MATH 595 Thursday 22 February

Cohomology of projective space

(1) Chapter III, Exercises 5.1, 5.2, 5.3.

Let X be a projective scheme over a field k, and let \mathscr{F} be a coherent sheaf on X. The Euler characteristic of \mathscr{F} is defined by

$$
\chi(\mathscr{F})=\sum(-1)^{i} \operatorname{dim}_{k} H^{i}(X, \mathscr{F}) .
$$

- It is an exercise in homological algebra (you can do it later if you like) to show that if there is a short exact sequence of coherent sheaves

$$
0 \rightarrow \mathscr{F}^{\prime} \rightarrow \mathscr{F} \rightarrow \mathscr{F}^{\prime \prime} \rightarrow 0,
$$

then $\chi(\mathscr{F})=\chi\left(\mathscr{F}^{\prime}\right)+\chi\left(\mathscr{F}^{\prime \prime}\right)$.
Now let $\mathcal{O}_{X}(1)$ be a very ample invertible sheaf on X over k. Assume that the dimension of X is r. Show that there is a polynomial $P(z) \in \mathbb{Q}[z]$ such that $\chi(\mathscr{F}(n))=P(n)$ for all $n \in \mathbb{Z}$, as follows:
(a) We will do induction on the dimension of the support of \mathscr{F}. When this dimension is 0 , reduce to the case that \mathscr{F} is a skyscraper sheaf, and prove that $\chi(\mathscr{F}(n))$ is constant.
(b) For the induction step, you will need the following fact: If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is a function such that the difference $\Delta f(n)=f(n+1)-f(n)$ is equal to $Q(n)$ for every integer n, for some polynomial $Q(z) \in \mathbb{Q}[z]$ of degree D, then $f(n)=P(n)$ for some polynomial of degree $D+1$. To use this fact to your advantage, choose a suitable element $s \in \Gamma\left(X, \mathcal{O}_{X}(1)\right)$ and construct an exact sequence

$$
0 \rightarrow \mathscr{R} \rightarrow \mathscr{F}(-1) \rightarrow \mathscr{F} \rightarrow \mathscr{Q} \rightarrow 0 .
$$

The polynomial $P(z)=P_{\mathscr{F}}(z)$ is called the Hilbert polynomial of \mathscr{F}.
(c) Let $X=\mathbb{P}_{k}^{r}$, and let $M=\Gamma_{*}(\mathscr{F})$, considered as a graded $S=k\left[x_{0}, \ldots, x_{r}\right]$ module. Prove that $P_{\mathscr{F}}(z)$ just defined agrees with the Hilbert polynomial of M defined in Chapter I, section 7 .
We define the arithmetic genus of X by

$$
p_{a}(X)=(-1)^{r}\left(\chi\left(\mathcal{O}_{\chi}\right)-1\right) .
$$

If X is integral and k is algebraically closed, it is not hard to show that $H^{0}\left(X, \mathcal{O}_{X}\right) \cong$ k; then the formula for $p_{a}(X)$ can be written as

$$
p_{a}(X)=\sum_{i=0}^{r-1}(-1)^{i} \operatorname{dim}_{k} H^{r-i}\left(X, \mathcal{O}_{X}\right)
$$

(d) Let X be a plane curve of degree d. What is $p_{a}(X)$? (Use our Čech cohomology computation from last time.)
(e) If X is a closed subvariety of \mathbb{P}_{k}^{r}, show that this definition of the arithmetic genus agrees with the definition given in Chapter I, Exercise 7.2, which appeared to depend on the choice of embedding.

(2) Chapter III, Exercise 5.5.

Let k be a field, let $X=\mathbb{P}_{k}^{r}$, and let Y be a closed subscheme of dimension $q \geq 1$ which is a complete intersection. The prove the following collection of statements, by induction on the codimension of Y :
(a) For any integer n, the natural map

$$
H^{0}\left(X, \mathcal{O}_{X}(n)\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}(n)\right)
$$

is surjective.
(b) Y is connected.
(c) $H^{i}\left(Y, \mathcal{O}_{Y}(n)\right)=0$ for $0<i<q$ and for any $n \in \mathbb{Z}$.
(d) $p_{a}(Y)=\operatorname{dim}_{k} H^{q}\left(Y, \mathcal{O}_{Y}\right)$.

Hint: To carry out the induction step, write $Y=H_{1} \cap H_{k}$, let Y_{0} be the complete intersection $H_{1} \cap H_{k-1}$, and write a short exact sequence giving \mathcal{O}_{Y} as a quotient of $\mathcal{O}_{Y_{0}}$.

