MATH 402 Homework 7 Due Friday October 27, 2017

Exercise 1.

- a. Show that the symmetry group of a regular n-gon is finite.
- b. Show that the symmetry group of a regular *n*-gon is the dihedral group D_n .
- c. Draw a figure whose symmetry group is cyclic and not dihedral.

Exercise 2. Recall the notation from frieze groups: $\tau = T_v$ is the fundamental translation, γ is a glide reflection with translation vector $\frac{1}{2}\vec{v}$ and line of reflection the midline m, H is a half-rotation about a point on the midline, r_{ℓ} is a perpendicular reflection (that is, reflection across a line ℓ which is perpendicular to the direction of translation \vec{v}).

- a. Suppose that G is a frieze group with fundamental translation τ , and suppose that G contains at least one perpendicular reflection, r_{ℓ} . Show that all other perpendicular reflections $r_{\ell'} \in G$ can be written in as a composition of copies of τ (or τ^{-1}) and r_{ℓ} . That is, all perpendicular reflections are generated by r_{ℓ} and τ .
- b. Prove that the group generated by γ and H is equal to the group generated by τ, γ , and H. *Hint:* To prove that two sets A and B are equal, we can show that $A \subset B$ and $B \subset A$. For A and Bthe sets underlying the groups above, one of the containments is easy. Which one? How can you prove the other one?
- c. Do exercise 6.2.13 from the book. (Proofs not required.)

Exercise 3.

- a. Sketch the lattices spanned by the following pairs of vectors, and specify which of the five types of lattices each pair will generate.
 - i. $\vec{v} = (2, 0), \vec{w} = (2, 4).$ ii. $\vec{v} = (1, \sqrt{3}), \vec{w} = (1, -\sqrt{3}).$ iii. $\vec{v} = (-1, 1), \vec{w} = (1, 1).$
- b. Show that the transformation f(x, y) = (-x, y + 1) is a glide reflection.
- c. [Bonus] Show that the symmetry group generated by f and the translation T(x, y) = (x+1, y+1) must be a wall-paper group. Which lattice type will this group have? (To answer this question, identify the vectors \vec{v} and \vec{w} .)
- d. Show that the symmetry group generated by the glide reflection f and the translation T(x, y) = (x, y+1) is not a wall-paper group.

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.