MATH 402 Practice questions Friday 2 November, 2018

Exercise 1. Hyperbolic geometry: Let ℓ and m be two Klein lines which are parallel but not limiting parallel. Prove that there is a unique Klein line n which is perpendicular to both ℓ and m.

Exercise 2. Checking something is an isometry:

- (a) What is the definition of an isometry $f : \mathbb{R}^2 \to \mathbb{R}^2$?
- (b) Review the proof that any isometry can be written as a composition of at most three reflections.
- (c) For each of the following functions, is it an isometry? Prove or disprove.

$$f(x, y) = (y, x)$$

$$g(x, y) = (x + y, y + a)$$

$$h(x, y) = (x + a, y + b)$$

$$j(x, y) = (-y, x)$$

Exercise 3. Using the classification of isometries to identify isometries:

Consider the following functions of the Euclidean plane. For each, indicate in the table whether it is possible that the function is a reflection, (non-identity) rotation, (non-identity) translation, glide reflection (with non-zero displacement vector), or the identity. For this problem, assume that ℓ and m are two lines and O is a point on ℓ .

	Reflection	Rotation	Translation	Glide reflection	Identity
$f = r_\ell \circ r_m \circ r_\ell$					
An isometry f which satisfies					
f(O) = O					
An even isometry					
The composition of a glide reflection					
and a translation					
The function $f(x, y) = (2x, y)$					
An isometry f which has ℓ as					
its only invariant line					
An isometry f which satisfies					
$f^3 = \mathrm{id}$					
An isometry f which can be					
represented by a 2×2 matrix					
An isometry f which has					
no fixed points					
An isometry f which is the square					
of a glide reflection					