MATH 595 Thursday 15 February Ěxt groups and sheaves

(1) Chapter III, Exercise 6.1.

Let (X, \mathcal{O}_X) be a ringed space, and let \mathscr{F}' and \mathscr{F}'' be \mathcal{O}_X modules. An extension of \mathscr{F}'' by \mathscr{F}' is a short exact sequence

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}''.$$

Two extensions are *isomorphic* if there is an isomorphism of the short exact sequences in which the maps $\mathscr{F}' \to \mathscr{F}'$ and $\mathscr{F}'' \to \mathscr{F}''$ are both identity morphisms. Let E be the set of isomorphism classes of extensions.

In this exercise, you will show that there is a bijection between E and $\operatorname{Ext}^1(\mathscr{F}', \mathscr{F}')$. (a) We construct a map $\theta: E \to \operatorname{Ext}^1(\mathscr{F}', \mathscr{F}')$ as follows: given $\xi = \begin{bmatrix} 0 \to \mathscr{F}' \to \mathbb{F}' \end{bmatrix}$

 $\mathscr{F}\to\mathscr{F}''\to 0],$ the long exact sequence associated to $\operatorname{Hom}(\mathscr{F}'',\cdot)$ gives a map

$$\delta : \operatorname{Hom}(\mathscr{F}'', \mathscr{F}'') \to \operatorname{Ext}^1(\mathscr{F}'', \mathscr{F}').$$

We set $\theta(\xi) = \delta(id)$.

Prove that θ is well-defined on isomorphism classes of extensions.

(b) To an element $\alpha \in \text{Ext}^1(\mathscr{F}'', \mathscr{F}')$, together with a short exact sequence

$$0 \to \mathscr{F}' \to \mathscr{I} \to \mathscr{G} \to 0$$

with \mathscr{I} injective, construct an extension $\phi(\alpha)$, whose middle term is a certain fibre product of \mathscr{I} and \mathscr{F}'' over \mathscr{G} .

- (c) Show that $\theta(\phi(\alpha)) = \alpha$, and conclude that θ is surjective.
- (d) To show that θ is injective, prove that every extension is isomorphic to one of the form $\phi(\alpha)$ for some α .

(2) Chapter III, Exercise 6.10.

Let $f: X \to Y$ be a finite morphism of noetherian schemes. For $\mathscr{G} \in \operatorname{QCoh}(Y)$, it is not hard to see that $\mathscr{H}om(f_*\mathcal{O}_X, \mathscr{G})$ is a quasi-coherent $f_*\mathcal{O}_X$ -module. Hence (because f is affine), it corresponds uniquely to a quasi-coherent \mathcal{O}_X -module $f^!\mathscr{G}$, with the defining property

$$f_*f^!(G) = \mathscr{H}om_Y(f_*(\mathcal{O}_X), \mathscr{G}).$$

- (a) Write down a natural map $f_*f^!\mathscr{G} \to \mathscr{G}$.
- (b) For any $\mathcal{M}, \mathcal{N} \in \mathrm{QCoh}(X)$, write down a natural map

$$\mathcal{H}_*\mathcal{H}om_X(\mathcal{M},\mathcal{N}) \to \mathcal{H}om_Y(f_*\mathcal{M},f_*\mathcal{N}).$$

(c) Take $\mathscr{F} \in \operatorname{Coh}(X)$. Use the two maps above to give a natural map

$$f_*\mathscr{H}om_X(\mathscr{F}, f^!\mathscr{G}) \to \mathscr{H}om_Y(f_*\mathscr{F}, \mathscr{G}),$$

and prove (for example by checking over affine pieces of Y) that it is an isomorphism.

(d) Use the map from (b) and properties of δ -functors to prove that for every $i \ge 0$ there is a natural map

$$\phi_i: \operatorname{Ext}^i_X(\mathscr{F}, f^!\mathscr{G}) \to \operatorname{Ext}^i_Y(f_*\mathscr{F}, \mathscr{G}).$$

(e) Assume that X and Y are separated, $\operatorname{Coh}(X)$ has enough locally free sheaves, and $f_*(\mathcal{O}_X)$ is locally free on Y (this means f is flat). Prove that in this case ϕ_i is an isomorphism for every i, for every $\mathscr{F} \in \operatorname{Coh}(X)$, and for every $\mathscr{G} \in \operatorname{QCoh}(Y)$. (Hint: do this by induction on i. The case i = 0 is easy using what you've done so far. Before doing the induction step, first check that the claim holds for all i as long as \mathscr{F} is free, and then check that it holds as long as \mathscr{F} is locally free. Finally, to do the induction step, write a short exact sequence showing \mathscr{F} as a quotient of a locally free sheaf. You get another short exact sequence by pushing forward along f_* , because f_* is exact in this case. Now you get two long exact sequences, corresponding to the two sides of ϕ_i . Use induction and the five lemma.)