MATH 595 Thursday 19 April

Riemann-Roch for surfaces; the adjunction formula

(1) Exercise V.1.2

Let H be a very ample divisor on a surface X corresponding to an embedding $X \subset \mathbb{P}^{n}$. We saw that we can assume H is an irreducible, non-singular curve on X. Let g_{H} denote the genus of this curve.

If we write the Hilbert polynomial of X as

$$
P(z)=\frac{1}{2} a z^{2}+b z+c
$$

prove that $c=1+p_{a}, a=H^{2}$, and $b=\frac{1}{2} H^{2}+1-g_{H}$. (Hint: use Riemann-Roch for a and c, and use the adjunction formula to recover b.)

Conclude that the degree of X in \mathbb{P}^{n} is exactly H^{2}; furthermore, if $C \subset X$ is any curve, the degree of C in \mathbb{P}^{n} is C.H.
(2) Exercise V.1.3(a)

Let D be any effective divisor on X. Use Riemann-Roch to extend the adjunction formula to any such D (even if it's singular, reducible, etc.):

$$
D .(D+K)=2 p_{a}(D)-2 .
$$

(Recall that $p_{a}(D)=1-\chi\left(\mathcal{O}_{D}\right)$, for D any projective scheme of dimension 1.)
(3) Exercise V.1.4, V.1.5
(a) Let X be a surface of degree d in \mathbb{P}^{3}. Suppose that X contains a straight line $C=\mathbb{P}^{1}$. Prove that $C^{2}=2-d$.
(Hint: use the adjunction formula and solve for C^{2}. You will need to think about what K_{X} looks like.)
(b) If X is again a surface of degree d in \mathbb{P}^{3}, show that $K^{2}=d(d-4)^{2}$. (Hint: use your result from V.1.2.)
(c) Suppose that $X=C \times C^{\prime}$, where C and C^{\prime} are two curves of genus g and g^{\prime}. Show that $K^{2}=8(g-1)\left(g^{\prime}-1\right)$.
(Hint: write $K_{x}=p_{1}^{*} K_{C}+p+2^{*} K_{C^{\prime}}$.)

