MATH 595 Tuesday, 20 February

More practice with Ext and Čech cohomology

(1) Chapter III, Exercise 6.5.

Let X be a noetherian scheme such that $\operatorname{Coh}(X)$ has enough locally frees. For a sheaf $\mathscr{F} \in \operatorname{Coh}(X)$, the *homological dimension* $\operatorname{hd}(\mathscr{F})$ is defined to be the least length of a locally free resolution of \mathscr{F} .

- (a) Prove that \mathscr{F} is locally free if and only if $\mathscr{E}xt^1(\mathscr{F},\mathscr{G}) = 0$ for every \mathcal{O}_X -module \mathscr{G} .
- (b) Now use induction on n to prove that $hd(\mathscr{F}) \leq n$ if and only if $\mathscr{E}xt^i(\mathscr{F},\mathscr{G}) = 0$ for every \mathcal{O}_X -module \mathscr{G} and every i > n.
- (c) Finally, show that $hd(\mathscr{F}) = \sup_x pd_{\mathcal{O}_x}\mathscr{F}_x$.
- (2) Chapter III, Exercise 6.6.

Let A be a regular local ring, M a finitely generated A-module.

- (a) Prove that M is projective if and only if $\operatorname{Ext}^{i}(M, A) = 0$ for all i > 0. (Hints for 'if': use descending induction to show that $\operatorname{Ext}^{i}(M, N) = 0$ for all i > 0 and any finitely generated module N. Use this to show that M is a direct summand of a free module.)
- (b) Use (a) to show that for any n, $pd(M) \le n$ if and only if $Ext^i(M, A) = 0$ for all i > n.
- (3) Chapter III, Exercise 4.7 Let X be a subscheme of \mathbb{P}^2_k defined by a single homogeneous equation of degree d: $f(x_0, x_1, x_2) = 0$. Assume that (1, 0, 0) is not a point of X.
 - (a) Find a suitable open affine cover of X with two pieces.
 - (b) Use Čech cohomology to compute that $H^0(X, \mathcal{O}_X)$ has dimension 1, and $H^1(X, \mathcal{O}_X)$ has dimension $\frac{1}{2}(d-1)(d-2)$.
- (4) Let $X = \mathbb{A}^2$, and let $Y = X \times X \setminus \Delta$. What can you say about the cohomology of Y. What if you replace X by \mathbb{A}^n ?