MATH 595 Thursday April 5 Hurwitz's Theorem

(1) **IV.2.3 (a)**

Let $X \subset \mathbb{P}^3$ be a curve of degree d. Choose a line L in \mathbb{P}^2 which is not tangent to X, and define a map

$$\phi: X \to L$$
$$P \mapsto T_P(X) \cap L.$$

- (a) Suppose that $P \in X \cap L$. Prove that ϕ is ramified at P. (Hint: Choose coordinates on \mathbb{P}^2 so that $P = 0 \in \mathbb{A}^2$, $T_P(X) = \{x = 0\}$, and $L = \{y = 0\}$. If $X \cap \mathbb{A}^2$ is given by $\operatorname{Spec}(k[x, y]/(f))$, what do you know about f? Use this to write down an explicit formula for ϕ .)
- (b) Now consider P on on L. Show that ϕ is ramified at P if and only if P is an inflection point of X. (Hint: Choose coordinates on \mathbb{P}^2 so that $P = 0 \in \mathbb{A}^2$, $T_P(X) = \{x = 0\}$, and L

(Hint: Choose coordinates on \mathbb{P}^2 so that $P = 0 \in \mathbb{A}^2$, $T_P(X) = \{x = 0\}$, and L is the line at infinity $\{z = 0\}$.)

(2) **IV.2.2** Classification of curves of genus 2

Fix a field k, algebraically close and of characteristic $\neq 2$.

(a) Let X be a curve of genus 2. Recall that the linear system |K| has degree 2g-2=2, and dimension g-1=1, and hence determines a degree 2 morphism $f: x \to \mathbb{P}^1$.

Use Hurwitz's theorem to show that f is ramified at exactly 6 points, with ramification index 2 at each of these points.

(Note that f is determined up to automorphism of \mathbb{P}^2 , and so we have associated to X and unordered set of 6 points in BP^1 , up to automorphism of \mathbb{P}^1 .)

(b) Now let $\alpha_1, \ldots, \alpha_6$ be 6 unordered points of k. Let K be the extension of k(x) determined by the equation $z^2 = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_6)$. Let X be the projective curve with K(X) = K, and let $f : X \to \mathbb{P}^1$ be the morphism determined by the extension $k(x) \subset K$.

Prove that f is ramified over $Q \in \mathbb{P}^1$ if an only if $Q = \alpha_i$ for $i = 1, \ldots 6$; prove also that for these points, f has ramification index 2. Use this to show that g(X) = 2.

(Hint: work over $\mathbb{A}^1 = \mathbb{P}^1 \setminus \infty$, so that X^0 can be written as $\operatorname{Spec}(k[x,z]/(z^2 - h(x)))$. Because $h(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_6)$ is square-free, we can prove that $k[x,z]/(z^2 - h)$ is integrally closed (see Ex. II.6.4), so that X^0 is normal. Write the map $f: X^0 \to \mathbb{A}^1$ explicitly, and check when x - Q is a local parameter at $P \in f^{-1}(Q)$.)

(c) With X, f still as in part (b), check that f is the map determined by |K|. (Hint: write $f^*\mathcal{O}_{\mathbb{P}^1} \cong \mathscr{L}(D)$ for some effective divisor D of degree d; then f is determined by a linear system $\mathfrak{d} \subset |D|$ of dimension 1. Prove that $D \sim K$ and $\mathfrak{d} = |K|$.)

Recall that the automorphism group of \mathbb{P}^1 acts freely and transitively on triples of distinct points in \mathbb{P}^1 . Thus if we order the six points α_i , we can find a unique automorphism ϕ of \mathbb{P}^1 such that $\phi(\alpha_1) = 0$, $\phi(\alpha_2) = 1$, $\phi(\alpha_3) = \infty$. Then we are left with three distinct points in $k \setminus \{0, 1\}$. Now we can define an action of the symmetric group S_6 on such triples $(\beta_1, \beta_2, \beta_3)$: act on $(0, 1, \infty, \beta_1, \beta_2, \beta_3)$ by $\sigma \in S_6$, and then apply the unique automorphism ϕ to take the first three terms back to $(0, 1, \infty)$. The remaining three terms give $\sigma \cdot (\beta_1, \beta_2, \beta_3)$. You can check that this is an action if you like.

Summing up, we obtain a bijection between isomorphism classes of genus 2 curves X and the set

 $\{(\beta_1, \beta_2, \beta_3) \mid \beta_i \in k \setminus \{0, 1, \}\}/S_6.$