MATH 402 Practice questions

Friday 2 November, 2018

Exercise 1. Hyperbolic geometry: Let ℓ and m be two Klein lines which are parallel but not limiting parallel. Prove that there is a unique Klein line n which is perpendicular to both ℓ and m.

Exercise 2. Checking something is an isometry:

(a) What is the definition of an isometry $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$?
(b) Review the proof that any isometry can be written as a composition of at most three reflections.
(c) For each of the following functions, is it an isometry? Prove or disprove.

$$
\begin{aligned}
& f(x, y)=(y, x) \\
& g(x, y)=(x+y, y+a) \\
& h(x, y)=(x+a, y+b) \\
& j(x, y)=(-y, x)
\end{aligned}
$$

Exercise 3. Using the classification of isometries to identify isometries:

Consider the following functions of the Euclidean plane. For each, indicate in the table whether it is possible that the function is a reflection, (non-identity) rotation, (non-identity) translation, glide reflection (with non-zero displacement vector), or the identity. For this problem, assume that ℓ and m are two lines and O is a point on ℓ.

	Reflection	Rotation	Translation	Glide reflection	Identity
$f=r_{\ell} \circ r_{m} \circ r_{\ell}$					
An isometry f which satisfies $f(O)=O$					
An even isometry					
The composition of a glide reflection and a translation					
The function $f(x, y)=(2 x, y)$					
An isometry f which has ℓ as its only invariant line					
An isometry f which satisfies $f^{3}=$ id					
An isometry f which can be represented by a 2×2 matrix					
An isometry f which has no fixed points					
An isometry f which is the square of a glide reflection					

