below we depict the connected component of the (3, 3)-
isogeny graph (the second connected component is the the graph on the
front cover). The white dots represent surfaces with endomorphism ring
Ok, the black dots correspond to surfaces whose endomorphism ring is
nonmaximal. The lattice of suborders of Ok containing Z[r, 7| having
index 3% for some k is simply Oy; C Oy C O3 C Ok, the subscript
denoting the respective index in Ok . The leaf nodes all have endomorphism
ring 027 and remaining eight black vertices have endomorphism ring Os.
We observe that are are cycles in this graph other than at the ‘surface’ of the
volcano.

The reason that these cycles can occur is the following. While it is
true that for a nonmaximal order O there are no invertible O-ideals of
prime norm [, there do exist invertible O-ideals of norm [?. Just like in
Lemma 7.18, we can lift an isogeny ¢ : A — A’ to characteristic zero. By
CM-theory, we can now write A(C) = C?/®(I) where I is an invertible O-
ideal I, and A’ equals C?/®(a~'T) for some invertible O-ideal a of norm [2.
Here, ¢ is a CM-type for K.

Another ingredient of the endomorphism ring algorithm for elliptic
curves can fail. In the elliptic curve case, it is essential that the [-isogeny
graph is regular. More precisely, suppose that £/IF, has endomorphism
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ring O and let ¢ : £ — E’ be an isogeny from £ to an elliptic curve £’
with endomorphism ring of index [ in End(E). If ¢ is defined over F,, then
all | + 1 isogenies of degree [ are defined over [F,,. Otherwise we are at the
‘base’ of the volcano and there is a single [-isogeny mapping to an elliptic
curve E” with [End(E") : End(E)] = [. If we exclude the ‘base’ vertices,
the graph is (I + 1)-regular.

The analogous statement is not true in dimension 2 as the following
example shows.

Example 7.20. Consider the cyclic quartic CM-field K = Q[X]/(X* +
12X? + 18) which has class number 2. The Igusa class polynomials have

degree 2 and over Fy5; we find the corresponding moduli points wy =
(118,71,63), wy = (98,82, 56). The isogeny graph is not regular:

The white dots represent the points having maximal endomorphism ring.
There are 7 points isogenous to wg, which includes w;. One cannot identify
wy from the graph structure alone. This demonstrates that it is insufficient
to determine the isogeny graph from just the endomorphism rings.

7.9. An improvement to the CM method

To conclude this chapter, we make note of two significant improvements
to the explicit CM method to compute Igusa class polynomials mod p which
utilize Humbert surfaces. The simple fact that a quartic CM-field K con-
tains a real quadratic subfield K" yields the following result.

Theorem 7.21. Let A be a principally polarized abelian surface having CM
by Ok and let A be the discriminant of K. Then the isomorphism class
represented by A is a point on the Humbert surface of discriminant A.

Proof. By Corollary 2.10(b), we know that H A is the set of isomorphism
classes of principally polarized abelian surfaces having endomorphism ring
containing Oa, a quadratic order of discriminant A. If A has endomor-
phism ring isomorphic to O then it certainly contains O N KT = O+
which completes the proof. U

Corollary 7.22. Let (j1, j2, j3) be Igusa invariants for a principally polar-
ized abelian surface with CM by the maximal order O. Then we have
Ha(j1,J2,j3) = 0 where A = disc(K ).
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As a consequence, the random search space for computing Igusa class poly-
nomials mod p is reduced from p? triples to the |Ha(F,)| = O(p*) points
on the Humbert surface mod p.

The second improvement to the algorithm is that the endomorphism
check, which is a calculation requiring the computation of torsion sub-
groups over extension fields [17], in some cases can be improved if the
point lies on a the Humbert surface.

Without going into the technical details, we sketch the basic steps of
the endomorphism check. We know that End(A) contains O = Z[r, 7.
We find a set of representatives {«;} for the quotient Ok /O, that is, a set
which generates Ok over O. There is an integer n > 1 such that 3; =
na; € O. For ease of argument we shall assume that p does not divide
Ok : O]. Since n is coprime to p, it follows from [17, Corollary 9] that
«; is in End(A) if and only if (; acts as zero on the n-torsion A[n]. To
do this check, decompose A[n] = @A[l}’] where n = [] 1}, and for each
j. evaluate 3; at a spanning set of A[l'/](F,:) where k is the splitting field
degree.

Computing large torsion groups over extension fields is expensive and
examples with large index are difficult to work with. If we know a larger
order O’ contained in End(A) to begin with, the index in End(A) will be
smaller. In the case when A lies on the Humbert surface of discriminant
A = disc(K ") we have the following.

Theorem 7.23. Suppose A has endomorphism algebra isomorphic to a
CM-field K. If the isomorphism class represented by A is a point on
Hgise(ic+), then End(A) contains O+ [, 7).

Proof. This is a straightforward application of the definition of a Humbert
surface. t

If End(A) D Og+[n,7| 2 Z[r, 7| then we work with the smaller index
[End(A) : O+ [m, 7], thus speeding up the endomorphism check.

The Humbert surfaces computed in this thesis have been used by David
Kohel to extend the list of computed Igusa class polynomials in his database
[49].

We hope the reader leaves with an appreciation of Humbert surfaces and
the advantages of having explicit models for them.
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