MATH 595 Thursday April 12

Embeddings of curves in \mathbb{P}^{n}

(1) Let X be a curve in \mathbb{P}^{n}, and let O be a point in $\mathbb{P}^{n} \backslash X$. Let $\phi: X \rightarrow \mathbb{P}^{n-1}$ be the morphism defined by projection from the point O. This morphism corresponds to a linear system \mathfrak{d}. Prove that $\mathfrak{d}=\left\{X . H \mid H\right.$ is a hyperplane in \mathbb{P}^{n} containing $\left.O\right\}$.

Hint: Choose projective coordinates for \mathbb{P}^{n} and O so that you can write down ϕ explicitly. Remember that \mathfrak{d} is the linear system consisting of the divisors of zeroes of sections of $\mathcal{O}_{X}(1) \simeq \phi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ corresponding to the generators of $\mathcal{O}_{\mathbb{P}^{n-1}}(1)$.
(2) Exercise IV.3.2

Let X be a plane curve of degree d.
(a) Show that the effective canonical divisors on X are the divisors X.L, where L is a line in \mathbb{P}^{2}.
Hint: First show that $\{X . L\} \subset|K|$. Now show that they are projective spaces of the same dimension.
(b) Let D be any effective divisor of degree 2 on X. Prove that $\operatorname{dim}|D|=0$.
(Hint: find a line L such that $X . L=D+D^{\prime}$. Use the above result together with the fact that K is very ample.)
(c) Conclude that X is not hyperelliptic (i.e. does not have a degree 2 map to \mathbb{P}^{1}).
(3) Exercise IV.3.1 Let X be a curve of genus 2. Show that D is very ample if and only if the degree of D is at least five.
(Hint: consider divisors of degree 4 first, and show they can't be very ample. What about divisors of degree $3 \ldots$?)
(4) Exercise IV.3.3 Let X be a curve of genus $g \geq 2$, and assume that X is a complete intersection in \mathbb{P}^{n}. Prove that the canonical divisor K is very ample. Use the previous question to conclude that a curve of genus 2 is not a complete intersection in any \mathbb{P}^{n}.
(Hint: Use Ex. II.8.4 to write down a (pretty) explicit representative of K.)

