MATH 402 Homework 5

Due Friday October 13, 2017

Exercise 1. a. [3 pts] Let $T=r_{\ell_{2}} \circ r_{\ell_{1}}$ be a translation, with displacement vector v. Prove that the inverse of T is also a translation, given by $r_{\ell_{1}} \circ r_{\ell_{2}}$ and having displacement vector $-v$.
b. [3 pts] Let T_{1} and T_{2} be two translations, with displacement vectors v_{1} and v_{2} respectively. Prove that $T_{1} \circ T_{2}$ is again a translation. What is its displacement vector?
c. [3 pts] Show that composition of translations commutes: that is, that $T_{1} \circ T_{2}$ is equal to $T_{2} \circ T_{1}$. Is this true for reflections? Prove or provide a counter-example.
d. [3 pts] Does the set of translations form a group?

Exercise 2. [10 pts] Let T be a translation which is not the identity. Prove that ℓ is an invariant line for T if and only if ℓ is parallel to the displacement vector v of T.

Exercise 3. a. [8 pts] Suppose we are given a coordinate system with origin O. Let $\operatorname{Rot}_{\phi}$ denote rotation about O by angle ϕ. Let $C=(x, y)$ be a point not equal to O, and let T denote the translation with displacement vector $v=(x, y)$. Prove that $T \circ \operatorname{Rot}_{\phi} \circ T^{-1}$ is rotation about C by angle ϕ.
b. [8 pts] Given a coordinate system with origin O, let ℓ be a line which does not pass through O. Using translations, rotations, and reflection across the x-axis, give an expression for reflection r_{ℓ} across ℓ.

Exercise 4. a. [2 pts] Let $\operatorname{Rot}_{\phi}$ be rotation about a point O by angle ϕ. Use reflections to prove that the inverse of $\operatorname{Rot}_{\phi}$ is rotation about O by angle $-\phi$.
b. [3 pts] Let $\operatorname{Rot}_{\psi}$ be rotation about the same point O by angle ψ. Use reflections to prove that $\operatorname{Rot}_{\phi} \circ \operatorname{Rot}_{\psi}$ is again a rotation about O.
c. [4 pts] Let A and B be two different points. Let R_{1} be rotation about A by 180°, and let R_{2} be rotation about B by 180°. Prove that $R_{2} \circ R_{1}$ is a translation. What is the displacement vector?
d. [3 pts] Let \mathcal{R} denote the set of all rotations. Let \mathcal{R}_{O} denote the set of all rotations with centre of rotation O. Is \mathcal{R} a group? What about \mathcal{R}_{O} ?

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.

