MATH 402 Homework 4

Due Friday, October 5, 2018

Exercise 1. Suppose two Euclidean circles intersect at two distinct points P and Q. (No assumption is made here about whether they intersect orthogonally or not-don't assume anything.) Draw rays from point P through the centres O and O^{\prime} of the two circles, and label the points where these rays intersect the circles by A and B as below:

In this exercise you will prove that the point Q lies on the line through A and B, by completing the following steps.
a. [5 points] Draw rays from the point Q through each of the five points A, O, P, O^{\prime}, B, and label the acute angles thus created by $\alpha, \beta, \gamma, \delta$.
b. [10 points] Your drawing contains four triangle all with Q as a vertex. Determine the angles of all of these triangles, and write in the values. Justify your responses. (All of the values you find will be multiples of α, β, γ, or δ.)
c. [10 points] Prove that $\alpha+\beta+\gamma+\delta=180^{\circ}$, and explain why this proves that $Q \in \overleftrightarrow{A B}$

Exercise 2. Let c be a Euclidean circle with centre O. Let A, B be two points on the boundary of c so that $\overline{A B}$ is a chord but not a diameter.
a. [10 points] Let M be the midpoint of the chord, and consider the ray from O through M. Prove that it is perpendicular to $\overline{A B}$.
b. [10 points] Conversely, drop the perpendicular ℓ from O to $\overleftrightarrow{A B}$. Prove that it bisects $\overline{A B}$.

