MATH 402 Homework 5 Due Friday October 13, 2017

Exercise 1. a. [3 pts] Let $T = r_{\ell_2} \circ r_{\ell_1}$ be a translation, with displacement vector v. Prove that the inverse of T is also a translation, given by $r_{\ell_1} \circ r_{\ell_2}$ and having displacement vector -v.

- b. [3 pts] Let T_1 and T_2 be two translations, with displacement vectors v_1 and v_2 respectively. Prove that $T_1 \circ T_2$ is again a translation. What is its displacement vector?
- c. [3 pts] Show that composition of translations commutes: that is, that $T_1 \circ T_2$ is equal to $T_2 \circ T_1$. Is this true for reflections? Prove or provide a counter-example.
- d. /3 pts Does the set of translations form a group?

Exercise 2. [10 pts] Let T be a translation which is not the identity. Prove that ℓ is an invariant line for T if and only if ℓ is parallel to the displacement vector v of T.

- **Exercise 3.** a. [8 pts] Suppose we are given a coordinate system with origin O. Let Rot_{ϕ} denote rotation about O by angle ϕ . Let C = (x, y) be a point not equal to O, and let T denote the translation with displacement vector v = (x, y). Prove that $T \circ Rot_{\phi} \circ T^{-1}$ is rotation about C by angle ϕ .
- b. [8 pts] Given a coordinate system with origin O, let ℓ be a line which does not pass through O. Using translations, rotations, and reflection across the x-axis, give an expression for reflection r_{ℓ} across ℓ .

Exercise 4. a. [2 pts] Let Rot_{ϕ} be rotation about a point O by angle ϕ . Use reflections to prove that the inverse of Rot_{ϕ} is rotation about O by angle $-\phi$.

- b. [3 pts] Let Rot_{ψ} be rotation about the same point O by angle ψ . Use reflections to prove that $Rot_{\phi} \circ Rot_{\psi}$ is again a rotation about O.
- c. [4 pts] Let A and B be two different points. Let R_1 be rotation about A by 180°, and let R_2 be rotation about B by 180°. Prove that $R_2 \circ R_1$ is a translation. What is the displacement vector?
- d. [3 pts] Let \mathcal{R} denote the set of all rotations. Let \mathcal{R}_O denote the set of all rotations with centre of rotation O. Is \mathcal{R} a group? What about \mathcal{R}_O ?

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.