MATH 595 Thursday April 5

Hurwitz's Theorem
(1) IV.2.3 (a)

Let $X \subset \mathbb{P}^{3}$ be a curve of degree d. Choose a line L in \mathbb{P}^{2} which is not tangent to X, and define a map

$$
\begin{aligned}
\phi: & X \\
& \rightarrow L \\
& \mapsto T_{P}(X) \cap L .
\end{aligned}
$$

(a) Suppose that $P \in X \cap L$. Prove that ϕ is ramified at P.
(Hint: Choose coordinates on \mathbb{P}^{2} so that $P=0 \in \mathbb{A}^{2}, T_{P}(X)=\{x=0\}$, and $L=\{y=0\}$. If $X \cap \mathbb{A}^{2}$ is given by $\operatorname{Spec}(k[x, y] /(f))$, what do you know about f ? Use this to write down an explicit formula for ϕ.)
(b) Now consier P on on L. Show that ϕ is ramified at P if and only if P is an inflection point of X.
(Hint: Choose coordinates on \mathbb{P}^{2} so that $P=0 \in \mathbb{A}^{2}, T_{P}(X)=\{x=0\}$, and L is the line at infinity $\{z=0\}$.)
(2) IV.2.2 Classification of curves of genus 2

Fix a field k, algebraically close and of characteristic $\neq 2$.
(a) Let X be a curve of genus 2. Recall that the linear system $|K|$ has degree $2 g-2=2$, and dimension $g-1=1$, and hence determines a degree 2 morphism $f: x \rightarrow \mathbb{P}^{1}$.
Use Hurwitz's theorem to show that f is ramified at exactly 6 points, with ramification index 2 at each of these points.
(Note that f is determined up to automorphism of \mathbb{P}^{2}, and so we have associated to X and unordered set of 6 points in $B P^{1}$, up to automorphism of \mathbb{P}^{1}.)
(b) Now let $\alpha_{1}, \ldots, \alpha_{6}$ be 6 unordered points of k. Let K be the extension of $k(x)$ determined by the equation $z^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{6}\right)$. Let X be the projective curve with $K(X)=K$, and let $f: X \rightarrow \mathbb{P}^{1}$ be the morphism determined by the extension $k(x) \subset K$.
Prove that f is ramified over $Q \in \mathbb{P}^{1}$ if an only if $Q=\alpha_{i}$ for $i=1, \ldots 6$; prove also that for these points, f has ramification index 2 . Use this to show that $g(X)=2$.
(Hint: work over $\mathbb{A}^{1}=\mathbb{P}^{1} \backslash \infty$, so that X^{0} can be written as $\operatorname{Spec}\left(k[x, z] /\left(z^{2}-\right.\right.$ $h(x))$. Because $h(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{6}\right)$ is square-free, we can prove that $k[x, z] /\left(z^{2}-h\right)$ is integrally closed (see Ex. II.6.4), so that X^{0} is normal. Write the map $f: X^{0} \rightarrow \mathbb{A}^{1}$ explicitly, and check when $x-Q$ is a local parameter at $P \in f^{-1}(Q)$.)
(c) With X, f still as in part (b), check that f is the map determined by $|K|$.
(Hint: write $f^{*} \mathcal{O}_{\mathbb{P}^{1}} \cong \mathscr{L}(D)$ for some effective divisor D of degree d; then f is determined by a linear system $\mathfrak{d} \subset|D|$ of dimension 1. Prove that $D \sim K$ and $\mathfrak{d}=|K|$.
Recall that the automorphism group of \mathbb{P}^{1} acts freely and transitively on triples of distinct points in \mathbb{P}^{1}. Thus if we order the six points α_{i}, we can find a unique automorphism ϕ of \mathbb{P}^{1} such that $\phi\left(\alpha_{1}\right)=0, \phi\left(\alpha_{2}\right)=1, \phi\left(\alpha_{3}\right)=\infty$. Then we are left
with three distinct points in $k \backslash\{0,1\}$. Now we can define an action of the symmetric group S_{6} on such triples $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$: act on $\left(0,1, \infty, \beta_{1}, \beta_{2}, \beta_{3}\right)$ by $\sigma \in S_{6}$, and then apply the unique automorphism ϕ to take the first three terms back to $(0,1, \infty)$. The remaining three terms give $\sigma \cdot\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$. You can check that this is an action if you like.

Summing up, we obtain a bijection between isomorphism classes of genus 2 curves X and the set

$$
\left\{\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \mid \beta_{i} \in k \backslash\{0,1,\}\right\} / S_{6} .
$$

