MATH 595 Thursday 29 March

Riemann-Roch

(1) Exercise IV.1.1 and IV.1.2

Let X be a non-singular projective curve. Let $P=P_{1}, P_{2}, \ldots, P_{r}$ be points of X.
(a) Prove that there exists a non-constant rational function $f \in K(X)$ which is regular except at P.
(Hint: Think about the divisor (f) of such a function f. How can you use Riemann-Roch to help you?)
(b) Show that there exists a rational function f which has poles of some order at each P_{i} and which is rational everywhere else.

(2) Exercise IV.1.5

Let X be a curve of genus g, and let D be an effective divisor. Prove that $\operatorname{dim}|D| \leq \operatorname{deg} D$, with equality if and only if $D=0$ or $g=0$.
(Hint: use the short exact sequence for the subscheme $D \subset X$, maybe tensored by a suitable line bundle, to compare $\ell(K-D)$ with $\ell(K)=g$. Now use RiemannRoch.)
(3) Exercise IV.1.6, IV.1.7 (a)
(a) Let X be a curve of genus g. Prove that there exists a finite morphism $f: X \rightarrow$ \mathbb{P}^{1} of degree $\leq g+1$.
(Hint: note that $\operatorname{deg} f=\operatorname{deg}(f)_{\infty}$. Now fix P a point of X and consider the linear system $|(g+1) P|$.)
(b) Now assume that X is an elliptic curve (i.e. $g=1$). Prove that there is a finite degree two map $f: X \rightarrow \mathbb{P}^{1}$.
(c) Motivated by this, we call a curve X with $g \geq 2$ hyperelliptic if it has a finite morphism $f: X \rightarrow \mathbb{P}^{1}$ of degree 2. Prove that every curve of genus 2 is hyperelliptic, by showing that $|K|$ is a complete linear system of degree 2 and dimension 1 without basepoints.
(Hint: Recall that $P \in X$ is a basepoint of the linear system $|D|$ if for every $D^{\prime} \in|D|, D^{\prime}$ is supported at P. Convince yourself that this means that $|D|$ and $|D-P|$ are complete linear systems of equal dimension.)

