MATH 402 Homework 3

Due Friday 9/16/16

(1) (5 pts.) Solve 2.5.4.
(2) Understand the proof of Theorem 2.31, and write it out in your own words. This problem will not be graded.
(3) (10 pts.) Prove Corollary 2.34 from the book: If a quadrilateral $A B C D$ is inscribed in a circle, then its pairs of opposite angles are supplementary.
(4) (5 pts.) We can define the angle between a circle \mathcal{S} and a line l which intersects \mathcal{S} at two points A, B one of two ways:
(a) Take the line l_{A} through A tangent to \mathcal{S}. Take the angle of intersection between l and l_{A} (i.e. the angle formed by l and l_{A} which is less than or equal to a right angle.) Call this angle α_{A}.
(b) Take the line l_{B} through B tangent to \mathcal{S}. Take the angle of intersection between l and l_{B} (i.e. the angle formed by l and l_{B} which is less than or equal to a right angle.) Call this angle α_{B}.
Show that these two definitions give the same angle, i.e. show that $\alpha_{A}=\alpha_{B}$.
If the line l is tangent to \mathcal{S} at a point T, what should the angle of intersection between l and \mathcal{S} be?
(5) (5 pts.) How would you define the angle between two intersecting circles?
(6) (15 pts.) Solve 5.1.2, 5.1.3, 5.1.4, and use them to prove that the set of isometries forms a group (as defined in Chapter 1.4).
(7) (5 pts.) Solve 5.1.5.
(8) (5 pts.) Solve 5.2.12.

