MATH 595 Homework 2

Exercise 1. Recall that we gave two definitions of a *unital* factorization space: one was that the maps $\mathcal{Y}_{X^{I}}$ to X^{I} all have sections u_{I} compatible with the factorization structure; the other is that we have spaces $\mathcal{Y}_{X^{I}}$ and maps between them for all objects and morphisms in the category of finite sets with functions between them (as compared to finite non-empty sets with surjections). Prove that these definitions are equivalent.

Exercise 2. Let \mathcal{A} and \mathcal{B} be two chiral algebras. Can you define a chiral bracket on their tensor product $\mathcal{A} \otimes^! \mathcal{B}$?

Exercise 3. Let \mathcal{A} be a chiral algebra on a curve X, and let $\phi : Y \to X$ be an étale morphism of curves. Can you define a chiral bracket on the \mathcal{D}_Y -module $\phi^* \mathcal{A}$?