MATH 595 Thursday 8 February

Cohomology and affine schemes; introduction to Cech cohomology

(1) Chapter III, Exercise 3.1.

Let X be a Noetherian scheme. Prove that X is affine if and only if X_{red} is affine. Hint: Let \mathscr{N} be the sheaf of nilpotent elements in X. Show that for each coherent \mathscr{F} there is a finite filtration

$$0 \subset \ldots \subset \mathscr{N}^2 \cdot \mathscr{F} \subset \mathscr{N} \cdot \mathscr{F} \subset \mathscr{F}.$$

Do induction on the length of this sequence to prove that the higher cohomologies of \mathscr{F} vanish. Now show that the higher cohomologies of any quasi-coherent sheaf must vanish too. Apply Serre's criterion.

(2) Chapter III, Exercise 3.2.

Let X be a reduced noetherian scheme. Show that X is affine if and only if each irreducible component is affine.

Hint: Recall that to show that X is noetherian, it's enough to show that for any coherent sheaf of ideals \mathscr{I} on X, $H^1(X, \mathscr{I})$ vanishes. So let \mathscr{I} be such a sheaf, corresponding to some closed subscheme Y, and let $X = \bigcup Y_i$ be the decomposition of X into finitely many affine irreducible components.

Consider a short exact sequence of the form

$$0 \to \mathscr{I}_{Y \cup Y_1} \to \mathscr{I}_Y \to \mathscr{F} \to 0.$$

Prove that the quotient \mathscr{F} comes from pushing forward some ideal sheaf on Y_1 ; conclude that $H^1(X, \mathscr{F}) = 0$. What does this tell you about $H^1(X, \mathscr{I}_Y)$? Repeat this procedure using $Y \cup Y_1$ and Y_2 instead of Y and Y_1 . Induct...

(3) Chapter III, Exercise 3.8.

In this exercise, we show that without the noetherian hypothesis, it is not the case that whenever I is injective as a module, the associated sheaf \tilde{I} must be a flasque sheaf.

Let A be the quotient of the polynomial ring $k[x_0, x_1, x_2, \ldots]$ by the relations $\{x_0^n x_n = 0\}_{n=1,2,\ldots}$. Let I be an injective A-module containing A. Prove that the map $\phi: I \to I_{x_0}$ cannot be surjective.

Hint: if ϕ is surjective, there exists some $b \in I$ such that $\phi(b) = \frac{1}{x_0}$ in I_{x_0} . What does this mean?

(4) The Čech differential

Prove that $d^2 = 0$.