Equation of a plane in \mathbb{R}^{3}.

The plane which contains the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and has normal vector $\mathbf{n}=\langle a, b, c\rangle$ is given by the equation

$$
a x+b y+c z+d=0
$$

Here d is the constant number given by
(a) $d=a x_{0}+b y_{0}+c z_{0}$;
(b) $d=-a x_{0}-b y_{0}-c z_{0}$;
(c) $d=x_{0}^{2}+y_{0}^{2}+z_{0}^{2}$;
(d) I don't know.

Intersection of two planes in \mathbb{R}^{3}.

Take two planes in \mathbb{R}^{3} and intersect them. The set of point in the intersection could form
(a) a single point;
(b) a line;
(c) there could be no points in the intersection;
(d) either (b) or (c) could happen.

Case (c) happens \Longleftrightarrow the planes are parallel \Longleftrightarrow the normal vectors are parallel.

Case (b) happens whenever they aren't parallel. Then we want to determine the equation of this line.

The Right-Hand Rule

Consider the following vectors:

Then $\mathbf{a} \times \mathbf{b}$ points
(a) into the board;
(b) out of the board.

Note that $\mathbf{b} \times \mathbf{a}$ points into the board.

Cross product: example

Take $\mathbf{a}=\langle 1,0,1\rangle, \mathbf{b}=\langle 4,2,0\rangle$.
Then

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 1 \\
4 & 2 & 0
\end{array}\right|=?
$$

(a) $-2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$;
(b) $2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$;
(c) $-2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$;
(d) I don't know.

Properties of the cross product

(1) $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$;
(2) $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$;
(3) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$;
4) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$;
(5) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$;
(6) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.

Two intersecting planes in \mathbb{R}^{3}

Take two planes with equations

$$
\begin{array}{r}
x+y+z=1 \\
x-2 y+3 z=1
\end{array}
$$

They intersect forming a line L.

This line will be perpendicular to the normal vectors $\mathbf{n}_{1}=\langle 1,1,1\rangle ; \mathbf{n}_{2}=\langle 1,-2,3\rangle$, so its direction is the same as that of

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & -2 & 3
\end{array}\right|=\langle 5,-2,-3\rangle
$$

We can also find a point P in L as follows: let's look for a point with $z=0$.

Then the equations become

$$
\begin{array}{r}
x+y=1 \\
x-2 y=1
\end{array}
$$

From this we see that $y=0, x=1$, and so $P=(1,0,0) \in L$.
Recall that we already showed that L has direction $\langle 5,-2,-3\rangle$.
Which of the following gives an equation for L ?
(a) $\mathbf{r}(t)=\left\langle\frac{1+t}{5}, \frac{t}{-2}, \frac{t}{-3}\right\rangle$;
(b) $\mathbf{r}(t)=\langle 1+5 t,-2 t,-3 t\rangle$;
(c) I don't know.

