MATH 595 Tuesday 13 February Čech cohomology

(1) Chapter III, Exercise 4.1.

Let $f: X \to Y$ be an affine morphism of noetherian separated schemes. Show that for any quasi-coherent sheaf \mathscr{F} on X, and for any $i \ge 0$

$$H^i(X,\mathscr{F}) \cong H^i(Y, f_*\mathscr{F}).$$

(2) Chapter III, Exercise 4.3.

Let $U = \mathbb{A}_k^2 \setminus \{(0,0)\}$, with coordinates x and y. Use a suitable open affine cover of U to show that $H^1(U, \mathcal{O}_U)$ is isomorphic to the k-vector space spanned by $\{x^i y^j | i, j < 0\}$. (In particular, it is infinite-dimensional.)

(3) Chapter III, Exercise 4.5.

For (X, \mathcal{O}_X) a ringed space, Pic_X is the group of isomorphism classes of invertible sheaves. Prove that

$$\operatorname{Pic}_X \cong H^1(X, \mathcal{O}_X^*).$$

Hint: for this exercise, use the fact that $H^1(X, \mathscr{F})$ is the colimit of the Čech cohomology groups $\check{H}^1(\mathcal{U}, \mathscr{F})$.

Define a map in one direction as follows: given a line bundle \mathscr{L} , choose a cover $\mathcal{U}\{U_i\}$ and trivializations $\phi_i : \mathscr{L}_{|_{U_i}} \to \mathcal{O}_{U_i}$. Use these to construct an element of $\check{H}^1(\mathcal{U}, \mathcal{O}_X^*)$, and hence of $H^1(X, \mathcal{O}_X^*)$. Show that this element is independent of your choices. What is the inverse map?