MATH 595 Tuesday April 10

More practice with Hurwitz's Theorem
(1) IV.2.3 (b-e) Let $X \subset \mathbb{P}^{2}$ be a curve of degree d.

Recall the dual projective plane $\left(\mathbb{P}^{2}\right)^{*}$: it is the set of lines in \mathbb{P}^{2}, which we can identify with \mathbb{P}^{2} by associating the line $L=\left\{a_{0} x+a_{1} y+a_{2} z=0\right\}$ with the point $\left(a_{0}: a_{1}: a_{2}\right)$. We define a map

$$
X \rightarrow\left(\mathbb{P}^{2}\right)^{*}
$$

by sending a point $P \in X$ to the tangent line $T_{P} X$. The image of this map is a curve X^{*} called the dual curve.

We also need the following terminology: a line L in \mathbb{P}^{2} is a multiple tangent of X if it is tangent to X at more than one point. It is an inflectional tangent of X if it is tangent to X at an inflection point.
(a) Thinking about the geometry of this situation, convince yourself of the following (a rigorous proof is not necessary): if L is a multiple tangent of X, tangent to X at the points P_{1}, \ldots, P_{r}, and if none of the P_{i} is an inflection point, show that the corresponding point of X^{*} is an ordinary r-fold point. Conclude that X has only finitely many multiple tangents.
(b) Let $O \in \mathbb{P}^{2}$ be a point which is not on X, nor on any inflectional or multiple tangent of X, and let L be a line not containing O. Then we can define a morphism $\psi: X \rightarrow L$ by projection from O.
Prove that ψ is ramified at $P \in X$ if and only if $O P$ is tangent to X at P. Furthermore, in that case, the ramification index is 2 .
(Hint: choose coordinates so that $O=(0,0) \in \mathbb{A}^{2}=\{z \neq 0\}, P=(0,1)$, and $L=\{z=0\}$ is the line at infinity. Write the formulas for ψ and $\psi^{\#}$.)
(c) Now use Hurwitz's theorem to conclude that there are exactly $d(d-1)$ tangents of X passing through O, and thus that the degree of the curve X^{*} is $d(d-1)$.
(d) Show that for all but finitely many points in X, a point $O \in X$ lies on exactly $(d+1)(d-2)$ tangents of X, not counting the tangent at O itself.
(Hint: show that for suitable $O \in X$, the results of (b) can be extended, giving a map $\psi: X \rightarrow L$ of degree $d-1$ with properties as described in (b).) Now apply Hurwitz's theorem to ψ.)
(e) Show that the degree of the morphism ϕ from IV. 2.3 (a) (which was on last Thursday's worksheet) is $d(d-1)$.
(f) Use Hurwitz's theorem together with your results from above to prove that for $d \geq 2 X$ has $3 d(d-2)$ inflection points (counted appropriately).

