MATH 595 Tuesday 17 April

More practice with embeddings of curves; the canonical embedding

(1) Exercise IV.3.6 Curves of degree 1
(For this question, you can use the results of exercises 3.4 and 3.5 without proof.)
(a) If X is a curve of degree 4 in some \mathbb{P}^{n}, not contained in any hyperplane, show that we must be in one of the following situations:
(i) $g=0$: in this case X is either the rational normal quartic in \mathbb{P}^{4} or the rational quartic curve in \mathbb{P}^{3};
(ii) $X \subset \mathbb{P}^{2}$: in this case $g=3$; or
(iii) $X \subset \mathbb{P}^{3}$: in this case $g=1$.
(b) In the case $g=1$, show that g is a complete intersection of two irreducible quadric surfaces in \mathbb{P}^{3}.
(Hint: use the exact sequence associated to $X \subset \mathbb{P}^{3}$ to compute the dimension of $H^{0}\left(X, \mathscr{I}_{X}(2)\right.$, and thus conclude that X is contained in at least two irreducible quadric surfaces.)
(2) Exercise IV.5.1 Show that a hyperelliptic curve can never be a complete intersection in any projective space.

