MATH 595 Tuesday 24 April

Numerical equivalence for divisors on surfaces

(1) Exercise V.1.6

(a) If C is a smooth curve of genus g, prove that the diagonal $\Delta \subset C \times C$ has self-intersection number $\Delta^{2}=2-2 g$.
(Hints: use the method of calculating intersection numbers using the degree of a line bundle on a curve; also use the definition of $\Omega_{C / k}$ as $\mathscr{I} / \mathscr{I}^{2}$, and the fact that this is a line bundle on C of degree $2 g-2$.)
(b) Let $\ell=C \times \mathrm{pt}$ and let $m=\mathrm{pt} \times C$. Assume that $g \geq 1$. Show that ℓ, m, and Δ are linearly independent in $\operatorname{Num}(C \times C)$ by proving that if

$$
(a \ell+b m+c \Delta) \cdot D=0
$$

for all divisors D on $C \times C$, then $a=b=c=0$.
This allows us to conclude that $\operatorname{Num}(C \times C)$ has rank at least 3. In particular, $\operatorname{Pic}(C \times C)$ is not isomorphic to $p_{1}^{*} \operatorname{Pic} C \oplus p_{2}^{*} \operatorname{Pic} C$.
(2) Exercise V.1.7 Algebraic equivalence of divisors Let X be a surface, and let T be a non-singular curve. An algebraic family of effective divisors on X parametrized by T is an effective Cartier divisor D on $X \times T$ flat over T.

Given such a family D, and any two closed points $0,1 \in T$, we say that the corresponding divisors D_{0}, D_{1} are pre-algebraically equivalent.

Two arbitrary divisors D and D^{\prime} are pre-algebraically equivalent if we can write $D \sim E-F, D^{\prime} \sim E^{\prime}-F^{\prime}$ where $\left(E, E^{\prime}\right)$ and $\left(F, F^{\prime}\right)$ are pairs of pre-algebraically equivalent effective divisors.

Finally, two divisors D and D^{\prime} are algebraically equivalent if there is a finite sequence

$$
D=D_{0}, D_{1}, \ldots, D_{n}=D^{\prime}
$$

of divisors such that for all $i=0, \ldots n-1, D_{i}$ and D_{i+1} are pre-algebraically equivalent.
(a) (Optional.) Show that the set of divisors algebraically equivalent to 0 forms a subgroup.
(b) Show that linearly equivalent divisors are algebraically equivalent, by showing that any principal divisor is algebraically equivalent to 0 .
(Hint: if (f) is a principal divisor on X, consider $T=\mathbb{P}^{1}$ with homogeneous coordinates x, u, and consider the principal divisor $(t f-u)$ on $X \times \mathbb{P}^{1}$.)
(c) Show that D, D^{\prime} are algebraically equivalent, and H is very ample, then $D \cdot H=$ $D^{\prime} . H$.
(Hint: recall that the degree of fibres in a subscheme $Z \subset \mathbb{P}_{T}^{N}$ flat over T is constant as we move along T.)
(d) Conclude that if D, D^{\prime} are algebraically equivalent, then they are also numerically equivalent.

