MATH 402 Homework 10

Due Friday December 1, 2017

Exercise 1. (a) Suppose that $z=x+i y$ is a point of the complex plane corresponding to the point $P=(X, Y, Z)$ of the unit sphere under stereographic projection. Prove that

$$
X=\frac{2 x}{x^{2}+y^{2}+1}, \quad Y=\frac{2 y}{x^{2}+y^{2}+1}, \quad \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} .
$$

(Hint: recall that the line ℓ between two points A and B has the form $\{t A+(1-t) B \mid t \in \mathbb{R}\}$.)
(b) Conversely, show that $x=\frac{1}{1-Z} X$ and $y=\frac{1}{1-Z} Y$.

Exercise 2.

(a) Let $f(z)=\frac{a z-b}{c z-d}$ be a Möbius transformation, so $a d-b c \neq 0$. Prove that we can find different complex numbers $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ so that

$$
f(z)=\frac{a^{\prime} z-b^{\prime}}{c^{\prime} z-d^{\prime}}
$$

and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$.
(b) Show that the set \mathcal{U} of Möbius transformations that preserve the unit disk is a group.

Exercise 3. Fix α with $|\alpha|<1$. In this exercise, we consider the Möbius transformation given by $T(z)=\frac{z-\alpha}{1-\bar{\alpha} z}$, and show why it makes sense to think of this as translation along the line ℓ passing through 0 and α.
(a) Show that T has exactly two fixed points, which are both on the boundary of the unit disk. In particular, it has no fixed point inside the Poincaré disk.
(b) Show that T preserves the line $\ell=\{t \alpha \mid t \in \mathbb{R}\}$. (Note that this is the Euclidean line through 0 and α, but also restricts to the diameter corresponding to the hyperbolic line through 0 and α.) Show that the fixed points from part (a) are the omega points of this line.
(c) Show that for any Poincaré point $t \alpha$ on ℓ, the Poincaré distance from $t \alpha$ to $T(t \alpha)$ is always the same.

Exercise 4. In this exercise we will see that inversion with respect to the circle defining a Poincaré line is the same as the hyperbolic reflection across that line in the Poincaré model.

Let ℓ be a Poincaré line. Define a map f on the Poincaré disk by $f(P)=P_{0}$, where P_{0} is the inverse point to P with respect to the circle c_{ℓ} on which ℓ is defined.
(a) Use results on circle inversion to show that f maps the Poincaré disk to itself.
(b) Prove that f is an isometry of the Poincaré disk (i.e. prove that it preserves the Poincaré distance function).
(c) Finally, show that f must be a reflection about the line ℓ.

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.

